NO在体内的生理作用
- 格式:docx
- 大小:15.46 KB
- 文档页数:2
一氧化氮代谢途径(实用版)目录一、一氧化氮的概述二、一氧化氮的代谢途径1.合成酶途径2.硝酸还原酶途径3.亚硝酸还原酶途径4.一氧化氮合酶途径三、一氧化氮代谢途径的研究意义正文一氧化氮(NO)是一种重要的生物信号分子,它在生物体内具有广泛的生理功能,如调节血管张力、神经传递和免疫反应等。
然而,一氧化氮在生物体内具有一定的毒性,因此必须通过一定的代谢途径将其清除。
本文将介绍一氧化氮的代谢途径及其研究意义。
一氧化氮的代谢途径主要有以下几种:1.合成酶途径:在合成酶途径中,一氧化氮被一种称为一氧化氮合成酶的酶催化,生成一种称为亚硝酸根离子(NO2-)的代谢产物。
亚硝酸根离子在生物体内进一步代谢,最终生成氮气和水。
2.硝酸还原酶途径:硝酸还原酶途径是指一氧化氮通过硝酸还原酶的作用,被还原为氮气。
在这个过程中,硝酸还原酶起到了将一氧化氮的氧化态还原为氮气的作用。
3.亚硝酸还原酶途径:亚硝酸还原酶途径与硝酸还原酶途径类似,不同之处在于亚硝酸还原酶将一氧化氮还原为氮气。
在这个过程中,亚硝酸还原酶起到了将一氧化氮的氧化态还原为氮气的作用。
4.一氧化氮合酶途径:一氧化氮合酶途径是指一氧化氮通过与一种称为一氧化氮合酶的酶结合,生成一种称为亚硝酸根离子(NO2-)的代谢产物。
亚硝酸根离子在生物体内进一步代谢,最终生成氮气和水。
研究一氧化氮的代谢途径具有重要的生理和病理意义。
首先,了解一氧化氮的代谢途径有助于我们深入了解一氧化氮在生物体内的作用机制,为相关疾病的治疗提供理论依据。
其次,一氧化氮代谢途径的研究可以为我们评估环境因素对生物体健康的影响提供依据。
例如,环境中一氧化氮污染可能会影响生物体的健康,通过研究一氧化氮的代谢途径,我们可以了解这种影响及其机制。
最后,研究一氧化氮代谢途径可以为新型药物的研发提供靶点。
通过靶向调控一氧化氮代谢途径的关键酶或信号分子,可以开发出一些具有特定功能的药物。
[综述]一氧化氮的生理病理作用及其检测方法[摘要]一氧化氮(Nitrico某ide,NO)是一种由内皮细胞释放的血管活性物质,在生物体内具有广泛而多样的生物学效应。
近年来,人们对其进行了许多广泛而深入的研究,发现其与多个系统疾病都存在着密切的关系。
并阐述了血清NO的各种测定方法。
[关键词]NO;生理功能;疾病;检测NO作为2次获得诺贝尔奖的明星分子,长期以来一直得到科学家的广泛关注。
而自从[1]1992年NO被《Science》杂志评为该年度的“明星分子”以来,关于NO文章就层出不穷,现今许多国家投入大量的人力物力研究NO的生理作用。
在国外每月约有50篇关于NO在各种生理途径中的论文发表,其所涉及的领域很广,从药物、生理到生化各个领域,因此可以说NO已成为生命科学界研究的热点之一。
一氧化氮(Nitrico某ide,NO)是一种由内皮细胞释放的血管活性物质,可介导血管的舒张反应,在生物体内具有广泛而多样的生物学效应。
体内血管内皮细胞、血小板、中性粒细胞、巨噬细胞、神经组织在一定刺激下均可产生NO。
近年来,人们对NO进行了许多研究,本文就NO在人体多个系统疾病发病过程中的作用机制进行分析。
