第一节光和光谱色
- 格式:ppt
- 大小:495.50 KB
- 文档页数:9
光和颜色物质呈现的颜色与光有着密切的关系。
光波是种电磁波。
太阳光由各种不同波长的光波组成,用三棱分光镜来分解日光,可分成红、橙、黄、绿、青(天蓝)、蓝、紫七种颜色的可见光谱(波长为400~800纳米),红外线(波长大于800纳米)和紫外线(波长小于400纳米),红外线和紫外线又称为不可见光谱。
物质的颜色是由光的照射而产生的(在黑暗中是难以分辨颜色的),光照在物质上所引起的反射、透射和吸收等作用各不相同,肉眼的感觉也不同,因而形成不同的颜色。
不透明物质主要是光的吸收和反射两种情况。
如果照在物体上的光线全部吸收,该物体就是黑色;如果全部被反射,则是白色;全部透过物体则是无色。
假如它只是均匀地、部分而又无选择地吸收可见光,则它是灰色,吸收愈强,物体愈拉近黑色。
当物质选择性地吸收可见光谱中某些光波,反射出其余光波时,则呈现出各种不同的颜色。
因此物质颜色的产生是由于选择吸收了光谱中(可见光)部分光波段的结果,或者说,选择吸收就是造成物质颜色的原因。
由此可见,物体的颜色是由其本身反射(或透射)光的颜色所决定的。
当物体呈现的颜色和被它所吸收的光的颜色两者混合后能成为白光,那么通常称这两种光的颜色为互为补色。
如果某物质能从射在它上面的日光中反射出黄光,物质显出黄色,被吸收的光为紫蓝色,则我们称黄色是紫蓝色的补色或黄色与紫蓝色互为补色。
根据两种光的颜色为互补色的关系,可以在染色中加以利用。
在染黑色时,如果所得到的黑色不够纯正,泛有一定红光,在染色时可以加入适量的红色的补色---蓝绿色染料,使蓝绿色光将红光抵消,使染成的毛皮黑色显得纯正。
例如白兔皮染黑色时,用酸性黑ATT为主体染料,为了消除红光,需加入适量的酸性黑10B或酸性绿。
又如白毛稍带有黄光,亦称“黄头”,不受欢迎,加入少量的蓝色染料,可将黄头消除,使毛皮呈现洁白的颜色。
互为补色的光谱颜色:紫——紫红——红——橙——黄——黄绿——绿——蓝绿——青——蓝——紫光谱的各个颜色是沿着圆圈分布的,现时各补色是分别位于圆圈的对顶角位置上的。
光的颜色与光谱光,作为一种电磁波,具有丰富多彩的颜色。
从红橙黄绿蓝靛紫到无色的白光,每一种光色都有其独特的波长和频率。
通过分析光的颜色及其特点,我们可以了解到光的传播规律和性质。
一、光的颜色及光谱1. 光的颜色种类光的颜色种类众多,常见的有红、橙、黄、绿、蓝、靛、紫等七种基本颜色。
这些颜色的产生与光的波长有关,波长越长,则光的颜色越接近红色;波长越短,则光的颜色越接近紫色。
2. 光的混合与合成不同颜色的光可以通过叠加、混合来形成新的光色。
例如,红光与绿光叠加会形成黄光,而红光与蓝光叠加则形成洋红光。
这种光的混合与合成的原理在彩色电视、计算机屏幕等技术中得到广泛应用。
3. 光的分解与光谱光经过透镜或光栅等物体的作用,会发生折射、散射等现象,将光分解为不同波长的光谱。
通过光谱可以准确地测量光的波长,从而判断其颜色和能量特性。
光谱分析技术在化学、物理等领域具有重要应用,例如用于元素分析、星光分析等。
二、光的颜色与波长1. 红光红光是波长最长的可见光,其波长范围大致为620-760纳米。
红光在日常生活中随处可见,例如夕阳、红色信号灯等。
红光的波长长,能量较低,散射能力较弱,因此红光能够较好地穿透大气和其他介质。
2. 橙光和黄光橙光的波长略短于红光,大致在590-620纳米之间,而黄光的波长则略短于橙光,大致在570-590纳米之间。
橙光和黄光在自然界中较为常见,例如柑橘、金黄色的叶子等。
这两种光对人眼有一定的刺激作用,能够引起注意和兴奋感。
3. 绿光绿光的波长范围大致在495-570纳米之间。
绿光是人眼最敏感的颜色,因此在大自然中的绿植和草地显得格外鲜艳。
绿光在光谱中的位置正好位于红光和蓝光之间,具有中等波长和中等能量。
4. 蓝光和靛光蓝光的波长范围在450-495纳米之间,其能量较高,散射能力较强。
蓝光在大自然中的表现包括晴朗的天空和清澈的水面。
