添括号法则
- 格式:ppt
- 大小:1.18 MB
- 文档页数:15
括号法则1. 去括号的法则是:括号前面是“+”号,去括号时,括号里的各项都不变;括号前面是“-”号,去括号时,括号里的各项都变号.例如;5a+(4b-3a)-(2b+a)=5a+4b-3a-2b-a=a+2b.练习题:5246-(246+694)= 354+(229+46)=(23+56)+47 = 125×(3+8)=2. 添括号的法则是:添括号时,括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号.例如:4a-3b-2c=4a-(3b+2c);7a+2b-5c=7a+(2b-5c).练习题:582-157-182= 2354-456-544=45627-258-742-1627= 458-45—155括号前面是加号时,去掉括号,括号内的算式不变。
括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。
法则的依据实际是乘法分配律注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.去括号时应将括号前的符号连同括号一起去掉.要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.3. 一定要注意,若括号前面是除号,不能直接去除除号.小学数学巧算,移位凑合法法交换律两个数相加,交换加数的位置,和不变。
a+b=b+a加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)减法的性质减去一个数,等于加这个数的相反数。
a-b=a+(-b)连续减去两个数,等于减去这两个数的和。
a-b-c=a-(b+c)减去一个数再加上一个数,等于减去这两个数的差。
添括号:由去括号法则:a+(b+c)=a+b+c;a-(b+c)=a-b-c.反过来,就得到添括号法则:a+b+c= a+(b+c)a-b-c= a-(b+c)也就是说,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.1、运用乘法公式计算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)².(3)(3a+b-2)(3a-b+2)(4)(x+2y-1)²因式分解:根据整式的乘法,可以联想到x²+x=x(x+1),x²-1=(x+1)(x-1)上面我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.可以看出,因式分解与整式乘法是方向相反的变形,即x²-1(x+1)(x-1).我们看多项式pa+pb+pc,它的各项都有一个公共的因式p,我们把因式p叫做这个多项式各项的公因式.由p(a+b+c)=pa+pb+pc,可得pa+pb+pc=p(a+b+c).一般的,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.公因式的定义:‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗.公因式的确定方法:①公因式的系数应取各项系数的‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗;②因式取各项;‗‗‗‗‗‗‗‗‗‗‗‗‗;③因式的指数取‗‗‗‗‗‗‗‗最低的.1、下列式子从左到右变形是因式分解的是()A、a²+4a-21=a(a+4)-21B、a²+4a-21=(a-3)(a+7)C、(a-3)(a+7)=a²+4a-21D、a²+4a-21=(a+2)²-252、把-6x³y²-3x²y²-8x²y³因式分解时,应提取公因式()A、-3x²y²B、-2x²y²C、xyD、-x²y²3、分解因式:(1)12a²b³-4a²b²(2)-4m³+16m²-26m (3)2a(b+c)-3(b+c)(3)m(x-y)+n(y-x)(4)m(a-3)+2(3-a)(5)6a (b -a )²-2(a -b )³ (6)2n (m+n )²+2m (m+n )²+(m+n )³(7)x (m -x )(m -y )-m (x -m )(y -m ) (8)16a ²b (x -y )-8ab ²(y -x )4、分解因式(a -b )³+a (a -b )²+b (b -a )²应等于( )A 、2(b -a )²B 、-2b (b -a )²C 、-2a (b -a )²D 、2a (b -a )²5、若a=2,a -2b=3,则2a ²-4ab 的值为‗‗‗‗‗‗‗.6、若a ²+a+1=0,则=++a a a 201320142015‗‗‗‗‗‗‗.7、用简便方法计算: 201165222200820092010+⨯+⨯-8、已知a+b=-5,ab=7,求a ²b+ab ²-a -b 的值.