2014-2015学年高三数学寒假作业(10)(Word版,含答案)
- 格式:doc
- 大小:439.00 KB
- 文档页数:7
高三数学寒假作业(综合)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。
) 1.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥-≥5231y x xy x ,则y x z +=2的最大值为( )A .1B .2C .3D .42.如下框图,当126,9,x x ==8.5p =时,3x 等于( )A. 7B. 8 C 。
10 D 。
113。
下列结论错误的是( )A .命题“若p ,则q "与命题“若,q ⌝则p ⌝”互为逆否命题;B .命题:[0,1],1xp x e ∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为真;C .“若22,ambm <则a b <”的逆命题为真命题;D .若q p ∨为假命题,则p 、q 均为假命题.4. 满足X⊆}1{}5,4,3,2,1{的集合X 有 ( )A . 15个B .16个C .18个D .31个5。
集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( )A.{}a |0a 6≤≤B.{}|2,a a ≤≥或a 4 C 。
{}|0,6a a ≤≥或a D 。
{}|24a a ≤≤6.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ) A .1y x=- B .2lg(4)y x=- C . ||e x y = D .cos y x =7。
已知{na }是首项为1的等比数列,nS 是{na }的前n 项和,且369SS =。
则数列n1a⎧⎫⎨⎬⎩⎭的前5项和为( )A.158或 5B.3116或 5 C.3116D 。
贵州2013-2014学年高三寒假作业(10)数学 Word 版含答案.doc第I 卷(选择题)一、选择题(题型注释)1.已知全集U=R ,集合A=)3,1[-,),4()1,(+∞-∞= B C U ,则=B A (A )(-1,1) (B )(-1,3) (C ))3,1[ (D )]4,1[2.下列函数中哪个与函数y x =相等( )A .2y = B .y = C .y =.2x y x=3.设集合2{|6<0}M x x x =--,2{|=log (1)}N x y x =-,则N M 等于( )A .(1,2)B .(1,2)-C .(1,3)D .(1,3)-4.(82展开式中不含..4x 项的系数的和为( )(A )-1 (B )0 (C )1 (D )25.已知向量(2,1)a =r ,(1,)b k =r,且a r 与b r 的夹角为锐角,则实数k 的取值范围是( )(A )()2,-+∞(B )11(2,)(,)22-+∞ (C )(,2)-∞- (D )(2,2)-6.已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )(A )向右平移π6个长度单位 (B )向右平移π12个长度单位(C )向左平移π6个长度单位 (D )向左平移π12个长度单位7.设圆锥曲线C 的两个焦点分别为1F 、2F ,若曲线C 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线C 的离心率等于( ) (A )2332或 (B )223或(C )122或(D )1322或8.等差数列}{n a 的前n 项和为n S ,已知6,835==S a ,则9a =( )A .8B .12C .16D .249.i 是虚数单位,则复数2=1iz i -在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.过点(2,2)P -且与曲线33y x x =-相切的直线方程是( )(A )916y x =-+ (B )920y x =- (C )2y =- (D )916y x =-+或2y =-第II 卷(非选择题)二、填空题(题型注释)11.若函数f (x )=log a x (0<a <1)在区间a,2a 上的最大值是最小值的3倍,则a 的值为________.12.已知1弧度的圆心角所对的弦长是2,这个圆心角所对的弧长是________. 13.7log 203log lg25lg47(9.8)+++-=14.20世纪30年代,里克特(C .F .Richter )制定了一种表明地震能量大小的尺度,就是使用地震仪测量地震能量的等级,地震能量越大,地震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).假设在一次地震中,一个距离震中100km 的测震仪记录的最大振幅是20,此时标准地震的振幅为0.001,则此次地震的震级为 (精确到0.1,已知lg 20.3010≈).三、解答题(题型注释)15.【选修4—5:不等式选讲】设函数()|2||1|f x x x =+-- (I )画出函数()y f x =的图象;(II )若关于x 的不等式()+4|12|f x m ≥-有解,求实数m 的取值范围.16.几何证明选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B 、C ,APC ∠的平分线分别交AB 、AC 于点D 、E ,(Ⅰ)证明:AED ADE ∠=∠; (Ⅱ)若AC=AP ,求PCPA的值。
