立体几何中球的内切和外接问题(完美版)
- 格式:ppt
- 大小:1.70 MB
- 文档页数:46
立体几何外接球及内切球问题一、球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。
常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==. 例 1: 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A .B .C . D1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+,,,a b c l 2l R ==部分的体积为( ) A.10π3B.4πC.8π3D.7π31.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. ②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱111C B A ABC -的高为h ,底面边长为a ; 如图2所示,D 和1D 分别为上下底面的中心。
根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R 。
八个超强模型——彻底解决立体几何的外接球和内切球问题摘要本文介绍了八个超强模型,这些模型可以用来彻底解决立体几何中的外接球和内切球问题。
每个模型都具有独特的特点和优势,能够有效地求解球的外接和内切问题,为立体几何的研究提供了有力的工具和方法。
引言在立体几何中,外接球和内切球问题是非常常见的问题。
求解这些问题通常需要借助一些数学模型和方法。
本文介绍了八个超强模型,这些模型在解决外接球和内切球问题方面表现出色。
模型一:球心法线模型该模型基于球的法线方程,通过求解法线方程的交点来得到球心坐标。
利用该模型可以快速准确地求解外接球和内切球的球心坐标。
模型二:点坐标向量模型该模型利用点的坐标向量来表示球心坐标,通过计算坐标向量的运算得到球心坐标。
该模型适用于各种类型的球体,求解效果良好。
模型三:坐标平移模型该模型基于坐标平移的概念,通过平移球心坐标来求解外接球和内切球的球心坐标。
该模型简单易懂,适用于多种立体几何结构。
模型四:线段接触模型该模型利用线段的接触点来求解外接球和内切球的球心坐标。
通过求解线段接触点的几何关系,可以得到球心坐标。
该模型适用于特定的立体几何结构。
模型五:平面交线模型该模型基于平面交线的概念,通过求解平面交线的方程来得到球心坐标。
该模型对于立体几何结构较复杂的情况下求解效果较好。
模型六:圆心半径模型该模型通过求解球的圆心和半径来得到球心坐标。
该模型适用于已知球的圆心和半径的情况下求解。
模型七:曲线拟合模型该模型通过对曲线进行拟合来得到球心坐标。
该模型适用于曲线较为复杂的情况下求解。
模型八:图像处理模型该模型利用图像处理的方法来得到球心坐标。
通过处理球体的图像,可以得到球心坐标。
该模型适用于图像处理技术较为成熟的情况下求解。
结论本文介绍了八个超强模型,这些模型可以用来彻底解决立体几何中的外接球和内切球问题。
每个模型都有其独特的特点和优势,能够有效地求解球的外接和内切问题。
这些模型为立体几何的研究提供了有力的工具和方法,有助于推动该领域的发展。
处理球的“内切”“外接”问题与球有关的组合体问题,一种是内切,一种是外接。
作为这种特殊的位置关系在高考中也是考查的重点,但同学们又因缺乏较强的空间想象能力而感到模糊。
解决这类题目时要认真分析图形,明确切点和接点的位置及球心的位置,画好截面图是关键,可使这类问题迎刃而解。
一、棱锥的内切、外接球问题例1.正四面体的外接球和内切球的半径是多少?分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。
解:如图1所示,设点O 是内切球的球心,正四面体棱长为a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .练习:一个正四面体内切球的表面积为π3,求正四面体的棱长。
二、球与棱柱的组合体问题1. 正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。
设正方体的棱长为a ,球半径为R 。
如图3,截面图为正方形EFGH 的内切圆,得2a R =; 2. 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。
3. 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。
4. 长方体内切外接球呢?图3 图4 图5 图1例3.在球面上有四个点P 、A 、B 、C .如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===,那么这个球的表面积是______.解:由已知可得PA 、PB 、PC 实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,连结过点C 的一条对角线CD ,则CD 过球心O ,对角线a CD 3=223234a a S ⋅=⎪⎪⎭⎫ ⎝⎛⋅=∴ππ球表面积 练习:1一棱长为a 2的框架型正方体,内放一能充气吹胀的气球,求当球与正方体棱适好接触但又不至于变形时的球的体积。
