球的内切与外接问题
- 格式:ppt
- 大小:1.60 MB
- 文档页数:39
与球相关的外接与内切问题一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体.与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积来求球的半径. 二.解题策略类型一 构造法(补形法)【例1】已知,,,S A B C 是球O 上的点SA ABC ⊥平面, AB BC ⊥, 1SA AB ==,2BC =,则球O 的表面积等于________________.【例2】刘徽《九章算术•商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( )A .B .C .D .【举一反三】1、已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.2、在三棱锥中,,则三棱锥外接球的表面积为()A.B.C.D.3、某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A. B. C. D.类型二正棱锥与球的外接【例3】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814πB.16π C.9π D.274π【举一反三】1、球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ABC 的体积的最大值为( )A .33B . 3C .2 3D .42. 正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______.3、正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.类型三 直棱柱的外接球【例4】直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .【举一反三】 1、已知直三棱柱的顶点都在球的球面上,,,若球的表面积为,则这个直三棱柱的体积是( )A .16B .15C .D .2、已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为 ( )A .3172B .10C .132D .3103、 正四棱柱1111ABCD A B C D 的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 .三.强化训练 一、选择题1、《九章算木》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”,现有一阳马,其正视图和侧视图是如图所示的直角三角形,该“阳马”的体积为,若该阳马的顶点都在同一个球面上,则该球的表面积为( )A .B .C .D .2.在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( )A .B .C .D .3.已知A ,B ,C 为球O 的球面上的三个定点,,,P 为球O 的球面上的动点,记三棱锥p 一ABC 的体积为,三棱銋O 一ABC 的体积为,若的最大值为3,则球O 的表面积为 A .B .C .D .4.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是()A.B.C.D.5.点,,,在同一个球面上,,,若球的表面积为,则四面体体积的最大值为A.B.C.D.6.三棱锥P—ABC中,底面ABC满足BA=BC,,点P在底面ABC的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到底面ABC的距离为()A.3 B.C.D.7.已知正方形ABCD的边长为4,E,F分别是BC,CD的中点,沿AE,EF,AF折成一个三棱锥P-AEF(使B,C,D重合于P),三棱锥P-AEF的外接球表面积为()A.B.C.D.8.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于A.B.C.D.二、填空题9.已知在三棱锥中,,则三棱锥外接球的表面积为__________.10已知三棱锥的所有顶点都在同一球面上,底面是正三角形且和球心O在同一平面内,若此三棱锥的最大体积为,则球O的表面积等于_____.11.已知四棱锥的三视图如图所示,若该四棱锥的各个顶点都在球的球面上,则球的表面积等于_________.12.如图,是边长为2的正方形,其对角线与交于点,将正方形沿对角线折叠,使点所对应点为,.设三棱锥的外接球的体积为,三棱锥的体积为,则__________.13.已知,,,,是球的球面上的五个点,四边形为梯形,,,,,,平面平面,则球的表面积为_____.14.三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于__________.15.