空间点线面的位置关系
- 格式:ppt
- 大小:3.59 MB
- 文档页数:51
空间点、线、面之间的位置关系1.线与线的位置关系:平行、相交、异面(特别注意一下:垂直只是相交与异面当中的特殊情况,我们说相交有相交垂直,异面有异面垂直)2.线与面的位置关系:线在面内(选择题时一定要考虑)、线面平行、线面相交3.如何确定一个平面?方法(1)三个不共线的点可以确定一个平面方法(2)两条相交线可以确定一个平面方法(3)两条平行线可以确定一个平面4.如何证明三点共线?具体的做法:就是把其中两点确定的直线作为两个面的交线,证明剩下这一点是这两个面的交点,那么交点必在交线上,则三点共线。
5.如何证明线线平行?方法(1)利用三角形或梯形的中位线方法(2)利用平行四边形方法(3)利用线段对应成比例(通常题目中会出现三等份点或四等份点)方法(4)垂直于同一个面的两条直线互相平行方法(5)借助一个性质:两个面相交,其中一个面内的一条直线平行于另一个面,则这条线平行于两个面的交线(利用这个性质来证明在以往的高考中出现过若干次,同学们需要注意一下)6.如何证明线面平行?方法(1)只需证明这条直线与平面内的一条直线平行即可,简称线线平行推出线面平行。
方法(2)只需把这条直线放入一个合适的平面内,然后证明这个平面与已知平面平行即可,简称面面平行推出线面平行。
特别注意:直线平行于平面,可以得出直线与平面内无数条直线平行,但得不出与平面内任意一条直线平行。
7.如何证明面面平行?只需证明其中一个面内的两条相交线分别平行于另一个面即可。
8.如何证明线面垂直?只需证明这条直线分别与平面内的两条相交线互相垂直即可。
特别注意:直线垂直于平面,可以得出直线与平面内任意一条直线都垂直。
9.如何证明面面垂直?只需证明其中一个面内的一条直线垂直与另一个面即可。
特别注意:面面垂直,既得不出两个面内的任意两条直线互相垂直,也得不出其中一个面内的任意一条直线都垂直于另一个面。
10.异面直线的夹角范围是多少?如何求出异面直线的夹角?夹角范围是:0°~ 90°在求异面直线的夹角时,要把两条异面直线平移使它们出现交点,有时只需平移一条,有时两条都需要平移,这个过程中用得比较多的是中位线,当平移后两条直线出现交点时,复杂些的在三角形中利用余弦定理来求。
空间点线面之间的位置关系一.平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.二.空间直线与平面之间的位置关系:1.直线与平面的位置关系可分为:直线在平面内;直线与平面平行;直线成平面相交;2.平面与平面之间位置关系分为:面面平行;面面相交;面面重合;3.空间直线之间的位置关系:相交,平行,异面;三.等角定理、平行公理:定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补;推论:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等;平行公理:平行与同一条直线的两条直线平行;空间平行具有传递性,空间平行平面也具有传递性;四.证明方法:1.证明三点共线的常用方法:(1)首先找出两个平面,然后证明这三点都是这两个平面的公共点。
由公理三得证;(2)选择其中两点确定一条直线,然后证明另一点也在其上;2.证明直线共面通常的方法:()1先由其中两条直线确定一个平面,再证明其余的直线都在此平面内(纳入法);()2分别过某些点作多个平面,然后证明这些平面重合(重合法);()3也可利用共面向量定理来证明.3.证明三线共点的方法:先证两条直线交于一点,再证明第三条直线经过这点,转化为证明点在线上的问题;()1如果A、B是交点,那么AB是交线;()2如果两个不同平面有三个或者更多的交点,那么它们共面;()3如果lαβ=∈,点P是α、β的一个公共点,那么P l4.证明几点共面的问题可以先取三点(不共线的三点)确定一个平面,再证其余各点都在这个平面内;1.分别和两条异面直线平行的两条直线的位置关系是: A .一定平行 B.一定相交 C.一定异面 D.相交或异面2.如果在两个平面内分别各有一条直线,这两条直线互相平行,那么这两个平面的位置关系为: A .平行 B.相交 C.平行或相交 D.垂直或相交3.已知下列命题:其中真命题的个数为: ; (1)若直线l 平行于α内无数条直线,则 l α;(2)若直线l 在平面α外,则 l α; (3)若直线 a b ,直线⊂b α,则 a α; (4)若直线 a b ,⊂b α,那么直线a 平行于平面α内的无数条直线;4.空间三条直线互相平行,由每两条平行直线确定一个平面,则可确定平面的个数为:5.若三个平面两两相交,且三条交线互相平行,则这三个平面将空间分成 部分;6.如果两条异面直线称为一对,那么在正方体的十二条棱中,共有异面直线 对;7.空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的; .A 充分非必要条件;.B 必要非充分条件;.C 充要条件;.D 非充分非必要条件.8.不共面的四个定点到平面α的距离都相等,这样的平面α共有.A 3个 .B 4个 .C 6个 .D 7个9.