几种离心泵叶轮的切割和计算
- 格式:pdf
- 大小:67.26 KB
- 文档页数:2
离心泵叶轮的设计
离心泵的水力设计主要是设计叶轮和泵壳,下面我们了解下其中的叶轮。
离心泵产生的理论压头计算:
离心泵常被认为是一种动能机器。
叶轮的旋转使叶轮中的流体高速旋转,从而将能量传递给液体,这个概念可以用数学等式表示出来:
H i=u2x c u2/g
式中H i——离心泵产生的理论压头,ft;
u2——叶轮外直径处的旋转速度,ft/s;
c u2——液体离开叶轮的旋转速度,ft/s;
g——重力加速度,ft/s2。
下面是3种基本的叶轮设计:
1)封闭式叶轮,在叶轮的前后面都有封闭罩(旋转壳体);
2)半开放式叶轮,只在一边有封闭护罩,并且紧密地和另外一边静止壳体相连;
3)开放式叶轮,只在一边有或者没有封闭罩(如图)。
离心泵中液体的转速:
流体进入离心泵吸入管时没有旋转速度,当流体进入叶轮的旋转管路中时,它开始以叶轮的旋转速度旋转。
液体被挤出叶轮中心,并且它的旋转速度与叶轮直径成比例。
可以用下面方式算出任何直径的液体叶轮转速:
u=D X N/229
式中u——液体旋转速度,ft/s;
D——速度计算点的直径,in;
N——叶轮旋转速度,r/min;
1/229——单位换算系数。
叶轮里压头损失通常包括摩擦损失、涡流损失、流体再循环损失、入口耗损和出口损失。
在壳体会发生附加损失。
应当注意的是,离心泵产生的压头取决于流体速度而不是被泵吸入的流体。
浅析离心泵叶轮切割定律及应用摘要:阐述离心泵叶轮切割定律。
通过对某炼油装置常一线离心泵的实际运行情况分析,发现常一线泵出口阀门开度极小,节流严重,导致机泵效率偏低。
为扩大该离心泵的使用范围,运用叶轮切割定律,对叶轮进行切割改造,将叶轮外径由368mm切割为330mm。
改造后,在满足工艺系统要求的使用性能的条件下,达到了节能降耗的目的,具有一定的推广意义。
关键词:离心泵叶轮切割应用前言某炼油厂常压装置常一线离心泵,近年来由于装置产品调整,常一线已无产品出装置,单纯作为回流泵使用。
此泵现有性能参数已经高于工艺所需要性能参数,为了减少不必要的能源浪费,调整该机泵性能参数,扩大使用范围,一般采用叶轮切割或者改变转速来满足使用要求。
对于已有的固定转速机泵,因电机转速恒定,改变转速需要增加变频调速装置,实施起来成本较高,而且增加变频器改变转速,影响电机风扇散热。
对于要求降低机泵的流量及扬程的,但工况稳定,无需频繁进行流量调节,采用叶轮切割就更加简单易行。
因此对常一线泵采用叶轮切割来调整流量和和扬程。
1.离心泵叶轮直径对特性曲线的影响转速固定的离心泵,有且仅有一条扬程-流量特性曲线。
离心泵特性曲线上的每一点都对应着一个工况,离心泵在最高效率点工况运行是最理想的。
但是考虑到用户需要的离心泵使用性能参数千差万别,不一定都在效率最高工况运行。
通常以效率下降5%~8%为界,离心泵在此范围内运行,效率下降不多,此段称为离心泵的工作范围[1]。
当离心泵转速固定时,离心泵的流量主要跟流体介质在叶轮进口处的几何参数有关,叶轮的进口直径、叶片进口安装角不变,离心泵的流量就基本确定。
但是由于叶轮切割前后,叶轮与蜗壳之间的间隙增大,这个间隙的大小直接影响到离心泵的效率。
其主要原因是间隙增大,导致滞留在蜗壳中的流体介质增加了,导致流量减小,效率降低。
图1:离心泵叶轮切割前后叶轮与蜗壳之间间隙为了扩大离心泵的工作范围,可以采用切割离心泵叶轮外径的方法,将工作范围由一条线变为一个面,如图2中的ABCD。
离心泵叶轮切割方法作者:邵海江向永谭来源:《工业设计》2016年第07期摘要:切割叶轮是扩大离心泵工作范围的常用方法。
本文根据叶轮相似理论及切割原理,论述了离心泵叶轮的几种切割方法,并进行分析,找出最为快捷可靠的切割方法,来方便实际生产。
关键词:离心泵;叶轮切割;切割定律;切割量;三次曲线离心泵泵的特性曲线上的每一点都对应着一个泵的工作工况,最理想的工作工况是在泵的最高效率点下运行。