公式法:把整式乘法的平方差公式(a+b )(a -b)=a ²-b ²的等号两边互换位置,就得到 a ²-b ²=(a+b )(a -b)即两个数的平方差,等于这两个数的和与这两个数的差的积.1、 分解因式:(1)4x ²-9 (2)(x+p )²-(x+q )²2、 分解因式:(1)y x 44- (2)a ³b -ab.(3)x ²y -y ³ (4).22481y x x -3①已知a+b=4,a -b=3,则a ²-b ²=‗‗‗‗‗‗‗.②计算(m+1)²-m ²=‗‗‗‗‗‗‗.把整式乘法的完全平方公式(a+b )²=a ²+2ab+b ²,(a -b )²=a ²-2ab+b ² .的等号两边互换位置,就得到 a ²+2ab+b ²=(a+b )²,a ²-2ab+b ²=(a -b )²,即两个数的平方和加上(或减去)这两个数积的2倍,等于这两个数的和(或差)的平方.1、 分解因式:(1)16x ²+24x+9; (2)-x ²+4xy -4y ²2、 分解因式:(1)3ax ²+6axy+3ay ²; (2)(a+b )²-12(a+b )+36.(3)x ²-2xy+y ²-16; (4)ax ²+8ax+16a ;3、 已知x (x -1)-(x ²-y )=-3,求xy y x -+222的值.4、 已知a ,b ,c 是三角形的三边,且满足a ²+b ²+c ²+50=6a+8b+10c ,求a ,b,c 的值.5、 观察下列分解因式过程.x ²+2ax -3a ²=x ²+2ax+a ²-a ²-3a ²(先加上a ²,再减去a ²)=(x+a )²-4a ²(运用完全平方公式)=(x+a+2a)(x+a -2a)(运用平方差公式)=(x+3a )(x -a )像上面这样通过加减项配出完全平方式后再把二次三项式分解因式的方法,叫做配方法,请你用配方法分解因式;m ²-4mn+3n ².6、下列因式分解错误的是( )A 、x ²-y ²=(x+y )(x -y )B 、x ²+6x+9=(x+3)²C 、x ²+xy=x (x+y )D 、x ²+y ²=(x+y )²7、下列因式分解中,正确的个数为( )①x ³+2xy+x=x (x ²+2y );②x ²+4x+4=(x+2)²;③-x ²+y ²=(x+y )(x -y).A 、3个B 、2个C 、1个D 、0个8、已知x=y+4,则代数式x ²-2xy+y ²-25的值为‗‗‗‗‗‗‗.9、已知xy=1,求代数式)(31432y x xy y x ++-的值.10、已知a ²+b ²+2a -4b+5=0,求2a ²+4b -3的值.。
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
2023-10-30contents •添括号法则概述•添括号法则的数学原理•添括号法则在数学问题中的应用•添括号法则的进阶技巧•添括号法则的实例解析•添括号法则的总结与展望目录01添括号法则概述•添括号法则是数学中常用的一个运算方法,即将一个多项式用括号括起来,以改变其运算顺序。
这个法则对于解决一些复杂的多项式问题非常有用,可以帮助我们更好地理解和掌握运算的顺序和规则。
•添括号法则的应用范围非常广泛,不仅适用于基本的算术运算,还广泛应用于代数、方程式、函数等复杂数学领域。
当我们需要改变多项式的运算顺序时,添括号法则就变得尤为重要。
添括号法则的应用范围添括号法则的历史与发展•添括号法则作为数学运算中的一个基本法则,其历史可以追溯到古代数学家们的著作。
随着数学的发展和进步,添括号法则也逐渐完善和优化,成为现代数学中不可或缺的一部分。
同时,添括号法则也在计算机科学、工程、物理等领域中得到了广泛的应用和发展。
02添括号法则的数学原理代数式中的括号避免混乱在有多个运算符的代数式中,添加括号可以避免运算顺序的混乱,使计算更加准确。
强调运算顺序在需要强调运算顺序的情况下,添加括号可以起到强调的作用,使读者或听众更加清晰地理解运算的步骤和顺序。
简化计算在代数式中添加括号,可以简化计算过程,使运算更加直观和方便。
方程中的括号避免混乱在方程中添加括号,可以避免在移项和化简过程中产生误解和混乱。
提高可读性在方程中添加括号,可以提高方程的可读性,使读者更加清晰地理解方程的运算过程和结构。
强调运算顺序在需要强调运算顺序的情况下,添加括号可以起到强调的作用,使读者或听众更加清晰地理解运算的步骤和顺序。
函数中的括号定义变量在函数中添加括号,可以定义函数的变量和参数,使函数的定义更加清晰和准确。
强调运算顺序在需要强调运算顺序的情况下,添加括号可以起到强调的作用,使读者或听众更加清晰地理解函数的运算过程和顺序。
提高可读性在函数中添加括号,可以提高函数的可读性,使读者更加清晰地理解函数的运算过程和结构。
