·a2=
3
a2,其内切球半径为正四面体高的
1 4
,即r=
1 4
6 ·3
a=
6 12
a,因此内切球表面积为S2=4πr2=
πa2 6
,则
S1 S2
= π63aa22=6π3.
【变式训练】已知正三棱锥P-ABC的四个顶点均在半径为 3 的球面
上,且PA,PB,PC两两互相垂直,则球心到平面ABC的距离为
在截面三角形 SDC 内作一个与边 SD 和 DC 相切,
圆心在高 SE 上的圆.因为正四面体本身的对称性,内切球和外接
球的球心同为 O.此时,CO=OS=R,OE=r,SE= 23a,CE=
33a,则有 R+r=
23a,R2-r2=|CE|2=a32,解得
R
6 a,r 6 a
4
12
如果还原到正方体中去考虑呢?
球 O 的球面上,且 AB=3,BC= 3,过点 D 作 DE 垂直 于平面 ABCD,交球 O 于 E,则棱锥 E-ABCD 的体积为 ________.
思考:可以还原到什么几何体中考虑?
解析
解析:如图所示,BE 过球心 O, ∴DE= 42-32- 32=2, ∴VE -ABCD=13×3× 3×2=2 3. 答案:2 3
练习 1.在正三棱锥 S-ABC 中,M 是 SC 的中点,且 AM
⊥SB,底面边长 AB=2 2,则正三棱锥 S-ABC 的外接球
的表面积为
()
A.6π
B.12π
C.32π
D.36π
解析
解析:如图,由正三棱锥的性质易知 SB⊥AC,结合 AM⊥SB 知 SB⊥平 面 SAC,所以 SB⊥SA,SB⊥SC.又 正三棱锥的三个侧面是全等的三角 形,所以 SA⊥SC,所以正三棱锥 S-ABC 为正方体的一个角,所以正三棱锥 S-ABC 的外接 球即为正方体的外接球.由 AB=2 2,得 SA=SB=SC =2,所以正方体的体对角线为 2 3,所以所求外接球的 半径 R= 3,所求表面积为 4πR2=12π. 答案:B