在四棱锥中,是等边三角形,底面是矩形,平面平面,若,则四棱锥的外接球的表面积是_____.16.已知是球表面上四点,点为的中点,且,,,,则球的表面积是__________.17.在三棱锥中,是等边三角形,底面,,,则该三棱锥的外接球的表面积为______.答 案类型一 构造法(补形法)【例1】已知,,,S A B C 是球O 上的点SA ABC ⊥平面, AB BC ⊥, 1SA AB ==,2BC =,则球O 的表面积等于________________.【答案】4π 【解析】由已知S,A,B,C 是球O 表面上的点,所以OA OB OC OS === ,又SA ABC ⊥平面,AB BC ⊥,所以四面体S ABC -的外接球半径等于以长宽高分别以SA,AB,BC 三边长为长方体的外接球的半径,因为1SA AB ==, 2BC =,所以2222=2,1R SA AB BC R ++==,所以球O 的表面积244S R ππ==.【指点迷津】当一三棱锥的三侧棱两两垂直时,可将三棱锥补成一个长方体,将问题转化为长方体(正方体)来解.长方体的外接球即为该三棱锥的外接球.【例2】刘徽《九章算术•商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( )A .B .C .D .【答案】B 【解析】由题意可知阳马为四棱锥,且四棱锥的底面为长方体的一个底面,四棱锥的高为长方体的一棱长,且阳马的外接球也是长方体的外接球,由三视图可知四棱锥的底面是边长为1的正方形,四棱锥的高为1,∴长方体的一个顶点处的三条棱长分别为1,1,1,∴长方体的对角线为,∴外接球的半径为,∴外接球的体积为.故选:B.【指点迷津】当一四面体或三棱锥的棱长相等时,可以构造正方体,在正方体中构造三棱锥或四面体,利用三棱锥或四面体与正方体的外接球相同来解即可.【举一反三】1、已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.【答案】C【解析】如图所示,将直三棱柱补充为长方体,则该长方体的体对角线为,设长方体的外接球的半径为,则,,所以该长方体的外接球的体积,故选C.2、在三棱锥中,,则三棱锥外接球的表面积为()A.B.C.D.【答案】C【解析】解:如图,把三棱锥补形为长方体,设长方体的长、宽、高分别为,则,∴三棱锥外接球的半径∴三棱锥外接球的表面积为.故选:C.3、某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A. B. C. D.【答案】C【解析】由三视图可得,该几何体为一个三棱锥,放在长、宽、高分别为2,1,2的长方体中,此三棱锥和长方体的外接球是同一个,长方体的外接球的球心在体对角线的中点处,易得其外接球的直径为,从而外接球的表面积为.故答案为:C.类型二正棱锥与球的外接【例3】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814πB.16π C.9π D.274π【答案】A.【指点迷津】求正棱锥外接球的表面积或体积,应先求其半径,在棱锥的高上取一点作为外接球的球心,构造直角三角形,利用勾股定理求半径. 【举一反三】1、球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ABC 的体积的最大值为( )A .33B . 3C .2 3D .4 【答案】A【解析】 (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S ABC 的体积最大.因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=233.在Rt △SHO 中,OH =12OC =33,所以SH =⎝ ⎛⎭⎪⎫2332-⎝ ⎛⎭⎪⎫332=1, 故所求体积的最大值为13×34×22×1=33.2. 正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______.【答案】【解析】解:如图,设正四面体ABCD的棱长为,过A作AD⊥BC,设等边三角形ABC的中心为O,则,,,即.再设正四面体ABCD的外接球球心为G,连接GA,则,即.∴正四面体ABCD的外接球的体积为.故答案为:.3、正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.【答案】【解析】因为,所以,所以,同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则且,所以,当平面时,平面截球的截面面积最小,此时截面为圆面,其半径为,故截面的面积为.填.类型三 直棱柱的外接球【例4】直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 . 