靛光波长略长于蓝光,为440-450纳米左右,是一种偏向紫色的光。
可见光的光谱及各种光的波长各种光的波长各种光的波长可见光的光谱颜色波长频率红色约 625—740 纳米约 480—405 兆赫橙色约 590—625 纳米约 510—480 兆赫黄色约 565—570 纳米约 530—510 兆赫绿色约 500—565 纳米约 600—530 兆赫青色约485—500 纳米约 620—600 兆赫蓝色约 440—485 纳米约 680—620 兆赫紫色约 380—440 纳米约 790—680 兆赫电磁波的波长和强度可以有很大的区别,在人可以感受的波长范围内(约 380 纳米至 740纳米),它被称为可见光,有时也被简称为光。
假如我们将一个光源各个波长的强度列在一起,我们就可以获得这个光源的光谱。
一个物体的光谱决定这个物体的光学特性,包括它的颜色。
不同的光谱可以被人接收为同一个颜色。
虽然我们可以将一个颜色定义为所有这些光谱的总和,但是不同的动物所看到的颜色是不同的,不同的人所感受到的颜色也是不同的,因此这个定义是相当主观的。
一个弥散地反射所有波长的光的表面是白色的,而一个吸收所有波长的光的表面是黑色的。
一个虹所表现的每个颜色只包含一个波长的光。
我们称这样的颜色为单色的。
虹的光谱实际上是连续的,但一般人们将它分为七种颜色:红、橙、黄、绿、青、蓝、紫,但每个人的分法总是稍稍不同的。
单色光的强度也会影响人对一个波长的光的颜色的感受,比如暗的橙黄被感受为褐色,而暗的黄绿被感受为橄榄绿,等等。
显示器无法产生单色的橙色)。
出于眼睛的生理原理,我们无法区分这两种光的颜色。
也有许多颜色是不可能是单色的,因为没有这样的单色的颜色。
黑色、灰色和白色比如就是这样的颜色,粉红色或绛紫色也是这样的颜色。
波动方程是用来描写光的方程,因此通过解波动方程我们应该可以得到颜色的信息。
在真空中光的波动方程如下:utt c2uxx uyy uzzc 在这里是光速,x、y 和 z 是空间的坐标,t 是时间的坐标,uxyz是描写光的函数,下标表示取偏导数。
第3章光基础知识第三章光学基础知识光是客观存在的⼀种辐射能,以电磁波形式传播,波长范围为380~780nm,能为⼈们眼睛所感觉到。
⽽长于780nm的红外线、⽆线电波等,短于380nm的紫外线、ⅹ射线等,这些幅射波均不能为⼈眼所感觉。
第⼀节光的传播性质⼀、光的直线传播1、光源我们把发光的物体叫做光源,太阳、电灯、放映机内的氙灯等,都是光源,光源发出的光,可以使物体发热,使电影胶⽚⽚感光,还能使光电池供电。
这些现象说明:光是有能量的;光能可以转化为内能、化学能、电能等其他形式的能。
光源⾃⼰在发光的时候,也在进⾏着能的转化,即把其他形式的能转化为光能。
例如,电灯把电能转化为光能,太阳把原⼦核⾥⾯的能转化为光能,等等。
2、光的直线传播能够传播光的物质叫做介质。
从光源发出的光,在介质⾥总是沿着直线传播的。
如果我们在暗室的窗上开⼀个⼩孔,让⼀束阳光从⼩孔射⼊,由于室内的尘埃微粒对阳光的反射,可以清楚地看出这束阳光的传播路线是笔直的。
这就是光沿直线传播的直接证据。
由于光的直线传播,我们不能看到墙壁后⾯发⽣的事情,也不能从弯管中看到周围的情景。
光的直线传播性质可以⽤⼀条表⽰光束传播⽅向的直线来代表,这样的直线就叫做光线。
3、光速声⾳在20℃的空⽓中的传播速度约为340⽶/秒,光在真空中的传播速度为3×108⽶/秒(即每秒30万公⾥),光在空⽓中的传播速度略⼩于真空中的传播速度,但相差甚微,可以忽略不计。
光在不同的介质中的传播速度是不同的。
⼆、光的反射1、反射定律不论是透明物体还是不透明物体,都要反射⼀部分到它表⾯上的光。
实验证明,光在反射时遵循如下的规律:1)反射光线跟⼊射光线和法线在同⼀平⾯上,反射光线和⼊射光线分别位于法线两侧。
2)反射⾓等于⼊射⾓。
(图1-3-1)根据这个定律可以知道,如果光线逆着原来反射光线的⽅向射到反射⾯上,它就要逆着原来⼊射光线的⽅向反射出去。
所以,在反射现象⾥,光路是可逆的。