但是用户对性能的要求千差万别,不一定能和泵最高效率点下的工况相一致。
要想使每一个用户要求的泵在泵的最高效率点下运行,那样做需要的泵规格就太多了。
为此,规定一个范围(通常以效率下降5%为界),如左图的AB线段。
泵在此范围内运行,效率下降不算太大,此段称为泵的工作范围。
通过改变转速或切割叶轮外径的方法可以扩大泵的工作范围,如下图ABCD。
其中的1、2线是改变转速或切割叶轮外径前后的特性曲线,3、4线是改变转速的相似抛物线或切割叶轮外径的切割线(抛物线)。
方块ABCD称为泵扩大了的工作范围,泵可以在此范围的任一点工作,而且效率下降最多不会超过5%。
本文主要论述几种叶轮外径切割的计算方法,并进行简要分析。
1 叶轮切割量计算方法1.1切割定律、切割抛物线及其应用一般离心式叶轮的切割量不大,切割后叶片出口安放角变化甚微,即。
叶轮的轴面流道宽度总是设计成自轮心向外逐渐变窄,即。
所以切割前后叶轮出口面积变化很小。
此外,经验表明,对上述叶轮当外径切割量不太大时,在切割对应工况下工作的叶轮效率几乎不变。
在这些前提下,可得切割前后对应工况点参数间的关系为:上述关系式称为切割定律。
可以看出,切割后流量、扬程均会下降,但扬程下降较多,所以叶轮切割后比转速会增加。
由式(1)和(2)可知,切割前后的对应工况点的流量与扬程之间满足的关系,这是一个抛物线方程,称为切割抛物线(如下图)。
实践证明,当切割量不是太大时,效率近似相等,因此切割抛物线也是等效抛物线。
离心叶轮类型作用介绍离心泵中的叶轮类型在设计上有所不同,具体取决于所处理的流体,设计是低压还是高压,以及设计的装置是自吸还是处理诱导气体。
在选择过程中以确保在过程和维护期间的预期结果之间实现正确的平衡,同时确保获得最大的过程效率。
通常,径向叶片靠得越近,公差越小,叶轮设计越封闭,效率越高,但由于自由通道的限制,固体处理能力越低。
下面列出了10种不同类型、它们的优点以及它们可以使用的流体类型:(一)叶轮类型和流型1、封闭式(离心式、多级和第一级侧通道泵)专为含有小颗粒的清洁流体而设计,由于其与内壳的紧密间隙以及叶轮叶片之间带有耐磨环的封闭式叶轮,因此是效率最高的设计。
固体处理能力由叶轮中前后通道之间的空间定义,对于小型装置,该空间可以以微米为单位进行测量。
在离心力引导流体通过叶片之前,流体被吸入叶轮眼(中心),然后被引向泵壳的侧面,并通过出口排出。
2、双吸(分体式和双吸设计)这种设计主要用于中开式泵壳,使泵能够同时通过叶轮叶片的两侧抽取液体。
通常用于干净的液体,在高流量和相对较低的水头下没有固体,双蜗壳同时向两侧进料。
该装置在单个套管内提供尽可能高的流量。
3、柔性(柔性叶轮设计)柔性叶轮这种设计由弯曲的橡胶叶片组成,这些叶片与泵壳保持接触,使装置能够自吸。
专为处理干净、粘稠和含固体的液体而设计,刀片之间适合固体颗粒,这意味着该装置可以处理悬浮固体,例如直径达 25 毫米的水果块。
低剪切设计,由于叶轮接触外壳,转速小于1400rpm。
4、开式叶轮在这种设计中,只有叶片是可见的,使该装置能够处理大块固体,并且易于清洁。
由于其较大的自由通道面积,它的效率低于其他类型。
由于缺少侧壁,这种设计难以产生高压,但可以容纳大的固体。
5、半开式(离心泵和垃圾泵)半开式在这种形状内,宽通道可以处理大的固体颗粒而不会堵塞。
专为大容量和低压污水处理或工业中的腐蚀性工艺应用而设计。
6、水性叶轮它的外观类似于正弦波声波,不同于任何其他设计。
离心泵叶轮切割定律的应用辽阳石化分公司尼龙厂在2011年进行离心机更新换代后,对PW水量需求由原先32 m3/h提升至34 m3/h,扬程需由20 m提到23 m。
整体更换输送PW水的水泵供货时间较长,并且需要大量费用,为此决定对此离心泵进行改造,提高泵的工作能力,以满足生产的需要。