【答案】【解析】在ABC ∆中2AB AC ==,120BAC ∠=︒,可得23BC =,由正弦定理,可得ABC ∆外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '∆中,易得球半径5R =,故此球的表面积为2420R ππ=.【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径. 【举一反三】 1、已知直三棱柱的顶点都在球的球面上,,,若球的表面积为,则这个直三棱柱的体积是( )A .16B .15C .D .【答案】A 【解析】 由题,,因为,,易知三角形ABC 为等腰直角三角形,故三棱柱的高故体积故选A2、已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为 ( )A .3172B .210C .132D .310【答案】C【解析】由球心作面ABC 的垂线,则垂足为BC 中点M.计算AM=52,由垂径定理,OM=6,所以半径R=22513()622+=,选C. 3、 正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 . 【答案】大三.强化训练 一、选择题1、《九章算木》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”,现有一阳马,其正视图和侧视图是如图所示的直角三角形,该“阳马”的体积为,若该阳马的顶点都在同一个球面上,则该球的表面积为()A.B.C.D.【答案】D【解析】由正视图,侧视图可知,底面长方形的长,宽分别为4,2,故四棱锥的高为,所以外接球的直径为,所以.故选:D.2.在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】解:如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.3.已知A,B,C为球O的球面上的三个定点,,,P为球O的球面上的动点,记三棱锥p一ABC的体积为,三棱銋O一ABC的体积为,若的最大值为3,则球O的表面积为A.B.C.D.【答案】B【解析】由题意,设的外接圆圆心为,其半径为,球的半径为,且依题意可知,即,显然,故,又由,故,∴球的表面积为,故选B.4.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是()A.B.C.D.【答案】B【解析】解:取的中点,连接,.因为,,所以,可得即为二面角的平面角,故在中,,同理可得,由余弦定理得,解得在中,所以,为直角三角形,同理可得为直角三角形,取中点,则,在与中,,,所以点E为该球的球心,半径为,所以球的表面积为,故选B.5.点,,,在同一个球面上,,,若球的表面积为,则四面体体积的最大值为A.B.C.D.【答案】C【解析】因为球的表面积为,所以,因为所以三角形ABC为直角三角形,从而球心到平面ABC距离为,因此四面体体积的最大值为,选C.6.三棱锥P—ABC中,底面ABC满足BA=BC,,点P在底面ABC的射影为AC的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P到底面ABC的距离为()A.3 B.C.D.【答案】B【解析】设外接球半径为,P到底面ABC的距离为,,则,因为,所以,因为,所以当时,,当时,,因此当时,取最小值,外接球的表面积取最小值,选B.7.已知正方形ABCD的边长为4,E,F分别是BC,CD的中点,沿AE,EF,AF折成一个三棱锥P-AEF(使B,C,D重合于P),三棱锥P-AEF的外接球表面积为()A.B.C.D.【答案】C【解析】解:如图,由题意可得,三棱锥P-AEF的三条侧棱PA,PE,PF两两互相垂直,且,,把三棱锥P-AEF补形为长方体,则长方体的体对角线长为,则三棱锥P-AEF的外接球的半径为,外接球的表面积为.故选:C.8.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于A.B.C.D.【答案】C【解析】由题意,在三棱锥(鳖臑)中,,平面,所以其外接球的直径.设,则,所以其外接球的体积,解得.设四棱锥(阳马)的外接球半径为,则,所以该球的表面积.故选C.二、填空题9.已知在三棱锥中,,则三棱锥外接球的表面积为__________.【答案】【解析】,是正三角形,是等腰直角三角形,设中心为,外心为,则是斜边的中点,所以,设三棱锥外接球球心为,则平面平面,由余弦定理,,,设球半径为,球的表面积为,故答案为.10已知三棱锥的所有顶点都在同一球面上,底面是正三角形且和球心O在同一平面内,若此三棱锥的最大体积为,则球O的表面积等于_____.【答案】【解析】与球心在同一平面内,是的外心,设球半径为,则的边长,,当到所在面的距离为球的半径时,体积最大,,,球表面积为,故答案为.11.已知四棱锥的三视图如图所示,若该四棱锥的各个顶点都在球的球面上,则球的表面积等于_________.