已知两个不同的平面α、β和两条不重合的直线,m 、n ,有下列四个命题 ①若α⊥m n m ,//,则α⊥n ②若βαβα//,,则⊥⊥m m③若βαβα⊥⊂⊥则,,//,n n m m ④若n m n m //,,,//则=βαα其中正确命题的个数是 A .0个 B .1个 C .2个 D .3个 10.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ∥α,n ∥α,则m ∥n ;④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是 A .①和② B .②和③ C .③和④ D .①和④ 11.已知直线a 、b 、c 和平面M ,则可以得到a//b 的是 : ;A.a//M ,b//MB.a ⊥c ,b ⊥cC.a 、b 与平面M 成等角D.a ⊥M ,b ⊥M . 12.已知直线m 、n 平面βα,,下列命题中正确的是A.若直线m 、n 与平面α所成的角相等,则m//nB.若m ⊥α,n ⊥β,α⊥β,则m ⊥nC.若m ⊂α,β⊂n ,m//n ,则α//βD.若m//α,,//,//βαβn 则m//n13.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖14.已知βα,是相异两平面,n m ,是相异两直线,则下列命题中不正确...的是 ( ) A.若m ∥α⊥m n ,,则α⊥n B.若⊥m βα⊥m ,,则α∥β C.若⊥m βα⊂m ,,则⊥αβ D.若m ∥n =⋂βαα,,则m ∥n 15.设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥n ;B.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥β;D.若α⊥β,m ⊥β,m ⊄α,则m ∥α 16.已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题: ①若βα⊥⊥n m ,,m ⊥n ,则βα⊥;②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥. 其中正确的命题是(填上所有正确命题的序号)_______________.17.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点. 那么,正方体的过P 、Q 、R 的截面图形是.A 三角形.B 四边形.C 五边形.D 六边形18.如图,l αβ= ,A 、B α∈,C β∈,且C l ∉,直线AB l M = ,过A 、B 、C 三点 的平面记作γ,则γ与β的交线必通过.A 点A ; .B 点B ; .C 点C 但不通过点M ; .D 点C 和点MAB CD 1A 1B 1C 1D PD RαβlM A B C题型二:证明点共线,线共点,点共面,线共面问题 例1.点共面:1.(07江苏)如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==.求证:1,,,E B F D 四点共面;2.(08四川)如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,BC ∥12AD ,BE ∥12AF .证明:C 、D 、F 、E 四点共面;例3.线共面:1.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面。
空间中点、线、面的位置关系一、平面的基本性质(1)点和直线的基本性质:连接两点的线中,最短;过两点一条直线,并且一条直线。
(2)平面的基本性质:1如果一条直线的点在一个平面内,那么这条直线上的所有点在这个平面内。
这时我们就说或。
作用:判断直线在平面内。
2经过不在同一直线的三点,有且只有个平面。
也可以简单地说成:的三点确定一个平面。
过不共线的三点A、B、C的平面,通常记作:。
3如果不重合的两个平面有个公共点,那么它们有且只有条过这个点的公共直线。
如果两个平面有一条公共直线,则称这两个平面。
这条公共直线叫做这两个平面的(3)平面的基本性质的推论:1经过一条直线和直线的一点,有且只有个平面。
2经过两条直线,有且只有个平面。
3经过两条直线,有且只有个平面。
(4)共面与异面直线:共面:空间中的几个点或几条直线,如果都在,我们就说它们共面。
共面的两条直线的位置关系有和两种。
异面直线:既又的直线叫异面直线。
判断两条直线为异面直线的方法:与一平面相交于一点的直线与这个平面内任一不过该点的直线是异面直线。
(5)符号语言:点A在平面α内,记作;点A不在平面α内,记作。
直线l在平面α内,记作;直线l不在平面α内,记作。
平面α与平面β相交于直线a, 记作 .直线l和直线m相交于点A,记作,简记作:。
基本性质01可以用集合语言描述为:如果点A α,点B α,那么直线AB α。
例1. 已知三条直线a、b、c两两相交但不共点,求证:a、b、c共面。
例2.已知三条平行线a 、b 、c 都与直线d 相交.求证:它们共面.例 3.正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于AC O ,、BD 交于点M . 求证:点1C 、O 、M 共线.例4.已知三个平面α、β、γ两两相交,且α⋂β=c ,β⋂γ=a ,γ⋂α=b , 且直线a 和b 不平行.求证: a 、b 、c 三条直线必相交于同一点._1_ B _二、空间中的平行关系1.空间平行直线的本性质(空间平行线的传递性): 平行于同一直线的两条直线 。