1 离心泵叶轮切割定律在我们国内泵行业,通常采用下面的公式来确定叶轮的切割量:对于低比转数的泵:对于中、高比转速的泵:式中:Q、H、P、D2—叶轮切割前泵的流量、扬程、功率及叶轮直径;Q’、H’、P’、D2’—叶轮切割前泵的流量、扬程、功率及叶轮直径。
2 根据叶轮切割定律计算叶轮直径原泵的参数如下所示:型号ECP50—125,流量qv=32 m3/h,H=20 m,n=2952 r/min,电机功率P电机=5.5 KW,N=3.44 KW,η=60%,Ne=gρqH/1000=1.74 KW,叶轮D2=128 mm,该泵为单级单吸泵。
比转速公式如下所示:式中的流量单位用m3/s,扬程用m,转速用r/min,对于双吸泵的叶轮流量除以2,多级泵扬程除以级数。
计算出泵的ns=107,查表1知该泵为中比转速泵。
切割定律只是近似定律,叶轮切割后,泵的效率一般都有些变化,只有在切割量较小时才可认为效率不变。
为使叶轮切割后,泵的效率不要降低过多,通常规定了叶轮的最大允许切割量(用相对值表示)。
叶轮的最大切割量与比转数nS 有关,下表列出了不同比转数泵的叶轮允许最大切割量。
先将叶轮由128改为135进行试计算,从表二看出该泵叶轮外径的最大切割量为15%,而叶轮外径切割量为5.47%,在允许范围内,将数据代入得出Q’=33.75 m3/h,H2’=22.3 m,P’=2.04 KW。
总功率用下面的功式计算其中ηv、ηhyd、ηm分别是容积效率、水力效率、机械效率,均取最小值以确保总在功率最大情况下不大于电机功率,查表3。
那么总功率P=2.04/(0.90*0.85*0.90*0.60)=4.94<5.5,其中0.90、085、0.90分别是容积效率、水力效率、机械效率,均取最小值以验证泵功率最大情况下不大于电机功率。
第32卷第6期2004年12月江苏冶金Jiangsu MetallurgyV ol.32 No.6Dec.2004几种离心泵叶轮的切割和计算尚建波辛伟华(包头钢铁设计研究总院 包头,014010) (柳州钢铁公司 柳州,545000)收稿日期:2004-08-12作者简介:尚建波 男,1959年生,工程师。
电话:(0472)6966431摘要:通过对泵叶轮切割后的性能运行情况的统计归纳,得出几种不按切割定律计算的经验公式及一些体会。
关键词:离心泵;叶轮切割;切割方法中图分类号:T H3111 切割定律泵的叶轮切割在设计中用来扩大泵的使用范围,在实际使用中常为了满足外界实际性能需要,对泵进行的一次性调节,以满足实际使用要求。
泵叶轮切割后的性能(或叶轮的切割量)的计算通常用大家所熟知的切割定律式来计算如下式Q c Q =D 2c D 2 或D 2c =Q c Q D 2H c H =(D 2c D 2)2或D 2c =D 2H c H(1) P c P =(D 1c D 2)3或D 2c =D 2P cP 式中 Q ,H ,P ,D 2分别为叶轮切割前泵的流量、扬程、轴功率及叶轮外径;Q c ,H c ,P c ,D 2c 分别为叶轮切割后泵的流量、扬程、轴功率及叶轮外径。
但是在实际工作中,常遇到不按式(1)变化来切割叶轮,现就常遇到的几种情况谈谈笔者的一些体会和经验。
2 流量不变的叶轮切割当叶轮切割后,要求流量不变,即Q c =Q ,而只改变泵的扬程时,可按下式进行计算Q c =QH c H =(D 2c D 2)2.5(2)按式(2)计算时,泵的运行点会偏大流量工况运转。
3 径向导叶式泵叶轮切割径向导叶式泵叶轮外径和导叶基圆之间的间隙要求较小,约1~3mm,并且径向导叶一般用于节段式多级泵中,泵的扬程可用增减叶轮数目来调节,所以在径向导叶式泵中一般不采用切割叶轮外径来改变泵的性能。
但在单级径向导叶式泵中或多级泵中用改变叶轮数调节扬程,不能满足要求时,也常用叶轮切割的办法来调节。
离心泵的切割定律(H1:H2)2=D1:D2 Q1:Q2=D1:D2从而可以看出叶轮的直径与扬程的平方成正比,与流量成正比。