1NO的合成及代谢NO是一种亲脂性的小分子化合物,分子量为30,难溶于水,因此NO在细胞内产生后,可以透过生物膜自由扩散进入周围的靶细胞,进而执行信号分子的功能。
在生物体内左旋精氨酸(L-Arg)在NO合酶(NOS)作用下与O2结合生成左旋胍氨酸(L-Cit)及NO。
生物体内许多细胞是通过此途径来合成NO的,如中枢神经元、内皮细胞、巨噬细胞、成纤维细胞、血小板、肝细胞及肿瘤细胞等。
催化此反应的NOS有三种同功酶:主要存在于内皮细胞中的eNOS(endothelialnitrico某ideyn2thae),存在于神经细胞中的nNOS(neuronalnitrico某ideyn2thae),以及存在于巨噬细胞、胶质细胞中的iNOS(induciblenitrico某ideynthae)eNOS和nNOS均为构成型酶,统称为cNOS(contitutivenitrico某ideynthae)前2种催化生成的NO量较少,仅在10-12mol/L水平,主要调节细胞的信息[2]传递;iNOS催化生成的NO约在10-6mol/L水平,具有细胞毒素或细胞防护功能此外,临床上应用的硝基扩血管物质(如硝酸甘油)进入机体后,也可以通过一系列生化反应释[3]放NO,是局部产生NO的化合物生成的NO在生物体液中的半衰期很短,很快就转变为硝酸盐/亚硝酸盐的代谢产物。
NO在体内的生理作用摘要:众所周知,NO这个古老的无极小分子广泛用于制造硝酸、化肥、炸药等,殊不知,NO在人体内的生理功能亦是极其广泛。
NO是目前所知的最强的血管舒张因子和收缩因子,它能作为介质、信使、递质或细胞功能调节因子参与集体许多生理或病理过程。
关键字:NO、胃黏膜、血管舒张、生理作用一、NO在体内的生理合成体内多种细胞(血管内皮细胞、神经细胞、巨噬细胞、中性粒细胞、肝细胞)均能产生NO。
左旋精氨酸(l-arginine,L-Arg)是生成NO的前体物质,L- Arg分子内胍基中的氮原子在一氧化氮合成酶(NOS)的催化下被氧化,生成NO。
因此一些L-Arg的类似物可以作为NOS 的竞争性抑制剂从而减少NO的生成。
二、NO的生理作用2.1 NO对心血管系统的作用在生理情况下血管内皮细胞可产生内皮衍化舒张因子和内皮衍化收缩因子,调节血管舒缩,血管内皮细胞产生的NO,通过细胞膜迅速传递至血管平滑肌细胞,使平滑肌松弛,动脉血管扩张,从而调节血压和血流分布。
这种舒血管作用可被NOS抑制剂L-单甲基精氨酸(L-NMMA)阻断。
内源性NO调节血管内皮生长,触发血管活性物质,促进血管生长与再生。
血管内皮细胞产生的NO在生理、病理情况下均有保持血管内皮细胞完整性的作用。
实验证明,NO作为一种强有力的脑血管扩张剂,参与脑血管基本张力的调节,脑血管内皮细胞所释放的NO可提高血管平滑肌细胞中的鸟苷酸环化酶的活性,导致环一磷酸鸟苷水平升高,从而使血管松弛;相反,如给实验动物应用NOS抑制剂,则发现环一磷酸鸟苷含量下降,脑动脉收缩。
NO还通过抑制血小板和白细胞聚集以保护脑的血管内皮。
基础含量的NO亦能阻止脑动脉对去甲肾上腺素和5-羟色胺等物质所致的收缩效应。
基于以上原理,在缺血性脑损害发生的早期,NO对脑缺血的边缘带、脑侧支循环的开放和脑微循环血流灌注及恢复有肯定的促进作用。
