2018年中考数学总复习单元检测8 新人教版(含答案)
- 格式:doc
- 大小:1.58 MB
- 文档页数:7
⎪⎩2x-1≤7-x,解答题题组训练八(时间:55分钟分值:48分得分:__________)三、解答题(一)(本大题3小题,每小题6分,共18分)⎧⎪5x+1>3(x-1),17.(2017天门)解不等式组⎨132并把它的解集在数轴上表示出来.18.先化简,再求值:(2x+3)(2x-3)-4x(x-2),其中x=3.19.某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图△1,ABC中,∠C=90°,∠A=30°.(1)作AB边的垂直平分线,交AC于点D,交AB于点E;(用尺规作图法,保留作图痕迹,不要求写作法)图1(2)在(1)的条件下,连接BD,求证:BD平分∠CB A.21.如图2,在矩形ABCD中,E是边AB的中点,连接△DE,ADE沿DE折叠后得到△FDE,点F在矩形ABCD的内部,延长DF交于BC于点G.图2(1)求证:FG=BG;(2)若AB=6,BC=4,求DG的长.22.(2017郴州)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下图3所示的两幅不完整的统计图.解不等式x-1≤7-x,得x≤4.⎪⎪⎩⎩图3(1)这次调查的市民人数为______人,m=__________,n=__________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.五、解答题(三)(本大题1小题,每小题9分,共9分)23.如图4,一次函数y=x+1与二次函数y=ax2相交于A,B两点,点B的横坐标为1.图4(1)求二次函数的解析式;(2)连接O A,O△B,试求ADB的面积;(3)在x轴上确定一点P,使PA+PB最小,求点P的坐标.参考答案17.解:解不等式5x+1>3(x-1),得x>-2,1322图1则不等式组的解集为-2<x≤4.解集在数轴上表示如图1所示.18.解:原式=4x2-9-4x2+8x=8x-9.当x=3时,原式=8×3-9=15.19.解:设甲种奖品买了x件,乙种奖品买了y件,⎧x+y=30,⎧x=12,根据题意得⎨解得⎨⎪15x+12y=396,⎪y=18.答:甲种奖品买了12件,乙种奖品买了18件.20.(1)解:如图2,直线DE即为所求;∵EF ⊥DG ,∴EF 2=DF · F G .∴FG = .∴DG =FG +DF = .⎩图 2(2)证明:∵DE 垂直平分 AB ,∴AD =BD .∴∠ABD =∠A =30°.∵∠C =90°,∴∠ABC =90°-∠A =60°.∴∠CBD =∠ABC -∠ABD =60°-30°=30°.∴∠ABD =∠DBC ,即 BD 平分∠CBA .21.(1)证明:如图 3,连接 EG ,图 3∵四边形 ABCD 是矩形,∴∠A =∠B =90°.∵△ADE 沿 DE 折叠后得到△FDE ,∴AE =EF ,∠DFE =∠A =90°.∴∠GFE =∠B .∵E 是边 AB 的中点,∴AE =BE .∴EF =EB .⎧⎪EF =EB ,在 △RtEFG 与 Rt △EBG 中,⎨⎪EG =EG ,∴△Rt EFG ≌△Rt EBG .∴FG =BG .(2)解:∵AB =6,BC =4,△ADE 沿 DE 折叠后得到△FDE , ∴DF =DA =4,EF =AE =3,∠AED =∠FED .∵△Rt EFG ≌△Rt EBG ,∴∠FEG =∠BEG .∴∠DEF +∠FEG =90°.9425422.解:(1)500,12,32;(2)对“社会主义核心价值观”达到“ A .非常了解”的人数为 32%×500=160(人),图2 当 x =- 时,y = ,当 x =1 时,y =2,- , ,( 1,2)∴A,B 两点的坐标分别为2 2 ∴A ′B 所在直线的解析式为 y = x + .令 y =0,解得 x =- .∴点 P 的坐标为(- ,0).k +b =2,k = ,2 b = ..略.(3)该市大约有 100 000×32% =32 000(人)对“社会主义核心价值观”达到“A.非常了解”的程度.23.解:(1)∵点 B 的横坐标为 1 且点 B 在一次函数 y =x +1 上,∴B 的坐标为( 1,2)代入二次函数 y =ax 2 可得 a =2.∴二次函数的解析式为 y =2x 2.1(2)联立得 2x 2=x +1,解得 x =- 或 x =1,1 12 21 1 .1 1 1 1若一次函数 y =x +1 与 x 轴交点为 C ,则 △S BCO =2×1×2=1,S △ACO =2×1×2=4,1 3△∴S AOB =S △BOC -S △ACO =1-4=4.1 1(3)设点 A 关于 x 轴的对称点为 A ′,则 A ′ -2,-2 且 PA ′=PA .∴PA +PB =PA ′+PB ≥A ′B .即 A ′,P ,B 在同一条直线上时,PA +PB 最小.设 A ′B 所在直线的解析式为 y =kx +b ,可得5 31 1解得 - k +b =- ,1 35 13 31 15 5。
人教版数学八年级上学期《三角形》单元测试(满分:100分 时间:35分钟)一、单选题(共15小题,每小题3分)1.(2019·安图县第三中学初二期中)下列说法中错误的是( )A .一个三角形中至少有一个角不小于60°B .直角三角形只有一条高C .三角形的中线不可能在三角形外部D .三角形的中线把三角形分成面积相等的两部分2.(2018·青海初三中考真题)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E =90∘,∠C =90∘,∠A =45∘,∠D =30∘,则∠1+∠2等于( )A .150∘B .180∘C .210∘D .270∘3.(2019·浙江初三中考真题)若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .84.(2018·吉林初三中考真题)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°5.(2019·四川初三中考真题)如图,//BD EF ,AE 与BD 交于点C ,3075B A ∠∠=,=,则E ∠的度数为( )A.135?B.125C.115?D.1056.(2017·辽宁首山第二初中初一期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.77.(2018·辽宁初三中考真题)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°8.(2019·黑龙江初三中考真题)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°9.(2019·浙江初三中考真题)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,1110.(2018·河北初三中考真题)下列图形具有稳定性的是()A.B.C.D.11.(2017·甘肃初三中考真题)11.(2017·甘肃初三中考真题)已知a、b、c是△ABC的三条边长,化简|a+b -c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.012.(2015·四川初三中考真题)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.13.(2019·贵州初三中考真题)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm14.(2018·黑龙江初三中考真题)一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.10△中,若一个内角等于另外两个角的差,则( ) 15.(2019·浙江初三中考真题)在ABCA.必有一个角等于30B.必有一个角等于45︒C.必有一个角等于60︒D.必有一个角等于90︒二、填空题(共7小题,每小题3分)16.(2018·黑龙江初三中考真题)三角形三边长分别为3,2a−1,4.则a的取值范围是______.17.(2018·四川初三中考真题)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=_____.18.(2019·贵州初三中考真题)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC与点D,连结AD,若∠B=40°,∠C=36°,则∠DAC的度数是____________.19.(2019·湖南初三中考真题)如图,直线AB ∥CD ,OA ⊥OB ,若∠1=142°,则∠2=____________度.20.(2019·湖南初三中考真题)如图,直线a ,b 被直线c ,d 所截.若a b ∥,1130︒∠=,230︒∠=,则3∠的度数为___度.21.(2018·贵州初三中考真题)(题文)如图,m ∥n ,∠1=110°,∠2=100°,则∠3=_______°.22.(2019·北京初三中考真题)如图,已知△ABC ,通过测量、计算得△ABC 的面积约为____cm 2.(结果保留一位小数)三、解答题(共4小题,共计34分)23.(8分)(2019·江西南屏中学初二月考)(8分)如图,在△ABC 中,BO 、CO 分别平分∠ABC 和∠ACB .计算:(1)若∠A=60°,求∠BOC 的度数;(2)若∠A=100°,则∠BOC 的度数是多少?(3)若∠A=120°,则∠BOC 的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.24.(8分)(2018·湖北初三中考真题)(9分)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.25.(9分)(2018·山东初三中考真题)(9分)已知:如图,△ABC 是任意一个三角形,求证:∠A +∠B +∠C =180°.26.(9分)(2019·江苏初三中考真题)(9分)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.参考答案一、单选题(共15小题,每小题3分)1.