叶轮直径越大扬程就越大,流量也越大,因为水流出的速度取决于叶轮旋转时产生的离心力和切线上的线速,直径越大,离心力和线速度就越大。
离心泵送水量越与真空度的关系:离心泵是离心力原理来完成抽水的,没有水时空转是会烧坏设备的。
抽真空要用真空泵或者一次抽真空二次抽真空的方法。
离心泵入口的真空度由三部分组成(建立泵入口处、吸入液面的方程即可得到)。
吸上高度,这个与流量无关,吸入装置的损失,与流量的平方成正文,建立泵入口处的动能头,与流量的平方成正比;其中第二项与第三项都与流量的平方成正比,因此泵进口处的真空度随流量的增加而增加。
水泵比转数定义公式与特性。
定义公式:在设计制造泵时,为了将具有各种各样流量、扬程的水泵进行比较,将某一台泵的实际尺寸,几何相似地缩小为标准泵,次标准泵应该满足流量为75L/s,扬程为1m。
此时标准泵的转数就是实际水泵的比转数。
比转数是从相似理论中得出来的一个综合性有因次量的参数,它说明了流量、扬程、转数之间的相互关系。
无因次量的比转数称为形式数,用K表示比转数ns = 3.65n√Q H 0.75 双吸泵Q取Q/2;多吸泵H取单级扬程; 如i级H取H/i ;式中n —转速(r / min) Q —流量(m3 / s); H —扬程(m);型式数K = 2 πn √Q 60 (gH) 0.75特性:同一台泵,在不同的工况下具有不同的比转数;一般是取最高效率工况时的比转数作为水泵的比转数大流量、低扬程的泵,比转数大;小流量、高扬程的泵,比转数小;低比转数的水泵,叶轮出口宽度较小,随着比转数的增加,叶轮出口宽度逐渐增加,这适应于大流量的情况;比转数标志了流量、扬程、转速之间的关系,也决定了叶轮的制造形状;离心泵比转数较低,零流量时轴功率小;混流泵和轴流泵比转数高,零流量时轴功率大;因此离心泵应关闭出口阀起动,混流泵和轴流泵应开启出口阀起动。
离心泵叶轮切割定律的应用离心泵是一种常见的液体输送设备,被广泛应用于工业、建筑和生活中。
离心泵的核心部件之一是叶轮,其设计和制造对泵的性能起着决定性的影响。
离心泵叶轮的设计中应用了离心泵叶轮切割定律,本文将对离心泵叶轮切割定律的应用进行探讨。
离心泵叶轮切割定律是离心泵叶轮的设计原理之一,其基本思想是通过改变叶轮的几何形状和叶片的角度来达到提高泵的效率和性能的目的。
在离心泵叶轮的设计中,切割定律主要应用于叶轮的出口端。
离心泵叶轮切割定律的核心概念是叶轮出口的速度三角,即速度三角法。
速度三角法是通过分析叶轮进口、出口处的流体速度和方向来确定最佳的叶轮叶片角度。
根据速度三角的设计原理,可以调整叶轮的出口流角和进口流角,以获得最佳的泵性能。
在离心泵叶轮切割定律的应用中,首先需要确定泵的设计工况参数,包括流量、扬程和转速等。
这些参数将影响叶轮的尺寸和几何形状。
根据设计工况参数,可以采用速度三角法计算叶轮的出口速度三角形状,进而确定最佳的叶轮出口流角和进口流角。
离心泵叶轮的切割定律还可应用于叶轮的叶片数目和叶片形状的确定。
叶片数目的选择与叶轮的流量和扬程有关。
一般情况下,叶片数目越多,流量越大,扬程越小。
叶片形状的选择与流体的性质、工作条件和叶轮的速度等因素有关。
通常情况下,叶片的前缘较薄、后缘较厚,能提供较高的效率。
离心泵叶轮的切割定律还可应用于叶轮的进口和出口截面形状的确定。
进口截面形状通常选择圆形或矩形,其目的是减小进口损失和提高进口流量。
出口截面形状通常选择背曲线或导流叶片等,以减小离心泵的出口损失和提高泵的性能。
除了叶轮的设计,离心泵叶轮切割定律还可应用于叶轮的制造和检测。
在叶轮的制造中,需要根据离心泵的设计要求和叶轮的几何形状,进行铸造或加工。
在叶轮的检测中,需要根据离心泵的工作参数和叶轮的几何形状,进行流量、扬程和效率等性能指标的测试和分析。
综上所述,离心泵叶轮切割定律在离心泵叶轮设计、制造和检测中起着重要的作用。
第32卷第6期2004年12月
