运筹学目标规划
- 格式:ppt
- 大小:5.04 MB
- 文档页数:59
运筹学学习计划怎么写一、学习目标1. 学习并掌握运筹学的基本理论和方法,深入了解其在实际生活中的应用;2. 提高数理逻辑能力,培养系统思维和综合分析问题的能力;3. 增加对运筹学领域内最新研究成果的了解,与时俱进。
二、学习内容1. 运筹学基础知识:线性规划、整数规划、非线性规划、动态规划等;2. 运筹学应用:物流管理、生产调度、库存管理、供应链管理等;3. 运筹学进阶知识:多目标规划、风险决策、决策模型等;4. 运筹学领域最新研究成果的了解。
三、学习方法1. 系统地阅读经典的运筹学教材和参考书籍,包括《运筹学导论》、《运筹学》、《运筹学原理与算法》等;2. 注重实际案例分析,深入理解运筹学在实际生活中的应用;3. 参加相关行业的研讨会、学术讲座,了解运筹学领域的最新研究成果;4. 主动参与相关实践项目,积累实际经验;5. 寻找相关领域的导师或专家,进行深入交流和学习。
四、学习时间安排1. 学习基础知识:预计1-2个月时间;2. 学习应用案例:预计2-3个月时间;3. 学习进阶知识和最新成果:持续学习,与时俱进。
五、学习评估学习过程中,定期进行自我评估和总结,及时调整学习计划。
定期与导师或专家交流,获取反馈和建议。
定期参加行业研讨会和学术讲座,与专业人士交流和学习,获取外部评估和认可。
六、学习计划实施过程中可能遇到的问题及解决方法1. 学习压力较大:调整学习计划,合理安排时间,保持良好的学习状态;2. 学习内容难度较大:多与专业人士交流,寻找相关案例进行实际演练,增加实战经验;3. 学习计划与实际需求不符:及时调整学习计划,符合实际需求;4. 学习过程中遇到瓶颈:多思考,寻求外部帮助,与导师或专家进行深入交流。
七、学习计划实施后的应用1. 运用运筹学理论和方法解决实际问题;2. 开展相关行业的研究和实践项目;3. 在相关领域内进行学术交流和发表论文。
八、学习计划实施后的预期收获1. 掌握运筹学的基本理论和方法;2. 提高数理逻辑能力和综合分析问题的能力;3. 对运筹学领域内最新研究成果的了解,并与时俱进;4. 成为相关行业的专家和领军人才。
运筹学:⽬标规划
基本概念
概念解释
正偏差变量d+决策值超过⽬标值的部分
负偏差变量d−决策值未达到⽬标值的部分
绝对约束必须严格满⾜的约束
⽬标约束允许产⽣正/负偏差的约束,⽬标函数也可转化为⽬标约束
优先因⼦与权系数达到⽬标时有轻重缓急
⽬标规划的⽬标函数正负偏差变量赋予优先因⼦/权系数⽽构造的
⽬标规划的数学模型需要确定⽬标值、优先等级、权系数等具有主观性和模糊性的参数
图解法
按优先级⼀步步缩⼩范围,如果满⾜不了就只在临近点中取
单纯形法
检验数对每个优先因⼦排成⼀⾏,初态k=1,每次检查该⾏是否存在负数,并且对应列的前k−1 ⾏系数为 0,若有则进⾏换基操作,否则k++,若k=K则结束
确定换⼊变量:选择检验数最⼩的
确定换出变量:b 列⽐ a 列,最⼩⽐值原则,如果有多个相同就选择优先级别⾼的变量
Processing math: 100%。
第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。
当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。
无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。
目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。
在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。
(2)模型特征。
目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。
1)正、负偏差变量,i i d d +-。
正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。
因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。
2)硬约束和软约束。
硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。