(2019·安图县第三中学初二期中)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【答案】B【解析】分别根据三角形内角和定理、中线和高对各选项进行逐一分析即可.【详解】、因为三角形的内角和等于180°,所以一个三角形中至少有一个角不少于60°,故A选项正确,直角三角形有三条高,故B选项错误,三角形的中线一定在三角形的内部,故C选项正确,三角形的中线把三角形分成等底等高的两个三角形,故面积相等,故D选项正确,故选B.【点睛】本题考查了三角形的内角和定理、中线和高,熟知三角形的内角和等于180°是解答此题的关键.2.(2018·青海初三中考真题)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90∘,∠C=90∘,∠A=45∘,∠D=30∘,则∠1+∠2等于()A.150∘B.180∘C.210∘D.270∘【答案】C【解析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA =∠COP ,∠EPB =∠CPO ,∴∠1+∠2=∠D +∠E +∠COP +∠CPO=∠D +∠E +180∘−∠C=30∘+90∘+180∘−90∘=210∘,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.3.(2019·浙江初三中考真题)若长度分别为的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8【答案】C【解析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.(2018·吉林初三中考真题)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°【答案】C【解析】【分析】根据三角形内角和得出∠ACB ,利用角平分线得出∠DCB ,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,,3,5a∵CD 平分∠ACB 交AB 于点D ,∴∠DCB=12×78°=39°, ∵DE ∥BC ,∴∠CDE=∠DCB=39°,故选C .【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.5.(2019·四川初三中考真题)如图,,AE 与BD 交于点C ,,则的度数为( )A .B .C . D【答案】D 度数,再利用平行线的性质分析得出答案.【详解】解,.故选:D . 【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.6.(2017·辽宁首山第二初中初一期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7【答案】B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .//BD EF 3075B A ∠∠=,=E ∠135?115?105【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.7.(2018·辽宁初三中考真题)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【答案】D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.8.(2019·黑龙江初三中考真题)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°【答案】B【解析】根据角平分线的定义得到∠EBM=∠ABC、∠ACM,根据三角形的外角性质计算即可.【详解】解:∵BE是∠ABC的平分线,∴∠∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM ,则∠BEC=∠ECM-∠EBM=×(∠ACM-∠∠A=30°, 故选:B . 【点睛】本题考查的是三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.(2019·浙江初三中考真题)下列长度的三条线段,能组成三角形的是( )A .3,4,8B .5,6,10C .5,5,11D .5,6,11 【答案】B【解析】根据三角形的三边关系即可求解.【详解】AB 选项,,,两边之各大于第三边,两边之差小于第三边,故能组成三角形C 选项,,两边之和小于第三边,故不能组成三角形D 选项,,两边之和不大于第三边,故不能组成三角形故选:B .【点睛】此题主要考查三角形的三边关系,解题的关键是熟知两边之和大于第三边.10.(2018·河北初三中考真题)下列图形具有稳定性的是( )A .B .C .D .【答案】A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A 、具有稳定性,符合题意;B 、不具有稳定性,故不符合题意;C 、不具有稳定性,故不符合题意;D 、不具有稳定性,故不符合题意,故选A .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键. 11.(2017·甘肃初三中考真题)11.(2017·甘肃初三中考真题)已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )ABC △3045︒60︒A.2a+2b-2c B.2a+2b C.2c D.0【答案】D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.12.(2015·四川初三中考真题)下列四个图形中,线段BE是△ABC的高的是( )A.B.C.D.【答案】D【解析】试题分析:根据三角形的高线的定义可得,则D选项中线段BE是△ABC的高. 考点:三角形的高13.(2019·贵州初三中考真题)在下列长度的三条线段中,不能组成三角形的是( ) A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm【答案】C【解析】根据三角形任意两边的和大于第三边,进行分析判断即可.【详解】A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形,故选C.【点睛】本题考查了三角形构成条件,熟练掌握三角形三边关系是解题的关键. 14.(2018·黑龙江初三中考真题)一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.10【答案】D【解析】【分析】由多边形的外角和为360°结合每个外角的度数,即可求出n值,此题得解.【详解】∵一个正n边形的每一个外角都是36°,∴n=360°÷36°=10,故选D.【点睛】本题考查了多边形的外角,熟记多边形的外角和为360度是解题的关键. 15.(2019·浙江初三中考真题)中,若一个内角等于另外两个角的差,则( ) A.必有一个角等于BC.必有一个角等于D【答案】D【解析】先设三角形的两个内角分别为x,y,则可得(180°-x-y),再分三种情况讨论,即可得到答案. 【详解】设三角形的一个内角为x,另一个角为y,则三个角为(180°-x-y),则有三种情况:②③综上所述,必有一个角等于90°故选D.【点睛】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.二、填空题(共7小题,每小题3分)16.(2018·黑龙江初三中考真题)三角形三边长分别为3,2a−1,4.则a的取值范围是______.【答案】1<a<4【解析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.EB C【详解】∵三角形的三边长分别为3,2a −1,4,∴4−3<2a −1<4+3,即1<a <4,故答案为:1<a <4.【点睛】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系.17.(2018·四川初三中考真题)如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=_____.【答案】40°【解析】先根据角平分线的定义得到∠OBC=12∠ABC ,∠OCB=12∠ACB ,再根据三角形内角和定理得∠BOC+∠OBC+∠OCB=180°,则∠BOC=180°﹣12(∠ABC+∠ACB),由于∠ABC+∠ACB=180°﹣∠A ,所以∠BOC=90°+12∠A ,然后把∠BOC=110°代入计算可得到∠A 的度数. 【详解】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,而∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣12(∠ABC+∠ACB),∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A ,∴∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A , 而∠BOC=110°,∴90°+12∠A=110°∴∠A=40°.故答案为40°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.18.(2019·贵州初三中考真题)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC与点D,连结AD,若∠B=40°,∠C=36°,则∠DAC的度数是____________.【答案】34°【解析】根据作图过程得BD=BA,在根据已知条件即可得出∠DAC的角度.【详解】由作图过程可知BD=BA,∵∠B=40°,∴∠BDA=∠-∠B)=70°,∴∠DAC=∠BDA-∠C=70°-36°=34°.故答案为34°.【点睛】本题考查了三角形与圆的相关知识点,解题的关键是熟练的掌握三角形与圆的应用. 19.(2019·湖南初三中考真题)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=____________度.【答案】52【解析】根据平行线的性质可得∠OED=∠2,再根据∠O=90°,∠1=∠OED+∠O=142°,即可求得答案. 