正切余切正切余切正切和余切
- 格式:doc
- 大小:15.00 KB
- 文档页数:7
函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y(斜边为r,对边为y,邻边为x。
)以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数coversθ =1-sinθ正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边[编辑本段]同角三角函数间的基本关系式:·平方关系:sin²(α)+cos²(α)=1 cos²(a)=(1+cos2a)/2tan²(α)+1=sec²(α) sin²(a)=(1-cos2a)/2cot²(α)+1=csc²(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中sint=B/(A²+B²)^(1/2)cost=A/(A²+B²)^(1/2)tant=B/AAsinα+Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)tan(2α)=2tanα/[1-tan²(α)]·三倍角公式:sin(3α)=3sinα-4sin³(α)cos(3α)=4cos³(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin²(α)=(1-cos(2α))/2=versin(2α)/2cos²(α)=(1+cos(2α))/2=covers(2α)/2tan²(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=2tan(α/2)/[1-tan²(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos²α1-cos2α=2sin²α1+sinα=(sinα/2+cosα/2)²·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx证明:左边=2sinx(cosx+cos2x+...+cosnx)/2sinx=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx证明:左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证[编辑本段]三角函数的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)[编辑本段]正余弦定理正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边斜边与邻边夹角asin=y/r无论y>x或y≤x无论a多大多小可以任意大小正弦的最大值为1 最小值为-[编辑本段]部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y(斜边为r,对边为y,邻边为x。
)以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数coversθ =1-sinθ正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边[编辑本段]同角三角函数间的基本关系式:·平方关系:sin²(α)+cos²(α)=1 cos²(a)=(1+cos2a)/2tan²(α)+1=sec²(α) sin²(a)=(1-cos2a)/2cot²(α)+1=csc²(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中sint=B/(A²+B²)^(1/2)cost=A/(A²+B²)^(1/2)tant=B/AAsinα+Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)tan(2α)=2tanα/[1-tan²(α)]·三倍角公式:sin(3α)=3sinα-4sin³(α)cos(3α)=4cos³(α)-3cosα·半角公式:sin(α/2)=±√((1-c osα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin²(α)=(1-cos(2α))/2=versin(2α)/2cos²(α)=(1+cos(2α))/2=covers(2α)/2tan²(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=2tan(α/2)/[1-tan²(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos²α1-cos2α=2sin²α1+sinα=(sinα/2+cosα/2)²·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx证明:左边=2sinx(cosx+cos2x+...+cosnx)/2sinx=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx证明:左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证[编辑本段]三角函数的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)[编辑本段]正余弦定理正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边斜边与邻边夹角asin=y/r无论y>x或y≤x无论a多大多小可以任意大小正弦的最大值为1 最小值为-[编辑本段]部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
直角三角形的正切与余切计算直角三角形是指其中一个角度为90度的三角形。
