有限元方法讲义
- 格式:pdf
- 大小:408.77 KB
- 文档页数:21
第五章薄板弯曲问题有限元法第一节薄板弯曲问题的有关概念一、基本概念1.薄板的定义:薄板是由上下两个平行的表面所构成的片状结构,其间距称为板厚。
同时,定义等分板厚的面为中面,当中面为平面时,称为平板,当中面为曲面时则称为壳体。
2.挠度; 板结构在承受横向载荷(弯矩、扭矩和横向剪力)作用下,发生弯扭而使薄板中面上各个点沿垂直中面方向发生的横向变形称为挠度,记为w。
3.薄板的两类问题:(1)平面应力板问题,载荷作用于板面内—(薄膜单元);在拉、压力和面内切力作用下,板内将产生薄膜内力,从而使板产生面内变形。
(2)薄板弯曲问题:其特点为:a) 几何尺寸:板的厚度远较长与宽的几何尺寸为小(一般厚度与板面最小尺寸之比小于1/5-1/10);(否则称为厚板)b) 载荷条件:结构仅承受垂直于板中面的横向载荷作用。
c) 小挠度条件;即挠度与板厚之比值较小,一般为w/t ≤1/5。
研究薄板弯曲问题时,通常以未变形的板的中面为xoy平面,厚度方向为z轴方向,3.板的一般问题:一般情况下,板既可承受横向载荷作用,也可同时承受平行于板中面的膜载荷作用。
(1) 薄板:在小挠度情况下,当两种载荷同时作用时,可认为两种变形互不影响,因此膜载荷的作用可按平面应力问题进行处理,而横向载荷的作用则按薄板弯曲问题来分析,两种问题引起的薄膜内力和弯曲内力的叠加便是一般载荷综合作用的结果。
(2)厚板:当1<w/t<5时为大挠度板,w/t≥5时为特大挠度板。
在大挠度情况下,薄板面内变形和弯扭变形之间将相互影响,即横向载荷也可能产生膜内力和面内变形,而膜载荷也可能产生弯曲内力和弯曲变形。
这时描述薄板变形的数学方程是非线性的,应采用更复杂的理论分析方法。
二.薄板弯曲问题求解的假设:(克希霍夫假设)1.法线假设垂直板中面的法线在板变形后仍垂直于弯曲的挠曲面,且法线线段没有伸缩,板的厚度无变化。
这样,垂直于中面的正应变便可忽略,即εz=0根据几何方程,可得因此挠度只是x,y的函数,表示为w=w(x,y),也即薄板中面上法线的各点都有相同位移。
张年梅有限元方法讲义全文共四篇示例,供读者参考第一篇示例:张年梅有限元方法讲义有限元方法是一种非常重要的数值计算方法,广泛应用于力学、电磁学、声学、地球物理学等领域。
张年梅是中国工程院院士、有限元方法的权威专家,他在有限元方法的研究和应用方面取得了很多成果。
他的有限元方法讲义成为了很多工程学子和研究人员学习的重要参考资料。
有限元方法是一种用数值方法解决复杂工程问题的工具。
它将实际工程问题抽象为有限个简单形状的单元,并通过适当的数学方法和计算机程序求解得到问题的近似解。
有限元方法的基本思想是将一个复杂的结构或领域分割成有限个简单的子结构或子域,然后在每一个子结构或子域上建立合适的数学模型,最后通过组合所有子结构或子域的模型获得整体结果。
张年梅有限元方法讲义详细介绍了有限元方法的基本原理、数学模型的建立和求解方法。
讲义先介绍了有限元方法的起源和发展历程,然后对基本概念和术语进行了解释,包括有限元模型、单元、节点、网格等。
接着讲义详细介绍了有限元方法的基本原理,包括离散化、变分原理、加权残差法、Galerkin法等。
有限元方法的数学模型的建立是有限元分析的关键步骤。
张年梅有限元方法讲义介绍了常见的结构、固体、流体、电磁等问题的有限元建模方法,包括线性弹性分析、非线性分析、热传导分析、流体动力学分析等。
在建立数学模型之后,有限元方法的求解方法也是十分重要的。
张年梅有限元方法讲义介绍了有限元方法的常用数值解法,包括直接法、迭代法、有限元展开法等。
有限元方法在实际工程问题中有着广泛的应用。
张年梅有限元方法讲义通过大量的案例和实例展示了有限元方法在结构分析、热力分析、电磁分析等领域的应用。
讲义还介绍了有限元方法在工程设计和优化中的应用,包括拓扑优化、材料优化、结构优化等。
张年梅有限元方法讲义是一部权威的、全面的有限元方法教材,受到了广大工程学子和研究者的欢迎和好评。
通过学习这本讲义,读者可以系统地了解有限元方法的基本原理和求解方法,掌握有限元方法在工程问题中的应用技能,为解决工程问题提供强有力的工具支持。
第1讲 抛物问题有限元方法1、椭圆问题有限元方法考虑椭圆问题边值问题:(1) ()⎩⎨⎧Ω∂∈=Ω∈=∆-x u x x f u ,0,问题(1)的变分形式:求()Ω∈10H u 使满足(2) ()()()Ω∈∀=1,,,H v v f v u a ()v u a ,的性质,广义解的正则性结果。
区域Ω的剖分,矩形剖分,三角剖分,剖分规则,正则剖分条件,拟一致剖分条件。
剖分区域上分片k 次多项式构成的有限元空间()Ω⊂10H S h 。
h S 的逼近性质,逆性质:∞≤≤≤≤≤≤-+-+p k k m uCh uI u pk m k pm h 1,1,0,,11,h h pm hqnp n l m ql hS v l m q p v Chv ∈∀≤∞≤≤≤---,,,1,),0(max ,这里,h h S u I ∈为u 的插值逼近。
问题(2)的有限元近似:求h h S u ∈使满足 (3) ()()h h h h h S v v f v u a ∈∀=,,,(3)的解唯一存在,且满足f M u h ≤1。
(3)的解()()∑==Ni i i h x u x u 1φ所满足的矩阵方程(离散方程组)形式:()()N j f u a jNi iji,2,1,,,1==∑=φφφ(4) f u K=刚度矩阵()()NN ji a K ⨯=φφ,的由单元刚度矩阵组装而成。
-1H 模误差分析:由(2)-(3)可得(5) h h h h S v v u u a ∈∀=-,0),(由(5)可首先得到()()1121,,u I u u u M u I u u u a u u u u a u u r h hh h h h h--≤--=--≤-则得到(6) 1,111≥≤-≤-+k uCh uI u C u u k k h h2L -模误差分析设210H H w ∈ 满足h h u u C w win u u w -≤=Ω-=∆-Ω∂2,0,,用h u u -与此方程做内积,由(5)式和插值逼近性质得到()()w u u A u u w A u u h h h,,2-=-=-()hhhh h h h u u u u Ch w u u Ch w I w u u C w I w u u A --≤-≤--≤--=12111,再利用-1H 模误差估计结果,得到 (7) 1,111≥≤-≤-++k uCh u u Ch u u k k hh最优阶误差估计和超收敛估计概念。