【详解】∵AB∥CD,∴∠OED=∠2,∵OA⊥OB,∴∠O=90°,∵∠1=∠OED+∠O=142°,∴∠2=∠1﹣∠O=142°﹣90°=52°,故答案为:52.【点睛】本题考查了平行线的性质,垂直的定义,三角形外角的性质,熟练掌握相关知识是解题的关键. 20.(2019·湖南初三中考真题)如图,直线a ,b 被直线c ,d 所截.若,,,则的度数为___度.【答案】100【解析】直接利用平行线的性质结合三角形外角的性质得出答案.【详解】,,,,, ,解得, 故答案为:100.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关性质是解题的关键.注意数形结合思想的应用.21.(2018·贵州初三中考真题)(题文)如图,m ∥n ,∠1=110°,∠2=100°,则∠3=_______°.CAF BAE ∠=∠EF G EF BC=28ACB ∠=︒FGC ∠【答案】150【解析】分析:两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.详解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°-∠4-∠5=30°,∴∠3=180°-∠6=150°,故答案为:150.点睛:本题主要考查平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.22.(2019·北京初三中考真题)如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)【答案】1.9【解析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC 的面积.【详解】解:过点C 作CD ⊥AB 的延长线于点D ,如图所示.经过测量,AB=2.2cm ,CD=1.7cm ,2).故答案为:1.9.【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.三、解答题(共4小题,共计34分)23.(8分)(2019·江西南屏中学初二月考)(8分)如图,在△ABC 中,BO 、CO 分别平分∠ABC 和∠ACB .计算:(1)若∠A=60°,求∠BOC 的度数;(2)若∠A=100°,则∠BOC 的度数是多少?(3)若∠A=120°,则∠BOC 的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.【答案】(1)120°;(2)140°;(3)150°;(4)90°+12∠A . 【解析】1)根据角平分线的定义和三角形的内角和定理求出∠OBC+∠OCB 的值,再利用三角形的内角和定理求出∠BOC 的值;(2)先根据角平分线的定义得到∠OBC=12∠ABC ,∠OCB=12∠ACB ,再根据三角形内角和定理得到∠BOC=180°-(∠OBC+∠OCB),∠ABC+∠ACB=180°-∠A ,则∠BOC=180°-12(180°-∠A)=90°+12∠A ,然后把∠A 的度数代入计算即可;(3)同(2)的计算方法;(4)根据(1)(2)(3)的结论即可得到结果.【详解】(1)∵BO 、CO 分别平分∠ABC 和∠ACB ,∠A=60°,∴∠CBO+∠BCO=12(180°﹣∠A)=12(180°﹣60°)=60°, ∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°; (2)同理,若∠A=100°,则∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A=140°;(3)同理,若∠A=120°,则∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A=150°; (4)由(1)、(2)、(3),发现:∠BOC=180°﹣12(180°﹣∠A)=90°+12∠A .【点睛】本题考查了三角形内角和定理.第一,第二、第三问是解决第四问发现规律的基础,因而总结前三问中的基本解题思路是解题的关键.24.(8分)(2018·湖北初三中考真题)(9分)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.【答案】(1) 65°;(2) 25°.【解析】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=12∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°. 详解:(1)∵在Rt △ABC 中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.25.(9分)(2018·山东初三中考真题)(9分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【答案】证明见解析【解析】分析:过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:如图,过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.26.(9分)(2019·江苏初三中考真题)(9分)如图,中,点在边上,,将线段绕点旋转到的位置,使得,连接,与交于点(1)求证;(2)若,,求的度数.【答案】(1)证明见解析;(2)78°.【解析】(1)因为,所以有,又因为,所以有,得到;(2)利用等腰三角形ABE内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得,从而算出∠FGC【详解】【点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键。
【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法考试内容考试要求等式的性质性质1:等式两边加(或减)同一个数或同一个____________________,所得结果仍是等式;性质2:等式两边乘(或除以)同一个数(除数不能为0),所得结果仍是.ab方程的概念含有未知数的叫做方程.方程的解使方程左右两边的值的未知数的值叫做方程的解.3.列方程解应用题的一般步骤考试内容考试要求列方程解应用题的一般步骤c 1.审审清题意和数量关系,弄清题中的已知量和未知量,明确各数量之间的关系.2.设设未知数(可设直接或____________________未知数).3.列根据题意寻找列方程.4.解解方程.5.答检验所求的未知数的值是否符合题意(分式方程既要检验求出来的解是否为原方程的根,又要检验是否符合题意),写出答案.考试内容考试要求基本思想解分式方程的基本思想:把分式方程转化为整式方程,即分式方程――→去分母转化整式方程.c 基本方法1.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.2.列方程的关键是寻找等量关系,寻找等量关系常用的方法有:①抓住不变量;②找关键词;③画线段图或列表格;④运用数学公式.1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( ) A.518=2(106+x) B.518-x=2×106C.518-x=2(106+x) D.518+x=2(106-x)2.(2017·宁波)分式方程2x+13-x=32的解是____________________.3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x+1=1x-1.【问题】给出以下五个代数式:2x-4,x-2,x,12,3.(1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程;(2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一等式性质和方程的解的含义例1(1)(2017·杭州)设x,y,c是实数,( )A.若x=y,则x+c=y-cB.若x=y,则xc=ycC.若x=y,则xc=ycD.若x2c=y3c,则2x=3y(2)已知关于x的方程2x+a-9=0的解是x=2,则a=________.(3)已知关于x的方程3x+n2x+1=2的解是负数,则n的取值范围为______________.【解后感悟】(1)熟记等式的性质并根据等式的性质求解是解题关键;(2)本题利用方程的思想,通过方程的解来构造关于a的一元一次方程,求出a值;(3)本题是分式方程的解和解一元一次不等式,关键是得出n-2<0和n-2≠-12,注意题目中的隐含条件2x+1≠0不要忽略.1.(1)已知等式3a=2b+5,则下列等式中不一定成立的是( )A.3a-5=2b B.3a+1=2b+6C.3ac=2bc+5 D.a=23b+53(2)如果方程x+2=0与方程2x-a=0的解相同,那么a=____________________.(3)(2017·成都)已知x=3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( ) A .-1 B .0 C .1 D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.2.解方程:(1)(2016·贺州)解方程:x 6-30-x 4=5;(2)7x-12⎣⎢⎡⎦⎥⎤x-12(x-1)=23(x-1).类型三分式方程的解法例3(2015·营口)若关于x的分式方程2 x-3+x+m3-x=2有增根,则m的值是( )A.m=-1B.m=0C.m=3 D.m=0或m=3【解后感悟】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程:③把增根代入整式方程即可求得相关字母的值.例4(1)(2017·湖州)解方程:2x-1=1 x-1+1;(2)(2017·陕西模拟)解方程:2-xx-3=13-x-2.【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.解分式方程:(1)xx-3=x-63-x+3;(2)xx+1-4x2-1=1.类型四一元一次方程和分式方程的应用例5(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】解分式方程:x2-4xx2-1+1=2xx+1. 