在直角三角形中,正切和余切是两种特殊的三角函数,用于计算角度与边长之间的关系。
下面将详细介绍如何计算直角三角形的正切和余切。
正切的定义是指一个角的正切值等于该角的对边长度除以邻边长度。
在直角三角形中,除直角角以外,其他两个角的正切值相等。
正切的符号可以帮助我们判断角度的大小,正切为正数表示角度介于0度和90度之间,正切为负数表示角度介于90度和180度之间。
计算正切的公式如下所示:正切值 = 对边长度 ÷邻边长度余切的定义是指一个角的余切值等于该角的邻边长度除以对边长度。
在直角三角形中,除直角角以外,其他两个角的余切值相等。
计算余切的公式如下所示:余切值 = 邻边长度 ÷对边长度通过计算正切和余切值,我们可以根据已知的边长来求解角度,或者根据已知的角度来求解边长。
下面通过实例来演示如何计算直角三角形的正切和余切。
【实例一】已知直角三角形的一个角度为30度,邻边长度为3,求对边长度和正切值、余切值。
解:们可以通过计算来求解对边长度和正切值、余切值。
对边长度 = 邻边长度 ×正切值正切值 = 对边长度 ÷邻边长度根据正切的定义,我们将已知的邻边长度代入正切值的计算公式,得到:正切值 = 3 ÷邻边长度根据正切值的计算公式,我们将已知的邻边长度和正切值代入对边长度的计算公式,得到:对边长度 = 邻边长度 ×正切值通过计算,我们可以得到直角三角形对边长度和正切值,计算结果如下:对边长度 = 3 × tan(30度) ≈ 3 × 0.577 ≈ 1.732正切值= 1.732 ÷ 3 ≈ 0.577因此,已知直角三角形的一个角度为30度,邻边长度为3时,对边长度约为1.732,正切值约为0.577。
【实例二】已知直角三角形的一个角度为45度,对边长度为1,求邻边长度和正切值、余切值。
最常用三角函数值(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!最常用三角函数值特殊角的三角函数角度a 0° 30° 45° 60° 90° 120° 180°1.sina 0 1/2 √2/2 √3/2 1 √3/2 02.cosa 1 √3/2 √2/2 1/2 0 -1/2 -13.tana 0 √3/3 1 √3 无限大 -√3 04.cota / √3 1 √3/3 0 -√3/3 /函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边。
正切和余切的转换公式正切和余切是三角函数中的两个重要概念,它们常常用来描述角度和线段之间的关系。
在三角学中,我们经常需要将正切和余切互相转换,以便在不同的问题中应用。
本文将详细介绍正切和余切的定义、性质以及它们之间的转换公式。
首先,我们来了解正切和余切的定义。
在一个直角三角形中,正切是指直角边上的长度与相邻的直角边上的长度之比。
如果我们将直角边对边称为邻边,直角边上的边称为对边,那么正切可以表示为邻边与对边的比值。
通常,我们用符号"tan"来表示正切,例如tan(θ),其中θ表示角度。
同样,在直角三角形中,余切是指直角边上的长度与对边的长度之比。
也就是说,余切可以表示为邻边与对边的比值。
我们用符号"cot"来表示余切,例如cot(θ)。
接下来,我们讨论正切和余切的性质。
首先,正切和余切都是周期函数,周期为π。
也就是说,当角度增加或减小π的整数倍时,正切和余切的值会重复出现。
其次,正切和余切都可以表示为其他三角函数的比值。
例如,我们可以将正切表示为正弦和余弦的比值:tan(θ) = sin(θ) / cos(θ)类似地,余切可以表示为余弦和正弦的比值:cot(θ) = cos(θ) / sin(θ)这些关系式对于计算正切和余切的值非常有用,特别是在没有计算器的情况下。
然后,我们来介绍正切和余切的转换公式。
首先是正切转换为余切的公式。
假设我们有一个角度为θ的正切值,我们可以通过以下公式将其转换为余切:cot(θ) = 1 / tan(θ)这个公式非常简单,只需要将正切的倒数作为余切的值即可。
同样地,我们也可以将余切转换为正切。
假设我们有一个角度为θ的余切值,我们可以通过以下公式将其转换为正切:tan(θ) = 1 / cot(θ)这个公式和前一个公式的思路一样,只需要将余切的倒数作为正切的值即可。
通过这两个转换公式,我们可以很方便地在正切和余切之间进行转换。
这在解决一些复杂的三角函数问题时非常有帮助。
三角函数正切余切正割余割《聊聊三角函数正切》朋友们,今天咱们来聊聊三角函数里的正切。
比如说,你站在一个山坡上,想要知道山坡的陡峭程度。
这时候正切就派上用场啦!假设山坡的垂直高度是 3 米,水平距离是 4 米,那正切值就是3÷4 = 0.75。
正切值越大,山坡就越陡峭。
再比如,你看一座塔,从你站的地方到塔底部的水平距离是 10 米,塔高 20 米,那正切值就是20÷10 = 2。
通过这个正切值,你就能大概知道看塔时视线倾斜的程度。
正切在生活中的用处可多啦,比如建筑工人盖房子、工程师设计桥梁,都离不开它。
所以啊,别小看这个正切,它可厉害着呢!《三角函数正切的奇妙世界》咱来一起走进三角函数正切的奇妙世界!你想想看,骑自行车爬坡的时候,是不是坡越陡越费劲?这坡陡不陡,就可以用正切来说明。
假如坡的高度增加得很快,而水平距离增加得慢,正切值就大,坡就特别陡。
还有啊,放风筝的时候,线和地面形成的角度,也和正切有关系。
线拉得越长,风筝飞得越高,正切值也在变化。
比如说,一个直角三角形,短的直角边是 2,长的直角边是 6,那正切值就是6÷2 = 3 。
这就告诉你这个角有多大啦。
正切就像是我们探索角度和长度关系的小钥匙,能帮我们解决好多实际问题。
《认识三角函数正切》嗨,朋友们!今天咱们来认识一下三角函数里的正切。
就拿跷跷板来说吧,一头高一头低,高低的差距和水平的距离,它们的比值就是正切。
比如说,跷跷板高的那头是 5 米,水平距离是 3 米,那正切就是5÷3 。
还有盖房子的时候,工人师傅要知道屋顶的倾斜程度,也得靠正切。
正切能告诉他们角度多大合适,房子才牢固又好看。
正切不复杂,就是个能帮我们弄明白角度和边长关系的好帮手!《三角函数正切就在身边》朋友们,你知道吗?三角函数正切就在咱们身边呢!比如说,你去爬山,山的斜坡就是一个直角三角形。