去括号与添括号-重难点题型【知识点1 去括号的法则】(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;①a-(b-c)=a-b+c,括号前是“-”号,去括号时连同它前面的“-”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;①去括号时改变了式子的形式,但并没有改变式子的值.【题型1 去括号】【例1】(2020秋•越秀区期末)下列去括号运算正确的是()A.﹣(3x﹣2y+1)=3x﹣2y+1B.(2x﹣3y)﹣(5z﹣1)=2x﹣3y+5z﹣1C.﹣(3a+2b)﹣(c+d)=﹣3a﹣2b﹣c﹣dD.﹣(a﹣2b)﹣(2c﹣d)=﹣a+2b﹣2c﹣d【变式1-1】(2020秋•微山县月考)下面去括号错误的是()A.a2﹣(a﹣b+c)=a2﹣a+b﹣cB.5+a﹣2(3a﹣5)=5+a﹣6a+5C.3a−13(3a2−2a)=3a−a2+23aD.a3﹣[a2﹣(﹣b)]=a3﹣a2﹣b【变式1-2】(2020秋•西城区校级期中)下列各式中去括号错误的是()A.x﹣(3y+14)=x﹣3y−14B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.−12[4x+(6y﹣3)]=﹣2x﹣3y﹣3D.(a+12b)﹣(−25c+34)=a+12b+25c−34【变式1-3】(2021秋•海州区校级期中)下列去括号正确吗?如有错误,请改正.(1)+(﹣a﹣b)=a﹣b;(2)5x﹣(2x﹣1)﹣xy=5x﹣2x+1+xy;(3)3xy﹣2(xy﹣y)=3xy﹣2xy﹣2y;(4)(a+b)﹣3(2a﹣3b)=a+b﹣6a+3b.【知识点2 添括号的法则】添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.【题型2 添括号】【例2】(﹣a+2b+3c)(a+2b﹣3c)=[2b﹣()][2b+(a﹣3c)].【变式2-1】a﹣b﹣c+d=a﹣b﹣()=a+()=a﹣().【变式2-2】按下列要求,给多项式3x3﹣5x2﹣3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“﹣”号;(3)把多项式后三项括起来,括号前面带有“﹣”号;(4)把多项式中间的两项括起来.括号前面“﹣”号.【变式2-3】把多项式a3+2a2b﹣2ab2﹣b3中含有a,b项的放在前面带有“﹣”号的括号里,其他项放在前面带有“+”号的括号里.【题型3 利用去括号法则化简代数式】【例3】先去括号,再合并同类项:6a 2﹣2ab ﹣2(3a 2−12ab );2(2a ﹣b )﹣[4b ﹣(﹣2a +b )];9a 3﹣[﹣6a 2+2(a 3−23a 2)];2t ﹣[t ﹣(t 2﹣t ﹣3)﹣2]+(2t 2﹣3t +1).【变式3-1】先去括号,后合并同类项:(1)x +[﹣x ﹣2(x ﹣2y )];(2)12a ﹣(a +23b 2)+3(−12a +13b 2); (3)2a ﹣(5a ﹣3b )+3(2a ﹣b );(4)﹣3{﹣3[﹣3(2x +x 2)﹣3(x ﹣x 2)﹣3]}.【变式3-2】去括号,合并同类项(1)﹣3(2s ﹣5)+6s ;(2)3x ﹣[5x ﹣(12x ﹣4)]; (3)6a 2﹣4ab ﹣4(2a 2+12ab );(4)﹣3(2x 2﹣xy )+4(x 2+xy ﹣6)【变式3-3】先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2−72(a+b)−54(a+b)2+(﹣3)2(a+b).【题型4 利用添括号与去括号求值】【例4】(2020秋•北碚区校级期中)若代数式2mx2+4x﹣2(y2﹣3x2﹣2nx﹣3y+1)的值与x的取值无关,则m2019n2020的值为()A.﹣32019B.32019C.32020D.﹣32020【变式4-1】已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1B.5C.﹣5D.﹣1【变式4-2】观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣1,求﹣1+a2+b+b2的值.【变式4-3】先阅读下面的文字,然后按要求解题:例:1+2+3+…+100=?如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.因为1+100=2+99=3+98=…=50+51=101所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题的解题过程;(2)计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b)+(a+100b)。
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。