参考答案第6讲一元一次方程与分式方程及其应用【考点概要】1.整式等式等式相等一 1 括号同类项 2.未知数整式最简公分母不为0 3.间接等量关系【考题体验】1.C 2.x=1 3.160x=200x+54.x=3【知识引擎】【解析】(1)答案不唯一,2x-4=3和2x-4 x-2=12;(2)2x-4=3,解得x=3.5;2x-4x-2=12,解得x=2,代入方程x=2是方程的增根,舍去,所以,方程无解.【例题精析】例1 (1)B;(2)5;(3)解方程3x+n2x+1=2得x=n-2.∵关于x的方程3x+n2x+1=2的解是负数,∴n-2<0.解得:n<2.又∵原方程有意义的条件为:x≠-12,∴n-2≠-12,即n≠32.∴n<2且n≠32. 例2 6x-3(x-1)=12-2(x+2),6x-3x+3=12-2x-4,3x+3=8-2x,3x+2x =8-3,5x=5,∴x=1. 例3 方程两边都乘以(x-3)得,2-x-m=2(x-3),∵分式方程有增根,∴x-3=0,解得x=3,∴2-3-m=2(3-3),解得m=-1.故选A. 例4 (1)方程两边都乘以x-1得:2=1+x-1,解得:x=2,检验:∵当x=2时,x-1≠0,∴x=2是原方程的解,即原方程的解为x=2. (2)方程的两边同乘(x-3),得:2-x=-1-2(x-3),解得:x=3,检验:把x=3代入(x-3)=0,即x=3不是原分式方程的解.则原方程无解.例5 (1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A 花木数量是4200棵; (2)设安排a 人种植A 花木,由题意得:420060a =240040(26-a ),解得:a =14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【变式拓展】1.(1)C (2)-4 (3)D 2. (1)x =30; (2)x =-573.3.(1)解得x =3,经检验x =3是增根,分式方程无解. (2)x =-3.4.设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得12000x +5=5000x .解得x =257.经检验,x =257是原方程的解,且符合题意,则科普类图书平均每本的价格为257+5=607元,答:文学类图书平均每本的价格为257元,科普类图书平均每本的价格为607元.【热点题型】【分析与解】(1)寻找规律:1张这样的餐桌四周可坐6人,2张这样的餐桌拼接起来四周可坐6+4人,3张这样的餐桌拼接起来四周可坐6+4×2人,4张这样的餐桌拼接起来四周可坐6+4×3人,…n张这样的餐桌拼接起来四周可坐6+4(n-1)人.∴4张这样的餐桌拼接起来四周可坐18人,8张这样的餐桌拼接起来四周可坐34人.(2)∵n张这样的餐桌拼接起来四周可坐6+4(n-1)人,∴若用餐的人数有90人,则6+4(n-1)=90,解得n =22.∴若用餐的人数有90人,则这样的餐桌需要22张.【错误警示】原方程变形为x2-4x(x+1)(x-1)+1=2xx+1.方程两边同乘(x+1)(x-1),得x2-4x+(x+1)(x-1)=2x(x-1).整理得x2-4x+x2-1=2x2-2x,即2x=-1,x=-12.检验:当x=-12时,(x+1)(x-1)≠0,所以x=-12是原方程的根.。
人教版数学八年级上册全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.2.如图,1BA和1CA分别是ABC∆的内角平分线和外角平分线,2BA是1A BD∠的角平分线,2CA是1A CD∠的角平分线,3BA是2A BD∠的角平分线,3CA是2A CD∠的角平分线,若1Aα∠=,则2018A∠=_____________【答案】20172α【解析】【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.4.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.5.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.6.如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了__米.【答案】600【解析】【分析】【详解】解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.二、八年级数学三角形选择题(难)7.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理8.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2aC.4D.-4【答案】C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
专题二 结论判断题类型一 代数结论判断题1. 关于x 的一元二次方程x 2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny+2m=0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m-1)2+(n-1)2≥2;③-1≤2m -2n≤1.其中正确结论的个数是()A. 0个B. 1个C. 2个D. 3个2.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc <0;②2b 4ac 4a >0;③ac-b+1=0;④OA·OB =-c a.其中正确结论的个数是( )A. 4B. 3C. 2D. 13. 如图是抛物线y1=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx+n (m≠0)与抛物线交于A 、B 两点.下列结论:①2a+b=0;②abc >0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是( )A. ①②③B. ①③④C. ①③⑤D. ②④⑤4.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a-2b+c<0;③不等式ax2+bx+c≥0的解集是x≥3.5;④若(-2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是( )A. ①②B. ①④C. ①③④D. ②③④第4题图第5题图的图象,判断5. 观察图中给出的直线y=k1x+b和反比例函数y=2kx下列结论错误的有( )①k2>b>k1>0;②直线y=k1x+b与坐标轴围成的△ABO的面积是4;的解为x1=-6,y1=-1,x2=2,y2=3;③方程组y=k1x+b,y=2kx.④当-6<x<2时,有k1x+b>2kxA. 1个B. 2个C. 3个D. 4个6.对于二次函数y=kx2-(2k-1)x+k-1(k≠0),有下列结论:①其图象与x轴一定相交;②若k<0,函数在x>1时,y随x的增大而减小;③无论k取何值,抛物线的顶点始终在同一条直线上;④无论k取何值,函数图象都经过同一个点.其中所有正确的结论是______.(填写正确结论的序号)x2-2 7.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=13交于A,B两点,且A点在y轴左侧,P点的坐标为(0,-4),连接PA , PB.有以下说法:①PO2=PA·PB;②当k>0时,(PA+AO)(PB-BO)的值随k的增大而增大;③当3,BP2=BO·BA;④△PAB面积的最小值为6.其中正确的是_____.(写出所有正确说法的序号)类型二几何结论判断题1.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM.下列结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC.其中结论正确的有()A. 1个B. 2个C. 3个D. 4个第1题图第2题图2. 如图,在半径为6 cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC 上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC=63 cm ;③sin ∠AOB 3④四边形ABOC 是菱形.其中正确结论的序号是( )A. ①③B. ①②③④C. ②③④D. ①③④3. 如图,在Rt △ABC 中,∠ABC=90°,AB =BC.点D 是线段AB 上的一点,连接CD ,过点B 作BG ⊥CD,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF.给出以下四个结论:①AF =B A A G FC;②若点D 是AB 的中点,则AF 2AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF =DB ;④若DB 1=AD 2,则S △ABC =9S △BDF .其中正确的结论序号是( )A. ①②B. ③④C. ①②③D. ①②③④第3题图 第4题图4. 如图,AB 是⊙O 的直径,BC ⊥AB ,垂足为点B ,连接CO 并延长交⊙O 于点D 、E ,连接AD 并延长交BC 于点F.则以下结论:①∠CBD =∠CEB;②CD =E B B D BC;③点F 是BC 的中点;④若BC3= AB2101.其中正确的是( )A. ①②B. ③④C. ①②④D. ①②③5.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB 上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①2; ②当点E与点B重合时,MH=12;③AF+BE=EF;④MG·MH=12,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④第5题图第6题图6. 如图,在菱形ABCD中,∠ABC中,∠ABC=60°,点E、F分别从点B、D同时出发,以同样的速度沿边BC、DC向点C运动(点E、F不与点B、D重合).