第6题图克频率/ 组距0.150 0.125 0.100 0.075 0.05096 98 100 102 104 1062015届高三数学寒假作业(10)(做几套二模题!)一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.方程组25038x y x y --=⎧⎨+=⎩的增广矩阵为 .2.已知集合{}2|4,M x x x =<∈R ,{}2|log 0N x x =>,则集合M N =I .3. 若12122,23i Z a i Z =+=,且21z z为实数,则实数a 的值为 . 4. 用二分法研究方程3310x x +-=的近似解0x x =,借助计算器经过若干次运算得下表: 运算次数 1 … 4 5 6 …解的范围(0,0.5)…(0.3125,0.375)(0.3125,0.34375)(0.3125,0.328125)…若精确到0.1,至少运算n 次,则0n x +的值为 .5.已知12e e r r 、是夹角为2π的两个单位向量,向量12122,,a e e b ke e =-=+r r r r r r 若//a b r r ,则实数k 的值为 .6.某工厂对一批产品进行抽样检测,根据抽样检测后的产品 净重(单位:克)数据绘制的频率分布直方图如图所示, 已知产品净重的范围是区间[]96,106,样本中净重在区间[)96100,的产品个数是24,则样本中净重在区间[)100,104 的产品个数是 . 7. 一个圆锥的底面积为4π,且该圆锥的母线与底面所成的角为3π,则该圆锥的侧面积为 .9. 设双曲线226x y -=的左右顶点分别为1A 、2A ,P 为双曲线右支上一点,且位于第一象限,直线1PA 、2PA 的斜率分别为1k 、2k ,则12k k ⋅的值为 .10. 设ABC ∆的三个内角A B C 、、所对的边长依次为a b c 、、,若ABC ∆的面积为S ,且22()S a b c =--,则sin 1cos AA=- .BACD O11. 已知随机变量ξ所有的取值为1,2,3,对应的概率依次为121,,p p p ,若随机变量ξ的方差12ξ=D ,则12+p p 的值是 . 12. 公差为d ,各项均为正整数的等差数列{}n a 中,若11,73n a a ==,则n d +的最小值等于 .13. 已知ABC ∆的外接圆的圆心为O ,6,7,8,AC BC AB ===则AO BC ⋅=uuu r uu u r.二. 选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.二项式61()x x-展开式中4x 的系数为 ( )(A )15. (B )15-. (C )6. (D )6-.16.在ABC ∆中,“0AB BC ⋅>uu u r uu u r”是“ABC ∆是钝角三角形”的 ( )(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件 17.设函数()|sin |cos 2,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,则函数()f x 的最小值是 ( ) (A )1-. (B )0. (C )12. (D )98.三. 解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号19.(本题满分12分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.如图,在半径为20cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上. (1)请你在下列两个小题中选择一题作答......即可: ①设BOC θ∠=,矩形ABCD 的面积为()S g θ=,求()g θ的表达式,并写出θ的范围. ②设(cm)BC x =,矩形ABCD 的面积为()S f x =,求()f x 的表达式,并写出x 的范围. (2)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积.ABC E C 1A 1B 1F20.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分.如图,在直三棱柱111ABC A B C -中,2BAC π∠=,2AB AC ==,16AA =,点E F 、分别在棱11AA CC 、上,且12AE C F ==.(1)求四棱锥B AEFC -的体积;(2)求BEF ∆所在半平面与ABC ∆所在半平面所成二面角θ的余弦值.21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.已知椭圆E 的中心在坐标原点O ,焦点在坐标轴上,且经过(2,1)(22,0)M N 、两点,P 是E 上的动点.(1)求OP 的最大值;(2)若平行于OM 的直线l 在y 轴上的截距为(0)b b <,直线l 交椭圆E 于两个不同点A B 、,求证:直线MA 与直线MB 的倾斜角互补.22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知()||,=-+∈R f x x x a b x .(1)当1,0a b ==时,判断()f x 的奇偶性,并说明理由; (2)当1,1a b ==时,若5(2)4xf =,求x 的值;yA BCE C 1 A 1B 1Fzx2015届高三数学寒假作业(10)(请好好做这一套!)一、(第1题至第14题)1.125318-⎛⎫⎪⎝⎭; 2.()1,2; 3.32-; 4.5.3; 5.12-; 6.44; 7.8π; 8.8; 9. 1; 10. 4; 11.34; 12.18; 13.14-;14.832014.二、(第15题至第18题) 15.D ; 16.A ; 17.B ; 18.D . 三、(第19题至第23题)19. [解]①由BOC θ∠=,得20cos ,20sin OB BC θθ==,其中0,2πθ⎛⎫∈ ⎪⎝⎭2分 所以()2800sin cos 400sin 2S g AB BC OB BC θθθθ==⋅=⋅== 即()400sin 2g θθ=,0,2πθ⎛⎫∈ ⎪⎝⎭………………………………4分 ②连接OC ,则2400OB x =-(020)x << ……………………2分 所以2()2400S f x AB BC x x ==⋅=-(020)x <<即2()2400f x x x =-(020)x <<. ……………………4分 (2)①由()400sin 2S g θθ== 得当sin 21θ=即当4πθ=时,S 取最大值2400cm .…… 4分此时20sin102cm 4BC π==,当BC 取102cm 时,矩形ABCD 的面积最大,最大面积为2400cm .… 2分②22222()24002(400)(400)400f x x x x x x x =-=-≤+-=,当且仅当22400x x =-,即102x =时,S 取最大值2400cm .……4分, 当BC 取102cm 时,矩形ABCD 的面积最大,最大面积为2400cm .… 2分 20.