【答案】【解析】由该四棱锥的三视图知,该四棱锥直观图如图,因为平面平面,连接AC,BD交于E,过E作面ABCD的垂线与过三角形ABS的外心作面ABS的垂线交于O,即为球心,连接AO即为半径,令为外接圆半径,在三角形SAB中,SA=SB=3,AB=4,则cos,∴sin,∴,∴,又OF=,可得,计算得,,所以.故答案为12.如图,是边长为2的正方形,其对角线与交于点,将正方形沿对角线折叠,使点所对应点为,.设三棱锥的外接球的体积为,三棱锥的体积为,则__________.【答案】【解析】易知三棱锥的外接球的球心为,∴,∴,很明显到底面的距离为1,∴,∴.13.已知,,,,是球的球面上的五个点,四边形为梯形,,,,,,平面平面,则球的表面积为_____.【答案】【解析】设中点为,设中点为,作出图像如下图所示,由于,,平面平面,所以,平面,故.由于,,,所以,.所以,故点到的距离相等,所以为球心,且球的半径为,故表面积为.14.三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于__________.【答案】【解析】把三棱锥,放到长方体里,如下图:,因此长方体的外接球的直径为,所以半径,则三棱锥的外接球的表面积为.15.在四棱锥中,是等边三角形,底面是矩形,平面平面,若,则四棱锥的外接球的表面积是_____.【答案】【解析】解:如图,设等边三角形PAB的中心为G,则,设四棱锥P﹣ABCD的外接球的球心为O,连接OP,则OP为四棱锥P﹣ABCD的外接球的半径,OP2=PG2+OG2=22+12=5,∴四棱锥P﹣ABCD的外接球的表面积是4π×5=20π.故答案为:20π.16.已知是球表面上四点,点为的中点,且,,,,则球的表面积是__________.【答案】【解析】由题意可知与都是边长为的正三角形,如图,过与的外心分别作平面与平面的垂线,两垂线的交点就是球心,连接,可知,在直角三角形中,,,所以,连接,所以球的半径为,因此球的表面积是.故答案为17.在三棱锥中,是等边三角形,底面,,,则该三棱锥的外接球的表面积为______.【答案】【解析】如图,为底面中心,为中点,球心平面,,所以为中点,在中,,,,可得,故外接球表面积为:.故答案为:.。
内切球和外接球常见解法内切球和外接球是在几何学中常用的概念,它们分别指的是一个几何体内切或外接于另一个几何体的球。
在实际问题中,内切球和外接球常常用于优化问题和几何问题的求解,其解法也有多种。
以下将介绍一些常见的解法。
1. 解法一:利用勾股定理求解。
内切球和外接球都可以利用勾股定理求解。
以内切球为例,我们可以考虑任意三角形ABC,设其内切球的半径为r,以I为内切圆心,则:AB + AC = 2r;AC + BC = 2r;AB + BC = 2r。
整理可得:r = [ABC] / (s + a + b + c),其中s为半周长,a、b、c为三角形ABC的三边长,[ABC]为三角形ABC的面积。
而外接球的半径r'则可用公式r'=[ABC] / (4S),其中S为三角形ABC的外接圆半径。
欧拉定理是内切球和外接球求解的另一个重要工具。
欧拉定理有两种形式,分别为:对于任意四面体,其四个顶点、三条棱的中点和六面体质心共九个点在同一球面上。
对于任意三角形ABC,其外接圆心、垂足交点、垂心、重心四点在同一圆上,且圆心为外接球心。
利用欧拉定理可以求得内切球半径:点O为六面体质心,点I为内切圆心,则IO等于内切球半径r。
点O为三角形外心,点H为垂心,点G为重心,则OG等于外接球半径r'。
对于一些优化问题,内切球和外接球也可以通过线性规划求解。
例如,对于一个凸多面体,求其内切球或外接球的半径最大值,可以将问题转化为线性规划问题,即:max rs.t. A_i * x <= b_i, i=1,2,...,mx_i >= 0, i=1,2,...,n其中,A_i是多面体的几何信息,b_i是多面体中某一点到各个面的距离,x是优化变量,r就是所需要求的内切球或外接球半径。
可以使用线性规划求解器求解其最优解。
外接球和内切球问题总结归纳外接球和内切球问题总结归纳在几何学中,外接球和内切球问题是一个重要的概念。
它们不仅在数学领域有着重要的应用,同时也被广泛运用在物理学、工程学以及计算机科学等领域。
本文将对外接球和内切球问题进行深入探讨,从基础概念到应用实例,帮助读者全面理解这一主题。
一、外接球和内切球的定义1. 外接球外接球是指一个球与给定的多边形的所有顶点相切于球面的情况。
在数学中,外接球常常与三角形、四边形等几何图形相关联,其特点是与多边形的各个顶点相切,并且球心通常位于多边形的某个重要位置。
2. 内切球内切球则是指一个球完全被给定的多边形所包围,且球与多边形的边界相切。
在实际应用中,内切球往往能够最大化地利用多边形所包围的空间,因此在工程设计和优化问题中具有重要意义。
二、外接球和内切球的性质1. 外接球的性质外接球的半径通常与多边形的边或者角有着特定的关系。
以三角形为例,外接圆的半径等于三角形三条边的乘积除以其周长的两倍。
这一性质在计算三角形的外接圆时具有重要意义,同时也为几何问题的解决提供了基础。