江苏冶金Jiangsu Metallurgy
V ol.32 No.6Dec.2004
几种离心泵叶轮的切割和计算
尚建波
辛伟华
(包头钢铁设计研究总院 包头,014010) (柳州钢铁公司 柳州,545000)
收稿日期:2004-08-12
作者简介:尚建波 男,1959年生,工程师。
电话:(0472)6966431
摘要:通过对泵叶轮切割后的性能运行情况的统计归纳,得出几种不按切割定律计算的经验公式及一些体会。
关键词:离心泵;叶轮切割;切割方法中图分类号:T H311
1 切割定律
泵的叶轮切割在设计中用来扩大泵的使用范围,在实际使用中常为了满足外界实际性能需要,对泵进行的一次性调节,以满足实际使用要求。
泵叶轮切割后的性能(或叶轮的切割量)的计算通常用大家所熟知的切割定律式来计算如下式
Q c Q =D 2c D 2 或D 2c =Q c Q D 2
H c H =(D 2c D 2)2或D 2c =D 2H c H
(1) P c P =(D 1c D 2
)3或D 2c =D 2
P c
P 式中 Q ,H ,P ,D 2分别为叶轮切割前泵的流量、扬程、轴功率及叶轮外径;Q c ,H c ,P c ,D 2c 分别为叶轮切割后泵的流量、扬程、轴功率及叶轮外径。
但是在实际工作中,常遇到不按式(1)变化来切割叶轮,现就常遇到的几种情况谈谈笔者的一些体会和经验。
2 流量不变的叶轮切割
当叶轮切割后,要求流量不变,即Q c =Q ,而只改变泵的扬程时,可按下式进行计算
Q c =Q
H c H =(D 2c D 2
)2.5
(2)
按式(2)计算时,泵的运行点会偏大流量工况运转。
3 径向导叶式泵叶轮切割
径向导叶式泵叶轮外径和导叶基圆之间的间隙要求较小,约1~3mm,并且径向导叶一般用于节段式多级泵中,泵的扬程可用增减叶轮数目来调节,所以在径向导叶式泵中一般不采用切割叶轮外径来改变泵的性能。
但在单级径向导叶式泵中或多级泵中用改变叶轮数调节扬程,不能满足要求时,也常用叶轮切割的办法来调节。
径向导叶式泵叶轮割后性能变化不符合式(1)的计算条件时,建议用下式计算
Q c Q =D 2
c D 2
H c H =(D 2c D 2
)
2.5~
5
(3)
式中 2.5~5是根据(D 2-D 2c )/D 2的比值来选取,即(D 2-D 2c )/D 2比值小时取小值,(D 2-D 2c )/D 2比值大时取大值。
径向导叶式泵叶轮切割时,还应注意如下问题:(1)切割量不要太大,否则会使效率下降太多,一般(D 2-D 2c )/D 2比值不超过8%。
(2)叶轮切割时,只车削叶片,而不要车削前后盖板,以保持叶轮外径与导叶之间的间隙对水流的引导作用。
4 中、高比转速泵叶轮切割
对中、高比转速泵,由于叶轮切割后,前后盖板
留线相对长度相差较大,引起叶片出口产生涡流,所以切割时最好采用斜切的方法。
一般认为,当G s>100,Q>100m3/h、切割量D2c/D2<8%时,采用斜切的方法,斜切斜度以保持前后盖板流线相对长度接通为宜。
5叶轮平衡
叶轮切割后,破坏了原来的平衡,所以切割后,必须重新做静平衡试验或动平衡试验,否则会引起泵的振动和噪声。
6结语
以上经验方式是根据泵的性能试验数据进行统计归纳而得出的,并在实际应用中举例证明。
但由于各种叶轮切割后,叶片的出口宽度、出口角变化规律各不相同,所以不管式(1)还是式(2)、式(3)都会有一定的误差,但是作为一般调节计算,实践证明是可以满足实际需要的。
如果要求严格时,可用逐渐逼近的方法进行性能试验或根据实际运行情况来决定。
参考文献
1沈阳水泵研究所,中国农业机械化科学研究院.叶片泵设计手册.北京:机械工业出版社,1986
2重庆大学流体力学教研室.泵与风机.北京:电力工业出版社,1980
3湖南大学等.水泵及水泵站.北京:中国建筑工业出版社, 1980
4北京水泵厂.离心泵.北京:机械工业出版社,1976
62江苏冶金第32卷。