给出以下四个结论:①AE=AF;②EF∥BD;③当点E、F分别为边BC、DC的中点时,EF3④当点E、F分别为边BC、DC的中点时,△AEF的面积最大.上述结论中正确的个数有( )A. 1B. 2C. 3D. 47. 如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM、AH,则以下四个结论:①△BDF≌△DCE; ②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD=3AM2.其中正确结论的个数是( )A. 1B. 2C. 3D. 4第7题图第8题图8. 如图,正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC于F点,过E点的直线GH⊥AF,交AB于点G,交CD 于点H.以下结论:①∠AFC=105°;②GH=2EF;③2CE=EF+EH;.其中正确结论的个数是()④AE2=EH3A. 1B. 2C. 3D. 49.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是______(只需填写序号). 第9题图10. 点P是正方形ABCD的边CD上一点,EF垂直平分BP分别交BC,AD于点E,F,GP⊥EP交AD于G,连接BG交EF于H,有下列结论:①BP=EF;②以BA为半径的⊙B与GP相切;③∠FHG=45°;④若G为AD的中点,则DP=2CP.其中正确的结论是______.(填所第10题图有正确结论的序号)11.如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=3;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是3.其中正确结论的是序号是________. 第11题图【答案】专题二结论判断题类型一代数结论判断题1.D【解析】逐项分析:①∵关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,∴由根与系数的关系可得x1x2=2n>0,∴x1,x2同号;同理y1y2=2m>0,y1,y2为同号,∵x1+x2=-2m<0,y1+y2=-2n<0,∴x1,x2,y1,y2均为负整数.故①正确.②∵一元二次方程x2+2mx+2n=0有两个整数根,∴Δ=4m2-4×2n=4m2-8n≥0,即m2-2n≥0,同理可得n2-2m≥0,∴m2+n2-2n-2m≥0,即(m-1)2+(n-1)2≥2.故②正确.③由①得x1,x2,y1,y2均为负整数,∵一元二次方程的根均为整数,∴x1,x2,y1,y2均小于等于-1,设X=x2+2mx+2n,Y=y2+2ny+2m,则X,Y分别为x,y的二次函数,其图象开口向上,与横轴的交点坐标均小于或等于-1且为整数,因此,当x=-1时,X=1-2m+2n≥0,m-n≤12;当y=-1时,Y=1-2n+2m≥0,m-n≥-12,即-12≤m-n≤12,∴-1≤2m-2n≤1.故③正确.故选D.2. B【解析】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有两个交点,∴Δ=b2-4ac>0,而a<0,∴2b-4ac4a<0,所以②错误;∵C (0,c),OA=OC,∴A(-c,0),把A(-c,0)代入y=ax2+bx+c 得ac2-bc+c=0,∴ac-b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1·x2=ca ,∴OA·OB=-x1x2=-ca,所以④正确.故选B.3. C【解析】逐项分析:①对称轴是x=1,即-b2a=1,则2a+b=0.所以①正确.②∵抛物线开口向下,∴a<0;∵对称轴x=-b2a=1>0,∴ b>0;∵抛物线与y轴交于正半轴,∴c>0,则abc<0.所以②错误.③∵抛物线的顶点坐标是A(1,3),∴当函数值是3时,对应的x的值只有一个1,则方程ax2+bx+c=3有两个相等的实数根.所以③正确. ④B(4,0)关于对称轴x=1的对称点是(-2,0),则抛物线与x轴的另一个交点是(-2,0).所以④错误.⑤当1<x<4时,抛物线在直线上方,∴y2<y1.所以⑤正确.故选C.4. B【解析】逐项分析:①∵抛物线与x轴有两个交点,∴b2-4ac>0,∴b2>4ac.所以①正确.②当x=-2时,y=4a-2b+c,∵抛物线的对称轴为x=1,∴(-2,4a-2b+c)关于x=1的对称点为(4,16a+4b+c),即4a-2b+c=16a+4b+c,由题图可知(4,16a+4b+c)在第一象限,∴4a-2b+c=16a+4b+c>0.所以②错误.③∵抛物线的对称轴为x=1,∴由题图可知抛物线两交点的横坐标分别为3.5和-1.5,∴不等式ax2+bx+c≥0的解集为x≤-1.5或x≥3.5.所以③错误.④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=-2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2.所以④正确.故选B.5. A【解析】①∵反比例函数y=2kx的图象经过点(2,3),∴k2=2×3=6,∴y=6x.∵直线y=k1x+b经过点(2,3)和点(-6,-1),∴2k1+b=3,-6k1+b=-1,∴k1=12,b=2,∴y=12x+2.∴k2>b>k1>0,正确;②∵y=12x+2,∴当y=0,x=-4,∴点A的坐标是(-4,0),当x=0时,y=2.∴点B的坐标是(0,2).∴△ABO的面积是12×4×2=4,正确;③观察图象,发现直线y=k1x+b和反比例函数y=k2x的图象交于点(-6,-1),(2,3),则方程组y=k1x+b,y=k2x的解为x1=-6,y1=-1,x2=2y2=3,正确;④观察图象,可知当-6<x<0或x>2时,有k1x+b>2kx,错误.6. ①③④【解析】令y=0,则kx2-(2k-1)x+k-1=0,解得x1=1,x2=k-1k ,∴函数图象与x轴的交点为(1,0),(k-1k,0),故①④正确;当k<0时,k-1k>1,∴函数在x>1时,y随x的增大先增大然后再减小,故②错误;∵x=-b2a =--(2k-1)2k=1-12k,y=24ac-b4a=24k(k-1)-(2k-1)4k=-14k,∴y=12x-1 2,即无论k取何值,抛物线的顶点始终在直线y=12x-12上,故③正确;综上所述,正确的结论是①③④.7. ③④【解析】如解图:①当k=0时,y=0,即直线与x轴重合,则A、B两点为y=13x2-2与x轴的交点.令13x2-2=0得,则A点坐标为(,0),B,0),又∵P点坐标为(0,-4).则PA=22-+-==PB,(6)(4)22∴PA·PB=22.又∵PO=4,∴PA·PB=22≠PO2=16,故①错误; ②由①知:当k=0时,PA=PB=22,AO=BO=6,∴(PA+AO)·(PB-BO)=(22+6)( 22-6)=16.当k持续增大,即y=kx持续接近y轴,至与y 轴重合时,易知A点坐标为(0,-2),则PA=2,AO=2,PB-BO=PO=4,∴(PA+AO)(PB-BO)=16,则当k增大时,(PA+AO)·(PB-BO)不随k的增大而增大,故②错误;③当k=-3时,A(-23,2),B(3,-1),∴OB=2,BP=23,3x2-2,则可AB=6,∴BP2=BO·BA,故③正确;④令kx=13化简为x2-3kx-6=0,设该方程的两根分别为a,b,即A,B 的横坐标分别为a,b,则|a-b|=22≥,(a+b)-4ab=9k+2426∴当k=0,即直线AB与x轴重合时,S△PAB的最小值×4×26=46.故④正确.综上,正确答案为③④.=12类型二几何结论判断题1. D【解析】∵△ABD、△BCE为等边三角形,∴AB=BD, BC=BE,∠ABD=∠EBC=60°,∠DBE=180°-∠ABD-∠DBE =180°-∠ABD-∠EBC=60°,∴∠ABE=∠DBC=120°.∴△ABE ≌△DBC(SAS).故结论①正确;由△ABE≌△DBC可得,∠BAE=∠BDC,又∵∠DPM=∠BPA,∴∠DMP=∠PBA=60°.故结论②正确;∵△ABE≌△DBC,∴∠BEP=∠BCQ,∵∠PBE=∠QBC=60°,BE=BC,∴△BEP≌△BCQ(ASA), ∴BP=BQ,∵∠PBQ=60°,∴△BPQ为等边三角形,故结论③正确;作BH⊥AE,BG⊥CD,如解图.∵△ABE≌△DBC, ∴S△ABE=S△DBC,即AE·BH=CD·BG.∵AE=CD,∴BH=BG.∴MB平分∠AMC(到角的两边距离相等的点在角的平分线上).故结论④正确,故选D.2.B【解析】如解图,设AO与CB交于点E∵点A是劣弧BC的中点,OA过圆心,∴OA⊥BC,故①正确∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧BC的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6 cm,∵BE=AB·cos30°=6×3=33cm,∴BC=2BE=63cm,故②正确.∵∠AOB=60°,∴sin∠AOB=sin60°=3,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧BC的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC 是菱形,故④正确.故选B.3.C【解析】逐项分析:①∵AG∥BC,∴△AFG∽△CFB ,∴AG AF= BC FC ,又∵BC=AB, ∴AG AF=AB FC,∴①正确;②∵∠DEF=∠GAB=90°,∠ABG=∠EBD,∴△ABG∽△EBD,同理可证,△EBD∽△BCD,∴△ABG∽△EBD∽△BCD,∴D 为AB 中点时,AG BD 1=AB BC 2=,∵AB=BC ,∴AGBC=12,∵AG ∥BC ,∴△AFG ∽△CFB,得AG AF 1=BC FC 2=,∴AF =12FC =13AC ,∵BC =AB ,AC =2AB =2BC ,∴AF =13AC =23AB ,∴②正确.③当B 、C 、F 、D 四点在同一个圆上时,∵CD ⊥BF,则CD 平分BF 所对的弧,∴DF=DB.∴③正确.