2. 内切球的性质内切球的半径与多边形的边界有着紧密的联系。
以正方形为例,内切圆的半径等于正方形的边长的一半。
这一性质在优化问题中有着重要的应用,能够帮助设计者最大化地利用空间,提高效率和节约成本。
三、外接球和内切球的应用1. 工程设计外接球和内切球在工程设计中有着广泛的应用。
例如在建筑设计中,内切球可以帮助设计者合理利用建筑空间,提高使用效率;在机械设计中,外接球则可以帮助设计者确定零部件的匹配度和适用性。
2. 计算机科学外接球和内切球也在计算机科学领域有着重要的应用。
例如在计算机图形学中,外接球和内切球经常被用来描述物体的外形和几何特征,同时也可以用于物体的碰撞检测和三维建模。
个人观点和总结外接球和内切球作为一个基础的数学概念,在几何学、工程学和计算机科学等领域有着重要的应用。
通过对外接球和内切球的定义、性质和应用进行深入探讨,我们可以更好地理解其在实际问题中的作用和意义,进一步拓展其在更多领域的应用。
立体图形的外接球与内切球问题一、基础知识与观点:1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆.大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面可是球心.2.球心和截面圆心的连线垂直于截面.3 d与球半径R及截面圆半径 r 的关系:R2d2r2 ..球心到截面的距离4.几何体的外接球:几何体的极点都在球面上;几何体的内切球:球与几何体的各个面都相切.二、多面体的外接球(球包体)模型 1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱)球包直h 2球径公式: R r 2,柱 2球包正方体球包长方体球包四棱柱球包三棱柱( r 为底面外接圆半径)三棱锥球包直锥四棱锥r速算模型 2:“极点连心”锥:锥体的极点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线)实例:正棱锥22 2 R2 h2 2hR r 2 0 R h r球径计算方程:h R r 2 ,2h( h 为棱锥的高,r 为底面外接圆半径)特别地,( 1)边长为a正四周体的外接球半径:R ______________.( 2)底面边长为a,高为h的正三棱锥的外接球半径:R __________.( 3)底面边长为a,高为h的正四棱锥的外接球半径:R __________.例: 1.( 2017 年全国卷 III 第 8 题)已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为A .B .3D .C.42 42【分析】 模式辨别:“球包体” 中的 “垂底侧边棱 (母线)”种类, h1 , R 1,底面半径为 r ,则由 Rhr 2223,V得: 121 r 2r 2r 2h3 .2442.( 2010 年全国新课标卷第 10 题)设三棱柱的侧棱垂直于底面,全部棱的长都为 a ,极点都在一个球面上,则该球的表面积为A . a 2B .7a 2C .11a 2D . 5 a 2333a , R2h2a 2a 2 7a 2【分析】“球包体”中的“垂底侧边棱”种类,h a , rr 2 ,3243 12因此该球的表面积 S 4 R247a 2 7a 2 .答案 B .12 33.( 2014 年全国纲领卷第 8 题)正四棱锥的极点都在同一球面上,若该棱锥的高为4,底面边长为 2,则该球的表面积为81B . 16C . 9D .27A .44【分析】模式辨别: “球包体”中的“极点连心锥” , h 4 , r2 22 ,则 Rh 2 r 2 162 922h8,4因此 S 4R 2 481 81,答案: A .16 48 cm ,将一个4.( 2013 年全国卷 I 第 6 题)如图,有一个水平搁置的透明无盖的正方体容器,容器高球放在容器口,再向容器内灌水,当球面恰巧接触水面时测得水深为6 cm ,假如不计容器的厚度,则球的体积为A . 500 cm 3B . 866 cm 3C . 1372 cm 3D . 2048 cm 33333【分析】设水面与球的接触点(切点)为P ,球心为 O ,则 PO 垂直于正方体的上表面,依题意Ph 2r4R2r 2R 2 ,到正方体上表面的距离为,球与正方体上表面订交圆的半径,有: 2r 245 ,因此球的体积 V43500R3 R.43三、安心大法:球心在过截面圆的圆心且垂直于截面圆所在平面的直线上.两圆安心法:以下列图,过两个截面圆的圆心分别作相应截面圆的垂线,由两垂线的交点确立圆心.例 2:1.已知边长为 2 3 的棱形ABCD 中,60,现沿对角线BD折起,使得二面角A BDC 为 120,此时点 A , B , C , D 在同一个球面上,则该球的表面积为(A . 20B . 24C . 28)D . 322.在矩形ABCD 中,AB 4 ,BC 3,沿AC 将矩形折成一个直二面角 B AC D ,则四周体ABCD 的外接球的体积为___________.3.