[解](1)B AEFCV -=111(42)224332AEFC S AB =⋅=⋅⋅+⨯⨯=……7分(2)建立如图所示的直角坐标系,则)0,0,0(A ,(0,2,0)B ,(0,0,2)E ,(2,0,4)F ,(2,0,2)EF =,(0,2,2)EB =- ……………………2分设平面BEF 的法向量为(,,)n x y z =,则22011,1220n E F x z z x y n E F y z ⎧⋅=+=⎪⇒==-=⎨⋅=-=⎪⎩取得,所以(1,1,1)n =- ……………………………2分平面ABC 的法向量为1(0,0,1)n =,则1113cos 33n n n n θ⋅===⋅ 所以BEF ∆所在半平面与ABC ∆所在半平面所成二面角θ的余弦值为33.…3分 21. [解](1)设椭圆E 的方程为221(0,0,)mx ny m n m n +=>>≠将(2,1),(22,0)M N 代入椭圆E 的方程,得4181m n m +=⎧⎨=⎩ ………2分解得11,82m n ==,所以椭圆E 的方程为22182x y += …………2分 设点P 的坐标为00,)x y (,则2220OP x y =+. 又00(,)P x y 是E 上的动点,所以2200182x y +=,得220084x y =-,代入上式得 222200083OP x y y =+=-,02,2y ⎡⎤∈-⎣⎦故00y =时,max OP =22.OP 的最大值为22. ………………2分 (2)因为直线l 平行于OM ,且在y 轴上的截距为b ,又12OM k =,所以直线l 的方程为12y x b =+. 由2212182y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 得222240x bx b ++-= ………………2分 设11(,)A x y 、22(,)B x y ,则212122,24x x b x x b +=-=-.又1111,2y k x -=-2221,2y k x -=- 故1212121122y y k k x x --+=+--122112(1)(2)(1)(2)(2)(2)y x y x x x --+--=--.……… 2分又112211,22y x b y x b =+=+,所以上式分子122111(1)(2)(1)(2)22x b x x b x =+--++-- ………2分 21212(2)()4(1)24(2)(2)4(1)0x x b x x b b b b b =+-+--=-+----= 故120k k +=.所以直线MA 与直线MB 的倾斜角互补.…………………………………2分22. [解](1)当1,0a b ==时,()|1|f x x x =-既不是奇函数也不是偶函数.……2分 ∵(1)2,(1)0f f -=-=,∴(1)(1),(1)(1)f f f f -≠-≠-所以()f x 既不是奇函数,也不是偶函数.………………………………………2分 (2)当1,1a b ==时,()|1|1f x x x =-+, 由5(2)4xf =得52|21|14x x-+= ……………………………2分 即2211(2)204x x x ⎧≥⎪⎨--=⎪⎩或2211(2)204x x x⎧<⎪⎨-+=⎪⎩ ………………………2分 解得12121222222xx x +-===或(舍),或 所以2212log log (12)12x +==+-或1x =-. ………………2分。
2015年2月高三文数寒假作业一三角函数1、【2014高考辽宁卷文第11题】将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增2、【2014高考全国1卷文第7题】在函数①,②,③,④中,最小正周期为的所有函数为()A.①②③B. ①③④C. ②④D. ①③3、【2014高考全国1卷文第2题】若,则()A. B. C. D.4、【2014高考四川卷文第8题】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是,则河流的宽度BC等于()A.B.C.D.5、【2014高考大纲卷文第2题】已知角的终边经过点(-4,3),则cos=()A. B. C. - D. -6、【2014高考安徽卷文第7题】若将函数的图像向右平移个单位,所得图像关于轴对称,则的最小正值是()A. B. C. D.7、【2014高考广东卷文第7题】在中,角、、所对应的变分别为、、,则是的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8、【2014高考江西卷文第5题】在中,内角A,B,C所对应的边分别为,若,则的值为()9、【2014高考山东卷文第12题】函数的最小正周期为 .10、【2014高考陕西卷文第13题】设,向量,若,则______.11、【2014高考江苏卷第5题】已知函数与函数,它们的图像有一个横坐标为的交点,则的值是 .12、【2014高考江苏卷第14题】若的内角满足,则的最小值是 .13、【2014高考福建卷文第18题】已知函数.(1)求的值;(2)求函数的最小正周期及单调递增区间.14、【2014高考广东卷文第16题】已知函数,,且. (1)求的值;(2)若,,求.15、【2014高考辽宁文第18题】在中,内角A,B,C的对边a,b,c,且,已知,,,求:(1)a和c的值;(2)的值.16、【2014高考山东文第17题】△中,角所对的边分别为,已知=3,=,,(1)求得值;(2)求△的面积.17、【2014高考陕西文第16题】的内角所对的边分别为.(1)若成等差数列,证明:;(2)若成等比数列,且,求的值.18、【2014高考浙江文第18题】在中,内角,,所对的边分别为,已知(1)求角的大小;(2)已知,的面积为6,求边长的值.19、【2014高考重庆文第18题】在中,内角所对的边分别为,且(Ⅰ)若,求的值;(Ⅱ)若,且的面积,求和的值20、【2014高考上海文第21题】如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米,设在同一水平面上,从和看的仰角分别为.(1)设计中是铅垂方向,若要求,问的长至多为多少(结果精确到0.01米)?(2)施工完成后.与铅垂方向有偏差,现在实测得求的长(结果精确到0.01米)?寒假作业二 数列1 .(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模))已知数列{}n a 满足1112,n n n a a a a +-==,n S 是其前n 项和,则2013S =( )A .20112B .20132C .20152D .201722.(2013年红河州高中毕业生复习统一检测)在等差数列{}n a 中,若1a 、0161022013=+-x x a 为方程的两根,则a 2+a 1007+a 2012=( )A .10B .15C .20D .403 .