④如解图,过点F 作FH ⊥AB 于点H ,设FH=h ,∵DB 1AD 2=, ∴DB 1AB 2=,可得DB 1BC 3=,∵△ABG ∽△BCD,∴AG BD 1=AB BC 3=, 又∵△AFG ∽△CFB,∴AF AG AG 1=FC BC AB 3==,AF 1AC 4=, 又△AHF ∽△ABC ,∴FH AF 1=BC AC 4=,即S △FDB ∶S △ABC =BD FH =AB BC ⋅⋅ 1113412=⋅=. ∴S △ABC=12S △FDB.④错误.故选C.4. C 【解析】∵BC ⊥AB 于点B ,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB, ∴∠CEB=∠CBD,故①正确.∵∠C=∠C,∠CEB=∠CBD, ∴△EBC ∽△BDC ,∴BD CD =BE BC,故②正确. ∵∠EBD=∠BDF =90°,∴DF ∥BE ,假设点F 是BC 的中点,则点D 是EC 的中点,∴ED=DC ,∵ED 是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.∵BC3=AB2, 设BC=3x,AB=2x,∴OB=OD=x,∴在Rt△CBO 中, ∴在Rt△CBO中,OC=10x,∴CD=(10-1)x,∵由(2)知,BD CD=BE BC ,∴BD CD(101)=BE BC-=,∵tanE=BD BE ,∴tanE=(101)3-,故④正确.故选C.5.C【解析】逐项分析:①在Rt△ABC中,∠ACB=90°,AC=BC=1,∴由勾股定理可知:AB=22AC+BC2=.所以①正确.②当点E与点B重合,如解图①所示,此时∠FCB=∠CBF=45°,则BF=CF,同理AF=CF,∴点F是AB的中点,∵FG⊥AC,∴FG∥BC,∴点G是AC的中点,∴CG=12AC=12.易得四边形CHMG是矩形,∴MH=CG=12.所以②正确;③如解图②,过点C作CD⊥AB于点D,过点D作PK⊥BC,分别交BC、GM于点P,K,过点D作QS⊥AC分别交AC、MH于点Q、S.∴DP=SH,Rt△ACD≌Rt△BCD(HL),∴AD=BD,∴CD=12AB=BD,∠DCB=∠ECF=45°,则∠ECH=∠FCD,又∵∠CDF=∠CHE=90°,∴△CDF ∽△CHE ,∴HE CH =FD CD ,∴当CH >CD 时,HE >FD ,在Rt △FDK 中,FD >DK ,则HE >DK ,即HE >MS ,HS >ME ,易得△MEF 是等腰直角三角形,∴FE=2ME,又∵CD=2DP=2HS,∴EF <CD.∵AB=2CD ,∴EF <12AB ,∵AF+BE+EF=AB ,∴AF+BE >EF.所以③错误.④如解图③,连接DG ,DH ,∵CD ⊥AB ,FG ⊥CG ,∴点G 、C 、D 、F 共圆,∴∠FGD=∠FCD ;同理∠HDE=∠HCE ,∵∠FCD=∠HCE ,∴∠FGD=∠HDE ,易得∠GFD=∠DEH=135°,∴△GFD ∽△DEH ,∴GF DF =DE HE.在△GCF 与△CDE 中,易得∠GCF=∠DCE ,又∵∠CGF=∠CDE=90°,∴△GCF ∽△DCE ,∴CG CF =CD CE ,∵△CDF ∽△CHE,∴CH HE =CD DF,∴CH CG HE CF =CD CD DF CE⋅⋅,∵CD=22,∴CH·CG=12.HE DF 1DF HE 2⋅=,∴MG·MH=12.所以④正确.故选C.6. C 【解析】∵点E 、F 分别从点B 、D 出发,以同样的速度沿边BC 、DC 向点C 运动,∴BE=DF ,在△ABE 和△ADF中,AB=AD ,∠B=∠D ,BE=DF ,∴△ABE ≌△ADF (SAS ),∴AE=AF,故①正确;∵△ABE ≌△ADF ,∴BE=DF.又∵两点以相同速度运动,∴CE=CF.∴∠CEF =1802C ︒-∠,∵∠DBC=1802C︒-∠,∠CEF=∠DBC,∴EF∥BD,故②正确;当E、F 分别为边BC、DC的中点时,EF=12BD=BO,连接AC,∵在菱形ABCD中,∠B=60°,∴AC⊥BD,∠CBD=30°,∴∠BCO=60°,BO=32BC=3·2BE=3BE,∴EF=3BE,故③正确;∵△AEF的面积=菱形ABCD的面积-△ABE的面积-△ADF的面积-△CEF的面积=3 2AB2-12BE·AB×32×2-12×32×(AB-BE)2=-34BE2+34AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF 的面积最大,故④错误.故正确的结论有①②③.7.C【解析】在菱形ABCD中,∵AB=BD,∴AB=BD=AD, ∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC-BE=CD-CF,即CE=DF,在△BDF和△DCE中,CE=DF,∠BDF=∠C=60°,BD=CD,∴△BDF≌△DCE(SAS),故①正确;∵△BDF≌≌△DCF(已证),∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°-∠DM F=180°-60°=120°,故②正确;∵∠DEB=∠EDC+∠C=∠EDC+ 60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,AB=AD,∠ADH=∠ABM,DH=BM,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠B AM=∠BAD=60°,∴△AMH是等边三角形,故③正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=12AM·32AM=34AM2,∴S四边形ABMD=34AM2,S四边形ABCD≠S四边形ABMD,故④错误,综上所述,正确的是①②③共3个.8.C【解析】∵△CDE为正三角形,∴∠CDE=60°,∴∠ADE=90°-60°=30°,∵AD=DE=CD,∴∠DAE=∠DEA=12(180°- 30°)=75°,∴∠BAF=90°-75°=15°,∴∠AFC=90°+15°=105°,故①正确;如解图,过点H作HK⊥AB于点K,则HK=AD,∵GH⊥AF,∴∠BAF+∠AGE=90°,又∵∠AGE+∠KHG=90°,∴∠BAF=∠KHG,在△ABF和△HKG中,∠BAF=∠KHGHK=AB∠B=∠HKG,∴△ABF≌△HKG(ASA),∴AF=GH,∵△CDE为正三角形,∴点E在CD的垂直平分线上,根据平行线分线段成比例定理,点E是AF的中点,∴AF=2EF,∴GH=2EF,故②正确;∵GH⊥AF,∠DEA=75°,∴∠DEH=90°-75°=15°,K∴∠CEH=60°-15°=45°,∴∠CEF=90°-45°=45°,过点F作FM⊥CE于M,过点H作HN⊥CE于N,则MF=EM,NH=EN,∵△CDE是等边三角形,∴∠DCE=60°,∴∠ECF=90°-60°=30°,∴CM=3MF,NH=3CN,∴CE=3MF+MF=3CN+CN,∴MF=CN,∴CE=2EF+2EH,∴2CE=EF+EH,故③正确;AE EF2MF3==,故④错误.EH EH33CN?29. ②③【解析】逐项分析:①∵在⊙O中,AB是直径,点D 是⊙O上一点,点C是弧AD的中点,∴AC=CD≠BD,∴∠BAD≠∠ABC,所以①错误;②如解图①,连接OD,∵DG是⊙O的切线,∴OD⊥GD,∵OA=OD,∴∠OAD=∠ODA,∵∠ODA+∠GDP=90°,第9题解图①∠EAP+∠EPA=∠EAP+∠GPD=90°,∴∠GPD=∠EPA=∠GDP,∴GP=GD,所以②正确;③如解图②,补全⊙O,延长CE交⊙O于点F,∵弦CE⊥AB于点E,∴A为CF的中点,即AF=AC,又∵C为AD的中点,∴AC=CD,∴AF=CD,∴∠CAP=∠ACP,∴AP=CP.∵AB为⊙O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,所以③正确.综上可知,正确的结论是②③.10. ①②③④【解析】作NF⊥BC于N,如解图,∴∠FNE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCD=∠ADC=∠BAD=90°,AB=BC=CD=DA.∴NF=AB=CB.∵EF垂直平分BP,∴∠2=∠3,∠2+∠NEF=90°,∵∠1+∠NEF=90°,∴∠1=∠2,在△BCP和△FNE中,∠2=∠1,BC=FN,∠C=∠FNE,∴△BCP≌△FNE(ASA),∴BP=EF,故①正确;作BM⊥PG于M,∵GP⊥EP,∴BM∥EP,∠BMP=∠BMG=90°,∴∠3=∠5,∠BMP=∠C.∴∠2=∠5,在△BPC和△BPM中,∠C=∠BMP,∠2=∠5,BP=BP,∴△BPC≌△BPM(AAS),∴BC=AB=BM,∴以BA为半径的⊙B与GP相切,故②正确;在Rt△BMG和Rt△BAG中,BG=BG,BM=AB,∴Rt△BMG≌Rt△BAG(HL),∴∠6=∠7.∵∠2+∠5+∠6+∠7=90°,∴2∠5+2∠6=90°,∴∠5+∠6=45°,即∠PBG=45°.∴∠8=45°.∴∠FHG=45°,故③正确;当G为AD的中点时,设AG=GD=x,CP=y,则GM=x,PM=y,PD=2x-y,在Rt△PGD中,由勾股定理,得(x+y)2=x2+(2x-y)2,∴y=23x,即CP=23x,∴PD=2x-23x=43x,∴DP=2CP,故④正确.∴正确的结论有:①②③④.11. ①④⑤【解析】如解图,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN.∴△ABN为等边三角形.∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=60°÷2=30°,∴AM=AB·tan30°=2×33=233,即结论②不正确;∵EF∥BC,QN是△MBG的中位线,∴QN=1 2BG;∵BG=BM=AB÷cos∠ABM=2÷32=433,∴QN=1 2×433=233,即结论③不正确;∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM-∠MBN=90°-30°=60°,∴∠MBG=∠ABG-∠ABM=90°-30°=60°,∴∠BGM =180°-60°-60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,即结论④正确;∵△BMG是等边三角形,点N是MG的中点,∴BN⊥MG,∴BN=BG·sin60°=43×23=2,当P与Q重合时,PN+PH的值最小,∵P 是BM的中点,H是BN的中点,∴PH∥MG,∵MG⊥BN,∴PH ⊥BN ,又∵PE ⊥AB ,∴PH=PE ,∴PN+PH=PN+PE=EN ,∵EN ===PN+PHPN+PH的最小值是,即结论⑤正确.。