在边长为1的菱形ABCD 中,BAD 60 ,沿对角线将菱形折成直二面角A BD C ,则三棱锥 A BCD 的外接球的表面积为_____________.四、正多面体的内切球(体中球)锥体的内切球:圆锥的内切球:边长为 a 的正方体:等边圆柱(母线 a ):边长 a 的正八面体:R ____________.R a a.RR R2 2五、正多面体的“切边球”(与全部的棱都相切的球)正四周体边长为 a ,球半径R 正方体边长为 a ,球半径R 正四周体边长为 a ,球半径R例 3:1.一个球的外切正方体的全面积为 6 ,则球的体积为_________.2.某圆锥的截面为边长为 2 的正三角形,则该圆锥的内切球的表面积为_______.3.( 2016 年全国卷 III 第 10 题)在关闭的直三棱柱ABC A1B1C1内有一个体积为V的球,若AB BC , AB 6 ,BC 8,AA13,则 V 的最大值是A .49C.632B .D.3 2【分析】考察直三棱柱中截面的内切圆为球的大圆的情形,有 6 8 10 R 6 8 R 2 AA1 3,故当球半径为3时球的体积最大为 V 4 R3 4 272 2.答案 B .2 3 3 8 2练习:1.( 2015 年全国卷 II 第 9 题)已知A,B是球O的球面上两点,AOB 90 , C 为该球面上的动点,若三棱锥O ABC 体积的最大值为36,则球 O 的表面积为A .36B .64 C.144 D .2562.( 2016 年福建漳州市 5 月质检)三棱锥S ABC 中, SB 平面 ABC ,SB 5 ,ABC 是边长为 3 的正三角形,则三棱锥 S ABC 的外接球的表面积为()A .3B .5 C.9 D .123.( 2014 年湖南卷)一块石材表示的几何体的三视图以下图,将该石材切削、打磨,加工成球,则能获得的最大球的半径等于()A .1B .2 C.3 D .44(. 2013 年辽宁卷理 10)已知三棱柱ABC A1B1C1的6个极点都在球O的球面上,若AB 3,AC 4 , AB AC , AA 1 12 ,则球 O 的半径为()A . 3 17B . 2 10C .13D . 3 10225.( 2012 年全国新课标卷第 11 题)已知三棱锥 S ABC 的全部极点都在球 O 的球面上, ABC 是边长为 1 的正三角形, SC 为球 O 的直径,且 SC2 ,则此棱锥的体积为A .2B .3C .223D .6626.在正三棱锥 P ABC 中, PA PB PC3 ,侧棱 PA 与底面 ABC 所成的角为 60 ,则该三棱锥外接球的体积为()A .B .C . 44D .337.已知底面边长为 1,侧棱长为2 的正四棱柱的各极点均在同一个球面上,则该球的体积为()A .32B . 4C . 2D .4338.( 2017 年福建省质检) .空间四边形 ABCD 的四个极点都在同一球面上, E 、 F 分别是 AB 、 CD 的中点,且EF AB, EF CD ,若 AB 8,CD EF 4 ,则该球的半径等于A . 65 2B . 65 2C .65D . 6516829.若三棱锥 PABC 的最长的棱 PA 2 ,且各面均为直角三角形,则此三棱锥的外接球的体积是 __________.10 .( 2008 年 高 考 浙江 卷 理 14) 已 知 球 O 的 面 上 四 点 A 、 B 、 C 、 D , DA平 面 ABC , AB BC , DAAB BC3 ,则球 O 的体积为 ____________ .11.( 2016 年东北三省三校联考)三棱柱ABC A 1B 1C 1 各极点都在一个球面上,侧棱与底面垂直,ACB 120 ,CA CB 2 3 , AA 1 4 ,则这个球的表面积为 ____________ .12.在三棱柱 ABC A 1B 1C 1 中,侧棱 AA 1 垂直底面, ACB 90 , BAC 30 , BC 1,且三棱柱 ABC A 1B 1C 1的体积为 3 ,则三棱柱 ABCA 1B 1C 1 的外接球表面积为 _________.13.在正三棱锥 S ABC 中, M , N 分别是棱 SC 、 BC 的中点,且 AMMN ,若侧棱 SA 2 3 ,则正三棱锥S ABC 外接球的表面积是 ____________.14.在三棱锥A BCD 中, AB CD 2 , AD BC 5 , AC BD 7 ,则三棱锥 A BCD 外接球的表面积为 __________.15.( 2017 年天津卷)已知一个正方体的全部极点在一个球面上,若这个正方体的表面积为18 ,则这个球的体积为 ______.16.( 2017 年江苏卷)如图,在圆柱 O 1O 2 内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱 O 1O 2 的体积为 V 1 ,球 O 的体积为 V 2 ,则V 1的值是 _____________.V 2。