2.2 NO对中枢神经系统(CNS)的作用在CNS中,NO促进递质释放,参与突触可逆性过程,参与视觉、痛觉及嗅觉的气味区分等方面,调节血脑屏障的通透性,参与脑的高级功能活动,如学习和记忆功能。
no的化学键一、引言氮氧化物(NOx)在化学、生物和环境领域具有广泛的研究价值和应用前景。
其中,一氧化氮(NO)和二氧化氮(NO2)是最为常见的氮氧化物。
本文将探讨NO的化学性质、在生物体内的作用、环境影响及控制与应用等方面的内容。
二、NO的化学性质1.氮氧化物的生成氮氧化物主要来源于氮气(N2)和氧气(O2)在高温、高压条件下的反应。
在工业生产、汽车尾气排放等过程中,氮气和氧气发生氧化还原反应生成NO、NO2等氮氧化物。
2.一氧化氮(NO)的特性一氧化氮(NO)是一种无色、无味、有毒的气体。
它在空气中容易与氧气反应,生成二氧化氮(NO2)。
NO具有较高的化学活性,可以与金属离子形成稳定的络合物。
3.二氧化氮(NO2)的性质二氧化氮(NO2)是一种红棕色、有刺激性气味的气体。
它具有较高的氧化性,可以与其他物质发生氧化反应。
在空气中,NO2可以与水反应生成硝酸和一氧化氮,进一步加剧大气污染。
三、NO在生物体内的作用1.一氧化氮合酶(NOS)在生物体内,一氧化氮合酶(NOS)负责催化氨基酸(如精氨酸)生成NO。
NOS分为两类:神经元型NOS(nNOS)和内皮型NOS(eNOS)。
2.生物体内NO的生理功能O在生物体内具有多种生理功能,如调节血管张力、抑制血小板聚集、影响神经传递等。
这些功能使其在心血管疾病、神经系统疾病等方面具有重要作用。
3.NO与心血管疾病的关系一氧化氮在心血管系统中具有抗凝、抗炎、抗氧化等作用。
心血管疾病的发生与发展与NO的生成和活性密切相关。
四、NO在环境中的影响1.汽车尾气排放中的氮氧化物汽车尾气中含有大量氮氧化物,其中以NOx为主。
这些氮氧化物对人体健康和环境造成严重影响。
2.大气污染与NOx排放氮氧化物是大气污染物的重要组成部分。
它们与其他有害气体共同导致雾霾、光化学烟雾等大气污染现象。
3.环保措施与氮氧化物减排为减轻氮氧化物对环境和人类健康的影响,我国政府采取了一系列措施,如实施严格的汽车排放标准、推广清洁燃料汽车、加大环保执法力度等。
NO的生物学特性NO是一种tl由基性质的气体,其在组织中的半减期仅有10—60 s,其反应活性取决于它被去除或破坏的速度。
NO具有脂溶性,可快速透过生物膜扩散,到达临近靶细胞发挥作用。
由于体内存在氧及其他能与NO反应的化合物如超氧阴离子,血红蛋白等。
因而NO在体内极不稳定,合成后3~5 s即被氧化,以硝酸根(N )和亚硝酸根(N )的形式存在于细胞内、外液中。
N O 的生成和作用在体内。
NO的合成需要NOS催化,以L一精氨酸为底物,以还原型辅酶Ⅱ(NADPH)为电子供体,生成NO和L一瓜氨酸。
NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关,而NO的合成则与NOS的活性密切相关。
哺乳动物体内的许多组织如血管内皮细胞、巨噬细胞、嗜中性白细胞以及脑组织等均能合成NO。
N O 的生成主要有三种来源: 内皮细胞、神经细胞、神经胶质细胞。