从山脚到山顶的垂直高度和在山底水平走的距离,它们的比值就是正切。
函数名正弦余弦正切余切正割余割符号 sin cos tan cot sec csc正弦函数 sin(A)=a/h余弦函数 cos(A)=b/h正切函数 tan(A)=a/b余切函数 cot(A)=b/a在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。
这种关系一般用y=f(x)来表示。
两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA ?cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) ?cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ? tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2cosh(a)=(e^a+e^(-a))/2tgh(a)=sinh(a)/cosh(a)。
三角函数知识点总结高考考卷中70%的试题都是基础题,抓住了基础题就是抓住了高考分数。
数学学科抓基础,首先是掌握必备知识点,下面是小编与大家分享的三角函数知识点总结,以供大家复习!锐角三角函数定义锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c余弦(cos)等于邻边比斜边;cosa=b/c正切(tan)等于对边比邻边;tana=a/b余切(cot)等于邻边比对边;cota=b/a正割(sec)等于斜边比邻边;seca=c/b余割(csc)等于斜边比对边。
csca=c/a互余角的三角函数间的关系sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.平方关系sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)积的关系sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1特殊角三角函数值角度a030456090120180sina01/2√2/2√3/21√3/20cosa1√3/2√2/21/20-1/2-1tana0√3/31√3无穷大-√30cota/√31√3/30-√3/3/锐角三角函数公式两角和与差的三角函数:sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinb?cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式:asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中sint=b/(a^2+b^2)^(1/2)cost=a/(a^2+b^2)^(1/2)tant=b/aasinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/ sinα降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]推导公式:tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanatanbtan(a+b)+tana+tanb-tan(a+b)=0函数名正弦余弦正切余切正割余割在平面直角坐标系xoy中,从点o引出一条*线op,设旋转角为θ,设op=r,p点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边三角函数万能公式万能公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2*下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tana+tanb+tanc=tanatanbtanc*:a+b=π-ctan(a+b)=tan(π-c)(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)整理可得tana+tanb+tanc=tanatanbtanc得*同样可以得*,当x+y+z=nπ(n∈z)时,该关系式也成立由tana+tanb+tanc=tanatanbtanc可得出以下结论(5)cotacotb+cotacotc+cotbcotc=1(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc万能公式为:设tan(a/2)=tsina=2t/(1+t^2)(a≠2kπ+π,k∈z)tana=2t/(1-t^2)(a≠2kπ+π,k∈z)cosa=(1-t^2)/(1+t^2)(a≠2kπ+π,且a≠kπ+(π/2)k∈z)就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.三角函数关系倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
正切余切-正切余切正切和余切
正切和余切第一课时
一、教学目标
1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个非凡锐角的三角函数值的式子,会由一个非凡锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。
2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。
3.培养学生独立思考、勇于创新的精神。
二、学法引导
1.教学方法:运用类比法指导学生探索研究新知。
2.学生学法:运用类比法主动探索研
究新知。
三、重点、难点、疑点及解决办法
1.重点:了解正切、余切的概念,熟记非凡角的正切值和余切值。
2.难点:了解正切和余切的概念。
3.疑点:正切与余切概念的混淆.