(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考)已知数列{n a }满足)(log log 1133++∈=+N n a a n n ,且 2469a a a ++=,则15793log ()a a a ++的值是[来源:学,科,网]( )A .15B .15-C .5D .5-[来源:学科网]4.(河南省开封市2013届高三第四次模拟)已知数列{n a }满足n n n n a a a S b a a a n a a a +++===≥-=-+ 2121111,,),2(设,则下列结论正确的是( )A .a S b a a 50,100100=-=B .)(50,100100b a S b a a -=-=C .a S b a 50,100100=-=D .a b S a a -==100100,[来源:5.(山西省太原市第五中学2013届高三4月月考)数列{}n a 的首项为3,{}n b 为等差数列且*1()n n n b a a n N +=-∈, 若3102,12b b =-=,则8a =( )A .0B .3C .8D .116 .(山西省山大附中2013届高三4月月考)已知函数)(x f 是定义在R 上的单调增函数且为奇函数,数列{}n a 是等差数列,1007>a ,则)()()()()(20132012321a f a f a f a f a f +++++ 的值( )A .恒为正数B .恒为负数C .恒为0D .可正可负7.(山西省太原市第五中学2013届高三4月月考)在等比数列{}n a 中,若t s r ,,是互不相等的正整数,则 有等式1=⋅⋅---r t s t s r s r t a a a 成立.类比上述性质,相应地,在等差数列{}n b 中,若t s r ,,是互不相等的正整数,则有等式________成立.8.(河北省衡水中学2013届高三第八次模拟考试)已知数列{n a )满足1111,(2)2(1)n n n n a a a a a n n n --=-=≥-,则该数列的通项公式n a =______ 9.(2013年红河州高中毕业生复习统一检测)若数列}{n a 的前n 项和为n S ,31=a ,点()1,+n n S S 在直线x y 3=上(+∈N n ),则n a =__________10. (吉林省长春市2014届高三毕业班第二次调研)已知数列{}n a 中,11=a ,2n n a n a =-,112+=+n n a a ,则+++321a a a ……100a += .11.(黑龙江省大庆市2013届高三第二次模拟)已知函数()f x 是定义在R 上不恒为0的函数,且对于任意的实数,a b 满足(2)2f =,()()()f ab af b bf a =+,)(2)2(*N n f a n n n ∈=,)()2(*N n nf b n n ∈=,给出下列命题:①(0)(1)f f =;②()f x 为奇函数;③数列{}n a 为等差数列;④数列{}n b 为等比数列.其中正确的命题是___________.(写出所有正确命题的序号) 12. (2014年长春市高中毕业班第一次调研】已知数列,圆,圆,若圆C 2平分圆C 1的周长,则的所有项的和为 .13. (2014年长春市高中毕业班第一次调研)设等差数列{}n a 的前n 项和为n S , 且1523,27a S S =-=,(1).求数列{}n a 的通项公式;(2).若12,22(1),n n n S a S +++成等比数列,求正整数n 的值 .14.(黑龙江省哈六中2013届高三第二次模拟考试数学(理)试题 word 版 )已知等比数列{}n a 是递增数列,,3252=a a 1243=+a a ,数列{}n b 满足11=b ,且n n n a b b 221+=+(+∈N n )(1)证明:数列⎭⎬⎫⎩⎨⎧n n a b 是等差数列; (2)若对任意+∈N n ,不等式n n b b n λ≥++1)2(总成立,求实数λ的最大值.15.(山西省康杰中学2013届高三第二次模拟数学(理)试题)已知数列{}n a 的前n 项和n S ,满足*2(1)()n n n S a n N =+-∈.(Ⅰ)求数列{}n a 的前三项123,,a a a ; (Ⅱ)求证:数列2(1)3n n a ⎧⎫+-⎨⎬⎩⎭为等比数列,并求出{}n a 的通项公式.16.(吉林省吉林市2013届高三三模(期末)试题 )设等比数列{n a }的前n 项和为n S ,已知对任意的+∈N n ,点 (,)n n S ,均在函数2x y r =+的图像上.(Ⅰ)求r 的值; (Ⅱ)记n n a a a b 2log 2log 2log 22212+++= 求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和n T .17.(河南省六市2013届高三第二次联考数学)在公差不为0的等差数列{}n a 中,148,,a a a 成等比数列.(1)已知数列{}n a 的前10项和为45,求数列{}n a 的通项公式;(2)若11n n n b a a +=,且数列{}n b 的前n 项和为n T ,若1199nT n =-+,求数列{}n a 的公差.18.(2013年高考广东卷(文))设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.19.(河南省开封市2013届高三第四次模拟)已知公差不为0的等差数列{na }的首项42111,1,1,2a a a a 且=成等比数列. (I)求数列{na }的通项公式;(Ⅱ)若数列}{n b 满足n n n a b b b b =++++-13221222 ,求数列{n nb }的前行项和n T .20.(2013年高考湖南(文))设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a •=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.寒假作业三 立体几何专题填空题:1.如图,在直四棱柱1111ABCD A B C D -中,点,E F 分别在11,AA CC 上,且134AE AA =,113CF CC =,点,A C 到BD 的距离之比为3:2,则三棱锥E BCD -和F ABD -的体积比E BCDF ABDV V --= .2.