内皮细胞源性N O体内、外研究都表明,内皮细胞源性N O 是一种强有力的血管扩张物质。
受乙酞胆碱作用时, 内皮细胞释放N O, 刺激平滑肌内的鸟昔酸环化酶使c G M P 增加从而导致脑血管的扩张。
除乙酞胆碱外, 5 一经色胺、P 物质和A D P 扩张脑微循环的作用也依赖N O 形成。
生理情况下产生的N O 除对脑血管有扩张作用外, 还可通过抑制血小板和白细胞的聚集而保护脑内皮细胞。
最近有报道, 生理情况下产生的N O 可以抑制脑微循环的自主性运动, 并对去甲肾上腺素、6 一经色胺等物质导致的脑动脉收缩有抑制作用。
神经元源性N O神经元源性N O 可能是神经元激活时脑血管反应的介质。
有人观察到小脑顶核和胆碱能纤维兴奋时所产生的脑血流增加可被N O S 抑制剂所抑制。
许多研究提示,谷氨酸受体激活在神经元产生N O 过程中起关键作用。
有研究表明, 戊四氮吟和二氢哈尔碱h( ar m al in e) 诱发癫痛过程中可产生兴奋性氨基酸的内源性蓄积也引起脑中依赖于N O 的c G M P 大量增加。
一氧化氮生物利用度
一氧化氮(NO)生物利用度指的是生物体内对一氧化氮的利
用能力。
一氧化氮在生物体内具有多种重要的生理功能,包括调节血管张力、免疫调节、神经传递等作用。
其生物利用度的高低主要取决于生物体内一氧化氮的合成和降解速率,以及相关受体的表达和活性。
一氧化氮可以由多种酶催化合成,最主要的是一氧化氮合酶(NOS)催化L-精氨酸转化为L-硝鸟氨酸,并进一步产生一
氧化氮。
一氧化氮在体内被血红蛋白、亨氏反应等抵消和去活,同时会与一氧化氮合酶、谷胱甘肽过氧化物酶等一氧化氮代谢酶发生反应,形成与一氧化氮相关的中间产物。
生物体内的一氧化氮对于维持正常的生理功能非常重要。
然而,一氧化氮的过量或不足都会对生物体造成不良影响。
一氧化氮生物利用度的高低可以通过测量一氧化氮代谢产物的浓度或相关功能分子的表达和活性来评估。
此外,一氧化氮受体和信号转导通路的功能也会影响一氧化氮的生物利用度。
在疾病状态下,一氧化氮的生物利用度可能会受到影响,如慢性炎症、心血管疾病、神经系统疾病等。
因此,了解和调节一氧化氮的生物利用度对于疾病治疗和预防具有重要意义。
NO的生理学作用NO的生理学作用NO是一种重要的生理活性物质,它在人体内具有广泛的生理学作用。
NO的生理学作用涉及到多个系统和器官,包括血管、神经、免疫、消化等系统。
下面将详细介绍NO的生理学作用。
1. 血管系统NO对血管系统具有重要调节作用。
它能够扩张血管,促使血管平滑肌放松,从而增加血管的内径,降低血管阻力,增加血流量。
通过这一机制,NO能够改善血液循环,增加血氧供应,降低血压,减少血栓形成的风险,预防心血管疾病的发生。
此外,NO还参与调节血管内皮细胞的功能,维持血管的正常生理状态。
2. 神经系统NO在神经系统中具有调节神经传递的作用。
它可以在神经元之间充当信号分子,参与神经传递的过程。
通过释放NO,神经元能够相互之间进行信息传递,调节中枢神经系统的功能。
例如,NO能够调节神经递质的释放,影响神经元之间的突触传递,调节神经元的兴奋性和抑制性。
此外,NO还参与神经发育和修复过程,对神经系统的正常发育和功能恢复具有重要作用。
3. 免疫系统NO在免疫系统中发挥着重要的调节作用。