人教版七年级数学下册第八章二元一次方程组单元综合测试卷含答案一、选择题 (本大题共 10小题,,共 30 分 )1.已知方程 2 m6x |n |1n2y m 2 80是二元一次方程,则m+n 的值()A.1B. 2C.-3D.32.用代入法解方程组2y- 3x= 1,() x=y- 1,下边的变形正确的选项是A . 2y- 3y+ 3= 1B. 2y- 3y- 3= 1C. 2y- 3y + 1= 1D .2y- 3y- 1= 13.以下方程组,解为x1y 是().2A.x y 1B.x y 1x y 3x y3 3x y53x y5C.y1D.53x3x y4.已知 x,y 知足方程组x m4y5,则 x, y 的关系式是()mA. x+y=1B. x+y=- 1C. x+y=9D.x+y=9 5.依据图中供给的信息,可知一个杯子的价钱是()A.51 元 B. 35 元C.8 元D.7.5 元6.已知x2ax by5b 的值是(y是方程组bx ay的解,则 a)11A. -1B. 2C.3D. 47.在等式y x2mx n 中,当x2时, y5; x3时, y 5.则 x3时,y()。
A.23B.-13C.-5D.138.方程组2x y 53x 2 y ,消去 y 后获得的方程是()8A. 3x4x100B.3x4x58C.3x2(52x)8D.3x4x1089.已知是方程组的解,则a+b+c 的值是()A.3B. 2C. 1D.没法确立10.甲、乙两人练习跑步,假如乙先跑10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为x 米/ 秒,乙的速度为y 米 / 秒,可列方程组正确的选项是()5x5y10B.5x5y105x+105y5x 5 y10A.4y 2 y4x 2 y C.4x 4 y2D.2 4 y4x4y4x 二、填空题 (本大题共 6 小题,每题 4 分,共24 分)11.写出一个解为x1的二元一次方程组 __________.y212.方程4 xy7中,用含 x 的式子表示y,则y=13.若 2x 5a b+41- 2b2a是同类项,则 a+b=________.y与- x ya1是对于 a, b 的二元一次方程 ax+by- b=7 的一个解,则代数式2x- 4y+1?的14.若b2值是 _________.15.在△ ABC中,∠ B-∠ A= 45°,∠ A+∠ B= 135 °.则∠ C=____16.今年甲和乙的年纪和为24, 6 年后甲的年纪就是乙的年纪的 2 倍,则甲今年的年纪是_________岁 .三、解答题 (本大题共 6 小题,,共 66 分 )17.解方程组(每题 5 分,共 20 分)4x3y5( 2)3x 5 y10(1)y22x 3 y62x人教版七年级数学下册第八章二元一次方程组复习检测试题一、选择题。
第20章数据的分析单元综合检测(五)一、选择题(每小题4分,共28分)1.(岳阳中考)某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13B.12,14C.13,14D.13,162.(天水中考)一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23.四个数据:8,10,x,10的平均数与中位数相等,则x等于( )A.8B.10C.12D.8或124.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5人B.6人C.4人D.7人5.(雅安中考)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,36.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一50 84 80 186二50 85 80 161某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③7.某校A,B两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:队员1号2号3号4号5号A队176 175 174 171 174B队170 173 171 174 182设两队队员身高的平均数分别为,,身高的方差分别为,,则正确的选项是( ) A.=,> B.<,<C.>,>D.=,<二、填空题(每小题5分,共25分)8.(重庆中考)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:h) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是h.9.(营口中考)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为=0.56,=0.45,=0.61,则三人中射击成绩最稳定的是.10.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为分.11.某班同学进行知识竞赛,将所得成绩进行整理后,如图,竞赛成绩的平均数为分.12.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 种玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(11分)某市2018年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,通讯员在将成绩表送组委会时不慎用墨水将成绩表污染掉一部分(如下表),但他记得这组运动员的成绩的众数是 1.75m,表中每个成绩都至少有一名运动员.根据这些信息,计算这17名运动员的平均跳高成绩(精确到0.01m).14.(11分)(扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.15.(12分)(威海中考)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩(分) 85 92 84 90 84 80面试成绩(分) 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.16.(13分)(黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数、众数和中位数.(3)根据样本数据,估计黄冈市市直机关500户家庭中月平均用水量不超过12t的约有多少户?答案解析1.【解析】选B.在这组数据中,12出现了2次,出现的次数最多,因此,这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,因此这组数据的中位数是14.2.【解析】选B.从大到小排列此数据为:3,2,2,2,1;数据2出现了三次,次数最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.4,即中位数是2,众数是2,方差为0.4.3.【解析】选D.①x最小时,数据为x,8,10,10,中位数是(8+10)÷2=9,则(8+10+x+10)÷4=9,所以x=8;②x最大时,数据为8,10,10,x,中位数是(10+10)÷2=10,则(8+10+x+10)÷4=10,所以x=12;③当8≤x≤10时,中位数是(x+10)÷2,则(x+10)÷2=(8+10+x+10)÷4,可求得x=8.故选D.4.【解析】选A.设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得x=5.5.【解析】选A.∵一组数据2,4,x,2,4,7的众数是2,∴x=2,∴中位数为3,==3.5.6.【解析】选A.由平均数都是80知①正确;由二班的中位数大于一班的中位数知②正确;一班的方差大,其成绩相对不稳定,故③不正确.7.【解析】选D.∵=(176+175+174+171+174)=174(cm),=(170+173+171+174+182)=174(cm).=[(176-174)2+(175-174)2+(171-174)2+(174-174)2+(174-174)2]=2.8(cm2);=[(170-174)2+(173-174)2+(174-174)2+(171-174)2+(182-174)2]=18(cm2),∴=,<.8.【解析】由题意,可得这10名学生周末利用网络进行学习的平均时间是:(4×2+3×4+2×2+1×1+0×1)=2.5(h).答案:2.59.【解析】∵=0.56,=0.45,=0.61,∴<<,∴三人中射击成绩最稳定的是乙.答案:乙10.【解析】本学期数学总评分=84×30%+80×30%+90×40%=85.2(分).答案:85.211.【解析】==74(分).答案:7412.【解析】两种玉米的平均数都是450 kg,而=100,=200,所以甲种玉米的产量比较稳定.答案:甲13.【解析】设成绩是1.75m的有x人,1.80m的有y人,由题意得x+y=5,又x>3,y≠0,所以x=4,y=1.=≈1.69(m).答:这17名运动员的平均跳高成绩约是1.69m.14.【解析】(1)从条形统计图上看,甲组的成绩分别为3,6,6,6,6,6,7,8,9,10,因此甲组中位数为6,乙组成绩分别为5,5,6,7,7,8,8,8,8,9,平均分为×(5×2+6+7×2+8×4+9)=7.1(分),故填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,甲组的中位数是6,乙组的中位数是7.5,小明是7分,超过甲组的中位数,低于乙组的中位数,所以小明应该是甲组的学生.答案:甲(3)从统计图和表格中可以看出:乙组的平均分、中位数都高于甲组,方差小于甲组,且集中在中上游,所以支持乙组同学的观点,即乙组成绩好于甲组.15.【解析】(1)先将六位选手的笔试成绩按照大小顺序进行排序,位于第三位和第四位选手的平均分为中位数,笔试成绩出现次数最多的为众数.答案:84.5 84(2)设笔试成绩和面试成绩所占的百分比分别为x,y,由题意得解这个方程组得∴笔试成绩和面试成绩所占的百分比分别为40%和60%.(3)2号选手的综合成绩=92×0.4+88×0.6=89.6(分),3号选手的综合成绩=84×0.4+86×0.6=85.2(分),4号选手的综合成绩=90×0.4+90×0.6=90(分),5号选手的综合成绩=84×0.4+80×0.6=81.6(分),6号选手的综合成绩=80×0.4+85×0.6=83(分),∴综合成绩最高的两名选手是4号和2号.16.【解析】(1)100户家庭中月平均用水量为11t的家庭数量为:100-(20+10+20+10)=40(户).条形图补充完整如下:(2)平均数:==11.6.中位数:11.众数:11.(3)×500=350(户).答:估计不超过12t的用户约有350户.。