给出下列命题:(1)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; (3)若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,所有真命题的序号为__________.3.已知直线 ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒ ⊥m ;②α⊥β⇒ ∥m ;③ ∥m ⇒α⊥β;④ ⊥m ⇒α∥β 其中正确命题序号是 .4. 设l ,m 表示直线,α表示平面,m 是α内任意一条直线.则“l m ⊥”是“l α⊥”成立的条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个)5 .一个正三棱柱的三视图如右图所示,其俯视图为正三角形,则该三棱柱的体积是 ( )cm 3.6.如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的外接球的体积为_______.7.一个所有棱长均为1的正四棱锥的顶点与底面的四个顶点均在某个球的球面上,则此球的体积为( )A .23π B .23π C .2πD .68π 8. 四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD 且PA = 4,则PC 与底面ABCD 所成角的正切值为 . m 简答题:1.(2014广东)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF (2) 求三棱锥M-CDE 的体积2.(2014湖北)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .第20题图3. 已知在四棱锥P ABCD -中,//AD BC ,AD CD ⊥,22PA PD AD BC CD ====, ,E F 分别是,AD PC 的中点. (1) 求证AD PBE ⊥平面; (2) 求证//PA BEF 平面;(3) 若PB AD =,求二面角F BE C --的大小.4.如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为AC 中点.将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (I )在CD 上找一点F ,使//AD 平面EFB ;(II )求点C 到平面ABD 的距离.5. 如图,在四棱锥ABCD P -中,⊥PA 底面ABCD ,AD AB BC AD ⊥,∥,AC 与BD交于点O ,3=PA ,6,32,2===BC AB AD . (Ⅰ)证明:⊥BD 平面PAC ;(Ⅱ)求直线PO 与平面PAB 所成的角的正弦值ACD图2EBACD图1EABCDPO(第5题图)6. 如图,在三棱锥P ABC -中,点,E F 分别是棱,PC AC 的中点. (1)求证:PA //平面BEF ;(2)若平面PAB ⊥平面ABC ,PB BC ⊥,求证:BC PA ⊥.7.如图,在四棱柱1111D C B A ABCD -中,已知平面⊥C C AA 11平面,ABCD 且3===CA BC AB ,1==CD AD .(1)求证:;1AA BD ⊥(2)若E 为棱BC 的中点,求证://AE 平面11D DCC .8.CD 是正△ABC 的边AB 上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A-DC-B ,如图所示.(Ⅰ)试判断折叠后直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)若AC=2,求棱锥E-DFC 的体积;(Ⅲ)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出ACAP的值;如果不存在,请说明理由.9.如图,在四棱锥P ABCD-中,底面ABCD为矩形,PA PDC⊥平面.(1)求证90PDC∠=︒,并指出异面直线PA与CD所成角的大小;(2)在棱PD上是否存在一点E,使得//PB EAC平面?如果存在,求出此时三棱锥E PBC-与四棱锥P ABCD-的体积比;如果不存在,请说明理由.10. 如图,在四棱锥P ABCD-中,侧棱PA⊥底面ABCD,底面ABCD为矩形,E为PD 上一点,222AD AB AP===,2PE DE=.(I)若F为PE的中点,求证BF平面ACE;(II)求三棱锥P ACE-的体积.寒假作业四 极坐标与参数方程1、在极坐标系中,曲线1C 和2C 的方程分别为22cos sin ρθθ=和cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________.2、在平面直角坐标系xoy 中,已知直线l 的参数方程212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l与抛物线24y x =相交于AB 两点,求线段AB 的长.3、.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cosφy =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3)(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+|PD|2的取值范围。
2015届高三数学寒假作业本答案无忧考网为大家整理的2015届高三数学寒假作业本答案文章,供大家学习参考!更多最新信息请点击高三考试网一、选择题,每小题只有一项是正确的。