4.解决办法:通过类比引出概念和性质,再通过大量直接应用,巩固概念和性质。
四、教具预备
投影机、投影片(自制)、三角板
五、教学步骤
(一)明确目标
1.什么是锐角的正弦、余弦?(结合下图回答)。
2.填表
3.互为余角的正弦值、余弦值有何关系?
4.当角度在0°~90°变化时,锐角的正弦值、余弦值有何变化规律?
5.我们已经把握一个锐角的正弦(余弦)是指直角三角形中该锐角的对边(邻
边)与斜边的比值,那么直角三角形中,两直角边的比值与锐角的关系如何呢?在锐角三角函数中,除正、余弦外,还有其他一些三角函数,本节课我们学习正切和余切。
(二)整体感知
正切、余切的概念,也是本间的重点和关键,是全章知识的基础,对学生今后的学习或工作都十分重要,教材在继第一节正弦和余弦后,又以同样的顺序安排第二节正切余切,像这样,把概论、计算和应用分成两块,每块自与一个整体小循环,第二循环又包含了第一循环的内容,可以有效地克服难点,同时也使学生通过对比,便于把握锐角三角函数的有关知识。
(三)教学过程
1.引入正切、余切概念
①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?
因为学生在研究过正弦、余弦概念
之后,已经接触过这类问题,所以大部分学生能口述证实,并进一步猜测“两直角边的比值一定是正切和余切”。
正切余切
②给出正切、余切概念。
如图,在中,把的对边与邻边的比叫做的正切,记作。
即
并把的邻边与对边的比叫做的余切,记作,
即
2. 与的关系
请学生观察与的表达式,得结论(或, )这个关系式既重要又易于把握,必须让学生深刻理解,并与区别开.
3.锐角三角函数
由上图, , , , ,把锐角的正弦、余弦、正切、余切都叫做的锐角三角函数。
锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目。
问:锐角三角函数能否为负数?
学生回答这个问题很轻易。
4.非凡角的三角函数。
①教师出示幻灯片
请同学推算30°、45°、60°角的正切、余切值。
(如下图)
;
;
;
;
;
.
通过学生计算完成表格的过程,不仅复习巩固了正切、余切概念,而且使学生熟记非凡角的正切值与余切值,同时渗透了数形结合的数学思想。
0°,90°正切值与余切值可引导学生查“正切和余切表”,学生完全能独立查出。
5.根据互为余角的正弦值与余弦值的关系,结合图形,引导学生发现互为余角的正切值与余切值的关系。
结论:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
即, .
练习:1)请学生回答与的值各是多少? 与? 与呢?学生口答之后,还可以为程度较高的学生设置问题: 与有何关系?为什么? 与呢?
2)把下列正切或余切改写成余角的余切或正切:
(1) ;(2) ;(3) ;(4) ;(5) ;(6) 。
6.例题
例1求下列各式的值:
(1) ;
(2) .
解:(1)
;
(2)
=2.
练习1.求下列各式的值:
(1) ;
(2) ;
(3) ;
(4) ;
(5) .
2.填空:
(1)
(2)若,则锐角
(3)若,则锐角
学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力。
(四)总结扩展。