有限元分析的基本概念
- 格式:ppt
- 大小:659.50 KB
- 文档页数:6
广州有道计算机科技有限公司有限元分析FEA有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。
还有三维结构设计方面的UG、CATIA、Proe等都是比较强大的。
国产有限元软件:FEPG、SciFEA、,JiFEX、KMAS等有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。
Abaqus-基础与应用-第一章概述第1章概述有限元分析是使用有限元方法来分析静态或动态的物体或系统。
在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点所组成的几何模型。
在这种方法中这些独立的点的数量是有限的,因此被称为有限元。
1.1有限元分析简介本节首先简要介绍有限元分析的基本概念,然后简要阐述其发展和应用概况。
1.1.1有限元分析的基本概念在工程技术领域内,有许多问题归结为场问题的分析和求解,如位移场、应力场、应变场、流场和温度场等。
这些场问题虽然已经得出应遵循的基本规律(微分方程)和相应的限制条件(边界条件),但因实际问题的复杂性而无法用解析方法求出精确解。
由于这些场问题的解是工程中迫切所需要的,人们从不同角度去寻找满足工程实际要求的近似解,有限元方法就是随着计算机技术的发展和应用而出现的一种求解数理方程的非常有效的数值方法。
有限元分析的基本思想是用离散近似的概念,把连续的整体结构离散为有限多个单元,单元构成的网格就代表了整个连续介质或结构。
这种离散化的网格即为真实结构的等效计算模型,与真实结构的区别主要在于单元与单元之间除了在分割线的交点(节点)上相互连接外,再无任何连接,且这种连接要满足变形协调条件,单元间的相互作用只通过节点传递。
这种离散网格结构的节点和单元数目都是有限的,所以称为有限单元法。
在单元内,假设一个函数用来近似地表示所求场问题的分布规律。
这种近似函数一般用所求场问题未知分布函数在单元各节点上的值及其插值函数表示。
这样就将一个连续的有无限自由度的问题,变成了离散的有限自由度的问题。
根据实际问题的约束条件,解出各个节点上的未知量后,就可以用假设的近似函数确定单元内各点场问题的分布规律。
有限元方法进行结构分析主要涉及三个问题:(1)网格剖分和近似函数的选取选用合适单元类型和单元大小的问题。
合适的单元类型能在满足求解精度的条件下提高求解的效率,反之则可能会事倍功半。
第二章有限元分析基础有限元分析是一种常用的工程计算方法,在工程学科中被广泛应用。
本章将介绍有限元分析的基本概念和基础知识。
有限元分析是一种数值分析方法,用于求解复杂的物理问题。
它的基本思想是将一个连续的物体或结构离散化为有限数量的基本单元,通过在每个单元上进行计算,最终得到整个物体或结构的行为。
这些基本单元通过节点连接在一起,形成了一个有限元网格。
通过在每个节点上求解方程,可以得到整个物体或结构的应力、变形等相关信息。
在有限元分析中,有三个重要的步骤:建模、离散和求解。
建模是指将实际物体或结构转化为数学模型的过程。
在建模过程中,需要确定物体或结构的几何形状、边界条件和力学性质等。
离散是指将物体或结构划分为有限数量的基本单元。
常用的基本单元有三角形、四边形和六面体等。
离散过程中需要确定每个基本单元的几何属性和材料性质等。
求解是指在离散的基础上,通过求解节点上的方程,得到物体或结构的应力、变形等结果。
求解过程中,需要确定节点的位移和应变等参数。
有限元分析的基本假设是在每个基本单元内,应力和应变满足线性关系。
这意味着在小变形和小位移的情况下,有限元分析是有效的。
此外,为了提高计算精度,通常会增加更多的基本单元。
但是,增加基本单元数量会增加计算复杂度和计算时间。
因此,在实际应用中,需要根据问题的复杂程度和计算资源的限制进行权衡。
有限元分析广泛应用于各个领域,例如结构力学、热传导、电磁场、流体力学等。
在结构力学中,有限元分析可以用于求解静力学和动力学问题。
在热传导中,有限元分析可以用于求解温度分布和热流问题。
在电磁场中,有限元分析可以用于求解电荷和电场分布等。
在流体力学中,有限元分析可以用于求解流速和压力分布等。
总之,有限元分析是一种重要的工程计算方法,可以用于求解各种物理问题。
通过建模、离散和求解等步骤,可以得到物体或结构的应力、变形等结果。
有限元分析在工程学科中有着广泛的应用前景,对于工程设计和优化起着重要作用。
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
步骤有限元分析的基本步骤通常为:第一步前处理。
根据实际问题定义求解模型,包括以下几个方面:(1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。
(2) 定义单元类型:(3) 定义单元的材料属性:(4) 定义单元的几何属性,如长度、面积等;(5) 定义单元的连通性:(6) 定义单元的基函数;(7) 定义边界条件:(8) 定义载荷。
第二步总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。
总装是在相邻单元结点进行。
状态变量及其导数(如果可能)连续性建立在结点处。
联立方程组的求解可用直接法、迭代法。
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
第一节有限元分析概述有限元分析是一种数值计算方法,用于求解连续物体的力学问题。
它是将连续体划分成有限个小元素,利用元素间的相互关系来近似描述物体的行为。
有限元分析可以用于求解各种力学问题,如固体力学、流体力学、热传导等。
有限元分析的基本步骤包括建立模型、离散化、求解和分析结果。
首先,需要根据实际问题建立一个几何形状和边界条件的模型。
然后,将模型离散化为有限个小元素,每个元素具有一些简单的形状和几何特征。
接下来,需要确定每个元素内部的应力和变形的形式,这通常与所采用的数学模型有关。
然后,根据力学原理和边界条件,可以通过数值方法求解每个元素的应力和变形。
最后,可以对求解结果进行后处理,分析模型的响应,并检查结果的合理性。
有限元分析的优点之一是可以处理复杂的几何形状。
因为问题的几何形状是通过离散化成有限个小元素来描述的,所以可以处理各种形状的物体,包括曲线、曲面和体积。
同时,有限元分析还可以考虑非线性和不均匀性。
对于具有非线性特性的材料或结构,可以通过数值方法来求解其行为。
此外,有限元分析还可以处理多物理场的耦合问题,如流固耦合、热力耦合等。
然而,有限元分析也有一些局限性。
首先,离散化过程中需要选择合适的元素类型和大小。
选择不当的元素可能导致结果的不准确性。
其次,有限元分析需要耗费大量的计算资源。
由于模型通常包含大量的节点和单元,需要进行大规模的计算,对计算机的存储和计算能力有一定的要求。
最后,有限元分析的结果需要进行验证和验证。
由于模型的简化和假设,有限元分析的结果可能与实际情况存在一定的差异,需要通过实验数据进行验证和验证。
总的来说,有限元分析是一种有效的数值计算方法,用于求解连续体的力学问题。
它可以处理复杂的几何形状、非线性和不均匀材料,以及多物理场的耦合问题。
然而,它也有一定的局限性,需要合适的离散化、大量的计算资源和验证结果的步骤。
在实际应用中,需要根据具体问题的性质和要求,选择适当的数值方法和参数,以获得准确可靠的结果。