1.已知集合,则( RA)∩B = ( )A. B. C. D.2.R上的奇函数满足,当时,,则A. B. C. D.3.如果对于正数有,那么 ( )A.1B.10C.D.4.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列,则q=()A. 1或�B. 1C. �D. �25.已知2弧度的圆心角所对的弦长为2,那么,这个圆心角所对的弧长是 ()A.2B.sin 2C.2sin 1D.2sin 16.将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. y=sin(2x� )B. y=sin(2x� )C. y=sin( x� )D. y=sin( x� )7.如图,菱形的边长为, , 为的中点,若为菱形内任意一点(含边界),则的值为A. B. C. D.98.设是正数,且,,,则A. B.C. D.9.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的值为( )A. B. C. D.二、填空题10.若某程序框图如图所示,则该程序运行后输出的值是.11.已知α,β为平面,m,n为直线,下列命题:①若m∥n,n∥α,则m∥α; ②若m⊥α,m⊥β,则α∥β;③若α∩β=n,m∥α, m∥β,则m∥n; ④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的有▲ .(填写所有正确命题的序号)12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=2A,cosA= ,b=5,则△ABC的面积为.13.(5分)(2011•陕西)设f(x)= 若f(f(1))=1,则a=.三、计算题14.(本题满分14分)本大题共有2小题,第1小题7分,第2小题7分。
【原创】高三数学寒假作业(二)一、选择题,每小题只有一项是正确的。
1.设集合{}{}212,log 2A x x B x x =−≤=<,则A B ⋃=A. []1,3−B. [)1,4−C. (]0,3D. (),4−∞ 2.已知函数sin ,0,()(1),0,x x f x f x x π≤⎧=⎨−>⎩那么)32(f 的值为 A. 21− B. 23− C. 21 D. 23 3.已知函数f (x)=267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩ 则 f (0)+f (−1)= ( ) (A) 9 (B)7110 (C) 3 (D) 1110 4.已知函数()22x f x =−,则函数|()|y f x =的图像可能是………………………………..( )5.若互不相等的实数c b a ,,成等差数列,b a c ,,成等比数列,且103=++c b a ,则=a ( )A. 4B. 2C. -2D. -46.下列各式中值为的是( )A . sin45°cos15°+cos45°sin15°B . sin45°cos15°﹣cos45°sin15°C . cos75°cos30°+sin75°sin30°D .7.设实数x ,y 满足条件⎪⎩⎪⎨⎧≥≥≥+−≤−−0,00820104y x y x y x ,若目标函数z =ax +by(a >0,b >0)的最大值为12,则23a b +的最小值为( )8.已知函数()f x 满足1()()f x f x =, 当[]1,3x ∈时,()ln f x x =,若在区间1,33⎡⎤⎢⎥⎣⎦内,曲线()()g x f x ax =−与x 轴有三个不同的交点,则实数a 的取值范围是 ( )A.10,e ⎛⎫⎪⎝⎭ B.10,2e ⎛⎫ ⎪⎝⎭ C.ln 31,3e ⎡⎫⎪⎢⎣⎭ D.ln 31,32e ⎡⎫⎪⎢⎣⎭9.圆心在直线y =x 上,经过原点,且在x 轴上截得弦长为2的圆的方程为()A .(x -1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2D .(x -1)2+(y +1)2=或(x +1)2+(y -1)2=2二、填空题10.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是__________ .11.理:已知集合{}0,2>==x x y y M ,{})2lg(2x x y x N −==,则=N M I .12.已知等差数列{}n a 的前n 项和为n S ,且1533a a a +=,1014a =,则12S =13.抛物线241x y −=上的动点M 到两定点(0,-1)、(1,-3)的距离之和的最小值为 三、计算题14.(本小题满分13分)已知函数)12(log )(21−−=x ax x f (a 为常数).(1)若常数2a <且0a ≠,求()f x 的定义域;(2)若()f x 在区间(2,4)上是减函数,求a 的取值范围.15.(本小题满分12分)已知直三棱柱111C B A ABC −中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =1AA ,D 、E 、F 分别为A B 1、C C 1、BC 的中点.(1)求证:DE ∥平面ABC ;(2)求证:F B 1⊥平面AEF ;(3)求二面角F AE B −−1的余弦值.16.(本小题满分12分) 已知椭圆()2222:10x y C a b a b+=>>3,短轴端点到焦点的距离为2。
高三数学寒假作业满分150分,考试时间120分钟姓名____________ 班级_________学号__________一、填空题(每题4分,共56分): 1、若复数12429,69z i z i =+=+,其中i是虚数单位,则复数12()z z i -的实部为 .2、已知定义在R 上的函数()f x ,满足()22f =x 都有()()13f x f x +=-,则()2009f =_________.3、已知等差数列1885015na a a S ﹛﹜中,=,=,则 = . 4、在ABC ∆中,若1,BA BCAB AC AB AC BC BC⋅==+==,则_________5、已知全集{}2,1,0,1,2--=U ,集合⎭⎬⎫⎩⎨⎧∈-==Z n x n x x A ,,12,则A C U = . 6的化简结果是 __________7、在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择了3个点,刚好构成直角三角形的概率是 .8、已知向量a (23,5)=,-与向量15b=3,,2λ⎛⎫⎪⎝⎭ 平行,则λ=_______9、已知点M,直线(y k x =与椭圆1422=+yx 相交于A,B 两点,则∆ABM的周长为__________. 10、函数y=12x 2-㏑x 的单调递减区间为_________________。