我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。
3)优先因子与权系数。
一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。
《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。
《运筹学》教案-目标规划数学模型教案章节:一、引言教学目标:1. 理解目标规划数学模型的基本概念。
2. 掌握目标规划数学模型的建立方法。
教学内容:1. 目标规划数学模型的定义。
2. 目标规划数学模型的建立步骤。
教学方法:1. 讲授法:讲解目标规划数学模型的基本概念和建立方法。
2. 案例分析法:分析实际案例,让学生更好地理解目标规划数学模型。
教学准备:1. 教案、PPT、教学案例。
2. 投影仪、白板、教学用具。
教学过程:1. 引入新课:通过讲解目标规划数学模型的定义和应用领域,引发学生对该课题的兴趣。
2. 讲解基本概念:讲解目标规划数学模型的基本概念,包括目标、约束条件、优化方法等。
3. 讲解建立方法:讲解目标规划数学模型的建立步骤,包括明确目标、确定约束条件、选择优化方法等。
4. 案例分析:分析实际案例,让学生更好地理解目标规划数学模型。
5. 课堂练习:让学生运用所学的知识,解决实际问题,巩固所学内容。
6. 总结与展望:总结本节课的重点内容,布置课后作业,预告下一节课的内容。
教学评价:1. 课堂讲解的清晰度和准确性。
2. 学生参与案例分析和课堂练习的积极性和主动性。
3. 学生对目标规划数学模型的理解和应用能力。
教案章节:二、线性规划数学模型教学目标:1. 理解线性规划数学模型的基本概念。
2. 掌握线性规划数学模型的建立方法。
教学内容:1. 线性规划数学模型的定义。
2. 线性规划数学模型的建立步骤。
教学方法:1. 讲授法:讲解线性规划数学模型的基本概念和建立方法。
2. 案例分析法:分析实际案例,让学生更好地理解线性规划数学模型。
教学准备:1. 教案、PPT、教学案例。
2. 投影仪、白板、教学用具。
教学过程:1. 引入新课:通过讲解线性规划数学模型的定义和应用领域,引发学生对该课题的兴趣。
2. 讲解基本概念:讲解线性规划数学模型的基本概念,包括决策变量、目标函数、约束条件等。
3. 讲解建立方法:讲解线性规划数学模型的建立步骤,包括明确目标、确定决策变量、列出约束条件等。
运筹学目标规划运筹学目标规划,英文名为Operations Research,是一门应用数学领域的综合性学科,旨在通过数学建模和优化方法解决工程和管理问题。
运筹学目标规划是运筹学中的一个重要方法,可以帮助决策者制定合理的目标,并找到实现这些目标的最优方案。
运筹学目标规划的主要目标是将决策问题转化为数学模型,并采用数学优化方法解决这些模型。
在目标规划中,决策者的目标通常是多个且互相冲突的,因此需要进行目标权重的设定和优化。
运筹学目标规划通过建立数学模型和运用多目标优化算法,可以帮助决策者找到最佳的目标权重,从而实现最优方案。
运筹学目标规划的应用范围广泛,可以用于解决工程、生产、物流、供应链管理等各个领域的问题。
在生产领域,目标规划可以帮助企业制定合理的生产计划,优化资源配置,提高生产效率和质量。
在物流领域,目标规划可以帮助企业设计最佳的物流网络,优化货物配送路线和仓库布局,降低物流成本和时间。
在供应链管理领域,目标规划可以帮助企业协调供应链上各个环节的决策,并优化整个供应链的绩效。
运筹学目标规划的具体步骤包括问题定义、建模、求解和结果分析。
首先,需要明确决策问题的目标和约束条件,并收集相关的数据。
然后,将问题转化为数学模型,确定目标函数和约束条件。
接下来,采用适当的数学优化方法,如线性规划、整数规划、动态规划等,求解模型,得到最优解。
最后,对求解结果进行分析,评估方案的可行性和有效性,并提出相应的优化建议。
总之,运筹学目标规划是一种将决策问题转化为数学模型,并采用数学优化方法解决的方法。
它可以帮助决策者制定合理的目标,并找到实现这些目标的最优方案。
运筹学目标规划在工程和管理领域有着广泛的应用,可以显著提高效率和降低成本。
将来随着计算机技术的发展和算法的改进,运筹学目标规划还将不断发展和完善,为各个行业的决策者提供更强大的决策支持。