2018年人教版八年级数学下期末复习试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年人教版八年级数学下期末复习试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年人教版八年级数学下期末复习试题(含答案)(word版可编辑修改)的全部内容。
2018年人教版八年级数学下期末复习试题(含答案)人教版数学八年级下册期末复习试题时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分;每小题给出的四个选项中,只有一个选项是符合题意的)1.下列二次根式中,最简二次根式是( ) A. B。
C. D. 2.若=6-x,则x的取值范围是( ) A.x〈6 B.x≤6 C.x≥6 D.x≠6 3.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是( )A.16 B.18 C.19 D.21 第3题第4题 4.历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形的直角边AE,EB 在同一条直线上.证明中用到的面积相等关系是( ) A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDE C.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD 5.在《数据的分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94。
这组数据的中位数和众数分别是( ) A.94,94 B.94,95 C.93,95 D.93,96 6.在平面直角坐标系中,直线l经过第一、二、三象限.若点(0,a),(-1,b),(-3,c)都在直线l上,则下列判断正确的是( ) A.a<b<c B.b〈c〈a C.c〈b<a D.c〈a〈b 7.当k<0时,一次函数y=kx-k的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.如图,在正方形A BCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF= 3,BE=DF=8,则EF的长是( ) A.52 B.53 C.5 D.6 第8题第 9题 9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( ) A.乙车前4 s行驶的路程为48 m B.在0至8 s内甲的速度每秒增加4 m/s C.两车到第3s时行驶的路程相等 D.在4至8 s内甲的速度都大于乙的速度 10.如图,在四边形ABCD 中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,AE平分∠BAC,AO=CO,AD=DC =2,下面结论:①AC=2AB;②AB=3;③S△ADC=2S△ABE;④BO⊥AE。
单元检测八
(时间:90分钟总分:120分)
一、选择题(每小题4分,共40分)
1.下列说法中,正确的是()
A.不可能事件发生的概率为0
B.随机事件发生的概率为错误!未找到引用源。
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
2.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表所示.则这10
A.14 t,13.5 t
B.14 t,13 t
C.14 t,14 t
D.14 t,10.5 t
:14 t出现的次数最多,中位数应是第5个数、第6个数的平均数,是14 t,故选C.
3.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()
A.16
B.14
C.4
D.6
A型血的人数是40×0.4=16,故选A.
4某特警部队为了选拔“神枪手”,举行了1 000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21.则下列说法中,正确的是()
A.甲的成绩比乙的成绩稳定
B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同
D.无法确定谁的成绩更稳定
,方差越小越稳定.
0.21<0.28,∴乙的成绩比甲的成绩稳定.故选B.
5.下列说法正确的是()
A.一个游戏的中奖概率是错误!未找到引用源。
,则做10次这样的游戏一定会中奖
B.为了解全国中学生的心理健康状况,应该采用全面调查的方式
C.一组数据6,8,7,8,8,9,10的众数和中位数都是8
D.若甲组数据的方差错误!未找到引用源。
=0.01,乙组数据的方差错误!未找到引用源。
=0.1,则乙组数据比甲组数据稳定
错误!未找到引用源。
,并不能说明做10次这样的游戏一定会中奖,排除A;为了解全国中学生的心理健康状况,应采用抽样调查的方式,排除B;一组数据的方差越小,说明这组数据越稳定,排除D.故选C.
6.有一组数据如下:3,a,4,6,7,如果它们的平均数是5,那么这组数据的方差是()
A.10
B.错误!未找到引用源。
C.2
D.错误!未找到引用源。
错误!未找到引用源。
(3+a+4+6+7)=5,解得a=5,
则方差为s2=错误!未找到引用源。
[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2.
7在一个不透明的袋中,红色、黑色、白色的小球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()
A.6
B.16
C.18
D.24
40×(1-15%-45%)=16.
8.
如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,能作4个,其中△A1B1O,△A2B2O是等腰三角形,共2个,所以所求的概率为错误!未找到引用源。
.故选D.
9.下表是某校合唱团成员的年龄分布:
对于不同的x,下列关于年龄的统计量不会发生改变的是() A.平均数、中位数 B.众数、中位数
C.平均数、方差
D.中位数、方差
10
如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
2a,则它的内切圆的直径等于2a,则这个圆的内接正方形的对角线长为2,其边长等于错误!未找到引用源。
a,面积为2a2.而大正方形的面积等于4a2,所以小球停在小正方形内部区域的概率P=错误!未找到引用源。
.
二、填空题(每小题4分,共24分)
11.若一组数据23,27,20,x,18,12的中位数是21,则x=.
错误!未找到引用源。
=21,解得x=22.
12在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图的统计图反映了不同捐款数的人数比例,则该班同学平均每人捐款元.
=5×8%+10×20%+20×44%+50×16%+100×12%=31.2.
.2
13某校在一次考试中,甲、乙两班学生的数学成绩统计如下:
请根据表格提供的信息回答下列问题:
(1)甲班学生的数学成绩众数为分,乙班学生的数学成绩众数为分.
(2)甲班的中位数是分,乙班的中位数是分.
(3)若成绩在90分以上(包括90分)为优秀,则成绩较好的是班.
70(2)8080(3)乙
14如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.
15.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10.分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率
16在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,错误!未找到引用源。
的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为.
P的坐标为(1,1),错误!未找到引用源。
共5种结果,点P落在△AOB内的有(1,1),错误!未找到引用源。
三种情况,所以P=错误!未找到引用源。
.
三、解答题(56分)
17.(8分)学习了统计知识后,班主任老师让班长就本班同学的上学方式进行了一次调查统计,如图
①和图②是班长通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
图①
图②
(1)在扇形统计图中,计算“步行”部分所对圆心角的度数;
(2)该班共有多少名学生?
(3)在图①中,将表示乘车的空白处补充完整.
-20%-50%)×360°=108°.
(2)20÷50%=40(人).
(3)乘车人数=40-20-12=8,在条形统计图中画出即可,如图:
18.(8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图:
(1)
(2)从平均数和方差相结合看,分析谁的成绩好些.
甲平均数为6,方差为0.4,乙的众数为6.
(2)甲、乙两人射靶成绩的平均数都是6,但是甲的方差比乙小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.
19.(8分)某中学举行校园歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分为100分)如图.。