它可以影响免疫细胞的活性和功能,调节机体的免疫应答。
NO能够增强巨噬细胞的杀菌活性和抗炎作用,参与炎症反应的调节。
此外,NO还能够调节T细胞和B 细胞的活性,影响免疫细胞的增殖和分化过程。
通过这些作用,NO能够维持免疫系统的正常功能,促进机体对外界病原微生物的抵抗。
4. 消化系统NO参与调节消化系统的功能。
它能够通过扩张消化道血管,增加血液供应,促进消化液的分泌和吸收。
此外,NO还能够影响胃肠道平滑肌的收缩和运动,调节胃肠蠕动、胃排空和肠道吸收。
通过这些作用,NO调节了消化过程的进行,保障了营养物质的消化和吸收。
综上所述,NO在人体内发挥着重要的生理学作用。
它参与调节血管、神经、免疫和消化系统的功能,维持这些系统的正常生理状态。
研究NO的生理学作用,对于揭示人体的生理机制,发现疾病的发生机制具有重要意义。
NO在体内的生理作用
摘要:众所周知,NO这个古老的无极小分子广泛用于制造硝酸、化肥、炸药等,殊不知,NO在人体内的生理功能亦是极其广泛。
NO是目前所知的最强的血管舒张因子和收缩因子,它能作为介质、信使、递质或细胞功能调节因子参与集体许多生理或病理过程。
关键字:NO、胃黏膜、血管舒张、生理作用
一、NO在体内的生理合成
体内多种细胞(血管内皮细胞、神经细胞、巨噬细胞、中性粒细胞、肝细胞)均能产生NO。
左旋精氨酸(l-arginine,L-Arg)是生成NO的前体物质,L- Arg分子内胍基中的氮原子在一氧化氮合成酶(NOS)的催化下被氧化,生成NO。
因此一些L-Arg的类似物可以作为NOS 的竞争性抑制剂从而减少NO的生成。
二、NO的生理作用
2.1 NO对心血管系统的作用
在生理情况下血管内皮细胞可产生内皮衍化舒张因子和内皮衍化收缩因子,调节血管舒缩,血管内皮细胞产生的NO,通过细胞膜迅速传递至血管平滑肌细胞,使平滑肌松弛,动脉血管扩张,从而调节血压和血流分布。
这种舒血管作用可被NOS抑制剂L-单甲基精氨酸(L-NMMA)阻断。
内源性NO调节血管内皮生长,触发血管活性物质,促进血管生长与再生。
血管内皮细胞产生的NO在生理、病理情况下均有保持血管内皮细胞完整性的作用。
实验证明,NO作为一种强有力的脑血管扩张剂,参与脑血管基本张力的调节,脑血管内皮细胞所释放的NO可提高血管平滑肌细胞中的鸟苷酸环化酶的活性,导致环一磷酸鸟苷水平升高,从而使血管松弛;相反,如给实验动物应用NOS抑制剂,则发现环一磷酸鸟苷含量下降,脑动脉收缩。
NO还通过抑制血小板和白细胞聚集以保护脑的血管内皮。
基础含量的NO亦能阻止脑动脉对去甲肾上腺素和5-羟色胺等物质所致的收缩效应。
基于以上原理,在缺血性脑损害发生的早期,NO对脑缺血的边缘带、脑侧支循环的开放和脑微循环血流灌注及恢复有肯定的促进作用。
2.2 NO对中枢神经系统(CNS)的作用
在CNS中,NO促进递质释放,参与突触可逆性过程,参与视觉、痛觉及嗅觉的气味区分等方面,调节血脑屏障的通透性,参与脑的高级功能活动,如学习和记忆功能。
NO还能放大神经细胞中的钙信号,使微弱的、易被忽略的信号放大,而引起细胞内显著的生理变化。
高浓度的NO具有细胞毒性作用,可以加重缺血性脑组织损害。
研究发现,脑缺血后局部兴奋性氨基酸增加,激活N-甲基-D-天冬氨酸(NMDA)受体,Ca2+内流。