11、满足约束条件22x y +≤的目标函数z y x =-的最小值是 12、若2sinsin (i)777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是_______________13、设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()913a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为_______.14、设a ,b ,c 是三条不同直线,α,β,γ是三个不同平面,给出下 列命题:①若αγ⊥,βγ⊥,则//αβ;②若a ,b 异面,a α⊂,b β⊂,//a β,//b α,则//αβ; ③若a αβ= ,b βγ= ,c γα= ,且//a b ,则//c β; ④若a ,b 为异面直线,//a α,//b α,c a ⊥,c b ⊥,则c α⊥. 其中正确的命题是 二、选择题(每题5分,共20分):15、若a b 、是任意实数,a b >且,则下列不等式成立..的是( ) A .22b a > B .1<a b C .0)lg(>-b a D .b a )31()31(< 16、在长方体ABCD-A 1B 1C 1D 1中,如果AB=BC=1,AA 1=2,那么A 到直线A 1C 的距离为 ( )(A )3 (B ) 2 (C )3(D ) 3 17、在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(12,,7;12,,12i j ==)则该矩阵元素能取到的不同数值的个数为( ) (A)18(B)28 (C)48(D)6318、设21F F 、分别为双曲线12222=-by a x (a>0,b>0)的左、右焦点,若双曲线的右支上存在一点P ,使021=⋅PF PF ,且21PF F ∆的三边长构成等差数列,则此双曲线的离心率为( )A.2B. 3C. 2D.5 三、解答题(本大题满分74分):19、(本题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且acosB 。
【原创】高三数学寒假作业(十)一、选择题,每小题只有一项是正确的。
1.已知集合A={2,0,1,4},{}2,2,2B k k R k A k A =∈-∈-∉,则集合B 中所有的元素之和为( )A.2B.-2.已知命题p :x ∈A B ,则非p 是A .x 不属于AB B .x 不属于A 或x 不属于BC .x 不属于A 且x 不属于BD .x ∈A B 3.已知函数)1(+=x f y 定义域是[]3,2-,则y f x =-()21的定义域是( ) A.[]-14, B.[]052, C.[]-55, D.]73[,- 4.在等差数列{a n }中,若,23=a ,85=a ,则9a 等于 ( )A .16B .18C .20D .225.已知函数()sin()1()4f x x x x R π=+-∈. 则函数()f x 在区间[,]44ππ-上的 最大值和最小值分别是A. , 最小值为1-B. , 最小值为C. 最大值为1, 最小值为1--D. 最大值为1, 最小值为1-6.平面向量(1,1)AB =-,(1,2)n =(1,2)n =,且3n AC ⋅=,则n BC ⋅= ( )A .2-B .2C .3D .47.已知点(,)P a b 与点(1,0)Q 在直线2310x y +-=的两侧,且0, 0a b >>, 则1a b -的取值范围是A .(,3)-∞-B .1(,0)3-C .(3,)+∞D .1(0,)38.在下列关于点P ,直线l 、m 与平面α、β的命题中,正确的是A. 若m α⊥,l m ⊥,则l ∥αB. 若αβ⊥,m =⋂βα,l P P ∈∈,α,且l m ⊥,则l β⊥C. 若l 、m 是异面直线,m α, m ∥β, l β, l ∥α,则α∥β.D. 若αβ⊥,且l β⊥,l m ⊥,则m α⊥9.已知A ,B ,P 是双曲线12222=-by a x 上不同的三点,且A ,B 的连线经过坐标原点,若直线PA ,PB 的斜率乘积32=⋅PB PA k k ,则该双曲线的离心率为( ) A .25 B. 26 C. 2 D. 315二、填空题10.已知函数212log (1)y x =-的单调递增区间为 .11.已知各项都是正数的等比数列{}n a 满足437371234++=+a a a a ,那么7837a a + 的最小值为12.下列命题:①若()f x 是定义在[—1,1]上的偶函数,且在[—1,0]上是增函数,[,]42ππθ∈,则(sin )(sin )f f θθ> ②若锐角,αβ满足cos sin ,.2παβαβ>+<则 ③若2()2cos 1,2x f x =-则()()f x f x π+=对x R ∈恒成立。
高三数学寒假作业(十)
一、选择题,每小题只有一项是正确的。
1.已知集合A={2,0,1,4},{}
2
,2,2B k k R k A k A =∈-∈-∉,则集合B 中所有的元素之
和为( )
A.2
B.-2.已知命题p :x ∈A B ,则非p 是
A .x 不属于A
B B .x 不属于A 或x 不属于B
C .x 不属于A 且x 不属于B
D .x ∈A B
3.已知函数)1(+=x f y 定义域是[]3,2-,则y f x =-()
21的定义域是( ) A.[]-
14, B.[]05
2
, C.[]-
55, D.]73[,- 4.在等差数列{a n }中,若,23=a ,85=a ,则9a 等于 ( ) A .16 B .18 C .20 D .22
5.已知函数()sin()1()4
f x x x x R π
=+-∈. 则函数()f x 在区间[,]44
ππ
-
上的
最大值和最小值分别是
A. 最小值为1-
B. 最小值为
C. 最大值为1, 最小值为1-
D. 最大值为1, 最小值为1-
6.平面向量(1,1)AB =-,(1,2)n =(1,2)n =,且3n AC ⋅=,则n BC ⋅= ( ) A .2- B .2 C .3 D .4
7.已知点(,)P a b 与点(1,0)Q 在直线2310x y +-=的两侧,且0, 0a b >>, 则1
a b
-的取值范围是
A .(,3)-∞-
B .1(,0)3-
C .(3,)+∞
D .1(0,)3
8.在下列关于点P ,直线l 、m 与平面α、β的命题中,正确的是
A. 若m α⊥,l m ⊥,则l ∥α
B. 若αβ⊥,m =⋂βα,l P P ∈∈,α,且l m ⊥,则l β⊥
C. 若l 、m 是异面直线,m
α, m ∥β, l β, l ∥α,则α∥
β. D. 若αβ⊥,且l β⊥,l m ⊥,则m α⊥
9.已知A ,B ,P 是双曲线122
22=-b
y a x 上不同的三点,且A ,B 的连线经过坐标原点,若直线
PA ,PB 的斜率乘积3
2
=
⋅PB PA k k ,则该双曲线的离心率为( ) A .
2
5 B.
26
C. 2
D.