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为.例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24 ,则该球的体积为.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16B. 20C. 24D. 323.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形, 其侧棱垂直于底面,已知该 六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长 为3,则这个球的体积为.解设正六棱柱的底面边长为x ,高为h ,则有 6x 3 9 会 3 2.6 — x h 8 4的半径的常用公式二、构造法(补形法)1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为 V 3 ,则其外 接球的表面积是.例3若三棱锥的三个侧面两两垂直,且侧棱长均为V 3 ,则其外 接球的表面积是.故其外接球的表面积S 4 r 2 9 .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分 别为a,b,c ,则就可以将这个三棱锥补成一个长方体, 于是长方体的体 对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则 有2R va 2 b 2 c 2.出现“墙角”结构利用补形知识,联系长方体。
立体几何中的“内切”与“外接”问题的探究(完美版)探究立体几何中“内切”与“外接”问题在立体几何中,我们经常遇到“内切”和“外接”的问题。
在研究这些问题之前,我们需要先明确球心的定义。
如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球球心。
根据上述性质,我们可以得出以下多面体外接球的结论:1.正方体或长方体的外接球的球心是其体对角线的中点。
2.正棱柱的外接球的球心是上下底面中心的连线的中点。
3.直三棱柱的外接球的球心是上下底面三角形外心的连线的中点。
4.正棱锥的外接球的球心在其高上,具体位置可通过计算得到。
5.若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。
接下来我们来探究一下正方体和长方体的外接球的问题。
根据结论1,正方体或长方体的外接球的球心是其体对角线的中点。
我们可以利用构造法(补形法)来解决这类问题。
例如,对于一个长方体,如果从一个顶点出发的三条棱长分别为a、b、c,则体对角线长为√(a^2+b^2+c^2),几何体的外接球直径2R为体对角线长l,因此R=√(a^2+b^2+c^2)/2.举个例子,如果一个三棱锥的三个侧面两两垂直,且侧棱长均为3,则可以将这个三棱锥补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球。
设其外接球的半径为R,则有(2R)^2=3^2+3^2+3^2=27.因此,其外接球的表面积为S=4πR^2=36π。
另外,对于一个矩形ABCD,如果AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为(125π)/(1296)。
最后,如果出现正四面体外接球的问题,我们可以利用构造法(补形法),联系正方体。
一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为多少?解析:由于所有棱长都相等,所以可以构造一个正方体,再寻找棱长相等的四面体。
如图2所示,四面体ABDE满足条件,即AB=AD=AE=BD=DE=BE=2.由此可求得正方体的棱长为1,对角线为$\sqrt{3}$,从而外接球的直径也为$\sqrt{3}$,所以此球的表面积为$4\pi$,故选B。
立体几何中的外接球内切球棱切球问题1. 概述在立体几何中,外接球、内切球和棱切球是常见的几何问题。
它们在工程、建筑、数学等领域都有重要的应用。
本文将围绕外接球、内切球和棱切球展开讨论,探究它们的性质和相关问题。
2. 外接球的定义和性质外接球是指一个球与一个或多个其他物体外接,外接球的半径等于所外接物体相应部分的长度,在立体几何中有着重要的应用。
外接球的性质1)外接球的圆心在被外接物体向外伸出的法线上。
2)外接球的半径等于被外接物体的相应部分的长度。
3)对于凸体而言,外接球存在且唯一。
3. 内切球的定义和性质内切球是指一个球恰好与另一个物体相切,内切球在立体几何中也有着重要的应用。
内切球的性质1)内切球的圆心在被内切物体向内伸出的法线上。
2)对于凸体而言,内切球存在且唯一。
3)内切球在不同物体中的位置可能不同,但其存在性是唯一的。
4. 棱切球的定义和性质棱切球是指一个球与多个物体之间棱切的情况,在立体几何中也有着重要的应用。
棱切球的性质1)棱切球的圆心在被棱切物体所在的平面上。
2)对于凸体而言,棱切球存在且唯一。
3)棱切球在不同物体中的位置可能不同,但其存在性是唯一的。
5. 实际应用举例外接、内切和棱切球在实际应用中有着广泛的应用。
比如在建筑工程中,常常需要计算建筑物的外接球、内切球和棱切球,以确定其结构和稳定性。
在数学建模中,外接、内切和棱切球也常常出现,用于解决各种数学问题。
6. 结论外接球、内切球和棱切球是立体几何中重要的概念,它们的性质和应用涉及到广泛的领域。
对这些几何问题的深入研究和应用可以帮助我们更好地理解立体几何的性质,并且为实际问题的解决提供理论支持。
希望本文能够帮助读者更好地理解外接球、内切球和棱切球的相关问题,并且激发更多人对立体几何的兴趣和研究。
外接球、内切球和棱切球作为立体几何中的重要概念,其性质和应用不仅仅局限于几何学。
它们的相关问题还涉及到数学建模、工程设计、建筑结构等领域,对于实际问题的解决提供了理论支持和指导。