NO过量产生能导致神经细胞死亡,并在初级皮层物由NMDA介导的神经毒性中起主要作用。
应用NOS抑制剂对脑缺血有显著的保护作用,并能保护胚胎的皮层、海马及尾―壳核免遭谷氨酸神经毒性的毒害作用,而且NOS抑制剂的抗毒作用能被L-精氨酸逆转。
据此认为,NOS抑制剂和NMDA拮抗剂具有保护神经不受损伤的作用,人们正在开发其医疗价值。
2.3 NO对胃肠道的作用
Furchgott等发现的内皮源型舒张因子(EDRP)于1987年被Palmer等用化学发光方法证实其本质是NO。
它不仅对心血管系统、中枢神经系统和消化系统有调节作用,而且在体内对多个系统均有作用。
实验证明,生理条件下,NO能引起胃肠道平滑肌和括约肌舒张,过量NO则起抑制作用,从而调节胃肠的运动。
有报道NO作为胃肠道非肾上腺素能非胆碱能(NANC)神经的递质,引起犬十二指肠纵行肌舒张。
刺激支配犬回盲括约肌的NANC神经释放NO,产生舒张效应。
在人胃肠道平滑肌离体实验中,用NO合酶抑制剂L-NAME减少NO产生,可显著减少副交感神经非肾上腺素非胆碱能的血管舒张作用。
实验研究中发现使胃内灌注压力的增加,胃酸排出量明显增多。
在胃酸分泌增加的同时,胃黏膜血流量也比基础值增加,表明
胃内机械扩张刺激引起的血流增加效应对胃腺壁细胞的分泌过程具有促进作用。
静脉预先给予NO合酶抑制剂L-NAME后,胃内不同程度扩张刺激引起的胃黏膜血流量分别比基础值减少,若预先给予NO合成前体L-Arg,可完全逆转NO合酶抑制剂L-NAME对胃扩张引起的胃酸分泌和胃黏膜血流的抑制作用,结果表明,NO在改善胃微循环、增加胃黏膜血流量以及促进胃酸分泌方面具有重要作用。
此外,NO参与免疫反应、介导突触传递、介导兴奋性氨基酸,参与调节肾功能,参与对肾脏排钠、肾素释放的调节;影响肺血管及其血流量;影响男性性功能及射精功能;NO还对细胞凋亡、细胞程序死亡有影响,即能诱导细胞凋亡,也能抑制细胞凋亡。
因NO对生理功能的影响,无论其生成不足还是生成过多均会引起相应器官、系统等的疾病,以及引起免疫系统功能异常、神经毒性、基因突变、肿瘤等。
参考文献
闫长栋、孙红、祁友健 NO合酶抑制剂在多巴胺抑制小鼠胃肠推进运动中的作用徐州医学院院报,2000,20(4)261-264
石玥、乔伟丽、王光明、吴金霞、闫长栋、张建福模拟缺血/再灌注诱导人离体胃黏膜上皮细胞的凋亡徐州医学院院报,2012,30(5)297-300
闫长栋、顾洛、陈闽等辣椒素敏感传入神经元和NO中介大鼠胃内灌注蛋白胨所知的胃酸分泌和胃黏膜血流量增加效应生理学报 1996,48(1)70-76
闫长栋,顾洛,田苏平等胃黏膜血流量对大鼠胃黏膜适应性细胞保护作用的影响生理学报 1996,48(5)469-476
顾洛,闫长栋,杜军等辣椒素敏感传入神经和NO中介大鼠胃扩张引起的胃酸分泌和胃黏膜血流量变化中国应用生理学杂志 2003,19(2)194-197
闫长栋,李平,顾洛,田苏平,李栋生一氧化氮在大鼠不同程度胃扩张刺激胃酸分泌中的作用徐州医学院院报 2000,20(6)431-433
闫长栋,李平,祁友健大鼠胃扩张致胃酸分泌中NO对胃黏膜血流量的影响世界华人消化杂志 2000,9(8)1087。