3
15
二、填空题
10.已知函数212
log (1)y x =-的单调递增区间为 .
11.已知各项都是正数的等比数列{}n a 满足437371234++=+a a a a ,那么7837a a + 的最小值为
12.下列命题:①若()f x 是定义在[—1,1]上的偶函数,且在[—1,0]上是增函数,
[,]42
ππ
θ∈,
则(sin )(sin )f f θθ>
②若锐角,αβ满足cos sin ,.2
π
αβαβ>+<则
③若2
()2cos
1,2
x
f x =-则()()f x f x π+=对x R ∈恒成立。
④要得到函数sin()24x y π=-的图象,只需将sin 2x y =的图象向右平移4
π
个单位。
其中是真命题的有 (填正确命题番号)
13.已知点C 在直线AB 上运动,O 为平面上任意一点,且4OC xOA yOB =+ (x y ∈+R ,),则
⋅x y 的最大值是 .
三、计算题 14.
(本小题满分12分)
如图,在三棱柱ABC—A1B1 C1中,四边形A1ABB1为菱形,
,四边形BCClB,为矩形,若AC=5,AB=4,BC=3.
(1)求证:AB1平面A1BC;
(2)求二面角C-AA1-B的余弦值.
15.(本题满分12分)
如图,椭圆C:
22
22
1(0)
x y
a b
a b
+=>>的右焦点为F,右顶点、上顶点分别为点A、B
,且|||
AB BF
=.
(1)求椭圆C的离心率;
(2)若斜率为2的直线l过点(0,2),且l交椭圆C于P、Q两点,OP OQ
⊥.求直线l的方程及椭圆C的方程.
2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
(I)求a的值;
(II)记g(x)=bx2-1,若方程f(x)=g(x)的解集恰有3个元素,求b的取值范围.
高三数学寒假作业(十)参考答案
一、选择题
1~5 BCBCA 6~9 BACD 二、填空题 10.(),1x ∈-∞-
11. 27 12.② 13.
116
三、计算题
14.(1)略(2
)【知识点】单元综合G12
(1)证明:在△ABC 中AC=5,AB=4,BC=3,
所以∠ABC=90°,即CB ⊥AB ,又因为四边形BCC1B1为矩形,所以CB ⊥BB1, 因为AB∩BB1=B,所以CB ⊥平面AA1B1B , 又因为AB1⊂平面AA1B1B ,所以CB ⊥AB1, 又因为四边形A1ABB1为菱形,所以AB1⊥A1B , 因为CB∩A1B=B 所以AB1⊥面A1BC ; (2)解:过B 作BD ⊥AA1于D ,连接CD 因为CB ⊥平面AA1B1B ,所以CB ⊥AA1, 因为CB∩BD=B,所以AA1⊥面BCD , 又因为CD ⊂面BCD ,所以AA1⊥CD , 所以,∠CDB 就是二面角C-AA1-B 的平面角.
在直角△ADB 中,AB=4,∠DAB=45°,∠ADB=90°,所以
在直角△CDB 中,
CB=3,所以
,
所以cos ∠
=.
【思路点拨】(1)证明AB1⊥面A1BC ,只需证明AB1⊥A1B ,CB ⊥AB1,证明CB ⊥平面AA1B1B ,利用四边形A1ABB1为菱形可证;
(2)过B 作BD ⊥AA1于D ,连接CD ,证明∠CDB 就是二面角C-AA1-B 的平面角,求出DB ,CD ,即可求二面角C-AA1-B 的余弦值. 15.
(1
)由已知|||AB BF =,
,222445a b a +=, 222244()5a a c a +-=,∴
c e a ==
.…………………………………………4分 (2)由(Ⅰ)知2
2
4a b =,∴ 椭圆C :22
2214x y b b
+=.
设11(,)P x y ,22(,)Q x y ,
直线l 的方程为22(0)y x -=-,即220x y -+=.
由22222
22220
4(22)401
4x y x x b x y b
b -+=⎧⎪
⇒++-=⎨+=⎪⎩, 即2217321640x x b ++-=
.
2
2
321617(4)0b b ∆=+⨯->⇔>.1232
17
x x +=-,21216417b x x -=.……8分
∵ OP OQ ⊥,∴ 0OP OQ ⋅=,
即12120x x y y +=,1212(22)(22)0x x x x +++=,121254()40x x x x +++=.
从而
25(164)128
401717
b --+=,解得1b =, ∴ 椭圆C 的方程为2
214
x y +=.…………………………………………………12分 16.
(1)f ′(x)=4x 3
-12x 2
+2ax ,因为f(x)在[0,1]上递增,在[1,2]上递减, 所以x =1是f(x)的极值点,所以f ′(1)=0, 即4×13
-12×12+2a ×1=0.
解得a =4,经检验满足题意,所以a =4. (2)由f(x)=g(x)可得
x2(x2-4x+4-b)=0,
由题意知此方程有三个不相等的实数根,
此时x=0为方程的一实数根,则方程x2-4x+4-b=0应有两个不相等的非零实根,所以Δ>0,且4-b≠0,
即(-4)2-4(4-b)>0且b≠4,
解得b>0且b≠4,
所以所求b的取值范围是(0,4)∪(4,+∞).。