点线面的位置关系总结1. 引言在几何学中,点、线和面是最基本的几何图形。
它们之间的位置关系对于我们理解和描述物体的形状、空间关系以及解决几何问题非常重要。
本文将总结点、线和面之间的常见位置关系,帮助读者在几何学的学习和解题过程中更加清晰地理解这些关系。
2. 点与点之间的位置关系在二维空间中,两个点之间有三种基本的位置关系:•重合(Coincident):两个点的位置完全重合,表示它们的坐标值完全相同。
•相邻(Adjacent):两个点的位置非常接近,但它们的坐标值不完全相同。
•不重合(Non-coincident):两个点的位置完全不同,它们的坐标值没有任何相似之处。
在三维空间中,点与点之间的位置关系也有类似的定义。
3. 点与线之间的位置关系点与线之间的位置关系可以描述为:•在线上(On the line):一个点位于一条直线上。
•在线的延长线上(On the extension of the line):一个点位于一条直线的延长线上,但不在直线上。
•在线的两侧(On one side of the line):一个点与一条直线相交,但不在直线上。
4. 点与面之间的位置关系点与面之间的位置关系可以描述为:•在平面上(On the plane):一个点位于一个平面上。
•在平面的延伸方向上(On the extension of the plane):一个点位于一个平面的延伸方向上,但不在平面上。
•在平面的两侧(On one side of the plane):一个点与一个平面相交,但不在平面上。
5. 线与线之间的位置关系线与线之间的位置关系可以描述为:•相交(Intersecting):两条线在二维空间或三维空间中相交,即它们有一个或多个共同的点。
•平行(Parallel):两条线在二维空间或三维空间中永不相交,即它们没有共同的点。
•重合(Coincident):两条线在二维空间或三维空间中完全重合,表示它们是同一条线。
空间几何体的位置关系在三维空间中,几何体的位置关系是几何学研究的重要内容之一。
了解和掌握几何体的位置关系,对于解决实际问题以及进行几何证明都有着重要的意义。
本文将介绍几种常见的空间几何体的位置关系。
一、点和直线的位置关系1. 点在线上:当一个点与一条直线重合时,我们称该点在线上。
2. 点在线上方或线下方:当一条直线将空间分成上下两部分时,点在直线上方或线下方。
3. 点在线上的延长线上:当一条直线延长后,点位于该直线的延长线上。
二、点和平面的位置关系1. 点在平面上:当一个点与一个平面重合时,我们称该点在平面上。
2. 点在平面之上或之下:当一个平面将空间分成上下两部分时,点在平面之上或之下。
3. 点在平面上的延长线上:当一个点的延长线与平面相交时,我们称该点在平面上的延长线上。
三、直线和直线的位置关系1. 平行线:若两条直线在同一平面上且不相交,则这两条直线称为平行线。
2. 相交线:若两条直线在同一平面上相交,则这两条直线称为相交线。
3. 垂直线:若两条直线在同一平面上相交,且交角为直角,则这两条直线称为垂直线。
四、直线和平面的位置关系1. 平行关系:若一条直线与一个平面平行,则它位于该平面之上、之下或在该平面的内部。
2. 相交关系:若一条直线与一个平面相交,则它有且只有一个交点。
3. 垂直关系:若一条直线与一个平面相交,且交角为直角,则它垂直于该平面。
五、平面和平面的位置关系1. 平行关系:若两个平面无公共交线,并且相互平行,则这两个平面平行。
2. 相交关系:若两个平面有且只有一条公共交线,则这两个平面相交。
3. 垂直关系:若两个平面相交,并且交线与其中一个平面的法线垂直,则这两个平面垂直。
综上所述,空间几何体的位置关系包括点和直线的位置关系、点和平面的位置关系、直线和直线的位置关系、直线和平面的位置关系以及平面和平面的位置关系。
了解和掌握这些位置关系对于学习和应用空间几何学具有重要的意义。
在实际应用中,我们可以根据这些位置关系来解决不同的几何问题,并进行相关的几何证明。
空间向量点线面的位置关系在三维空间中,点、线和面是基本的几何要素。
它们的位置关系在数学和几何学中扮演着重要的角色。
本文将探讨空间向量中点、线和面之间的不同位置关系及其特点。
一、点和线的位置关系在三维空间中,点和线的位置关系主要有以下几种情况。
1. 点在线上:如果一个点位于一条直线上,那么这个点与直线上的任意两点构成的向量都是共线的。
换句话说,点和线的向量共线。
2. 点在线的延长线上:点也可以位于一条线的延长线上,这时点与线上的任意两点构成的向量也是共线的。
3. 点与线相交:在三维空间中,点还可以与一条直线相交。
这时,点与线上的任意两点构成的向量不再共线。
4. 点与线平行:若一点与直线平行,则该点与直线上的任意两点构成的向量平行。
但是,点与线平行并不意味着点在线的延长线上。
二、点和面的位置关系点和面的位置关系也有几种情况,如下所示。
1. 点在面上:如果一个点位于一个平面上,那么这个点与平面上的任意三个点构成的向量都在同一个平面内。
2. 点在面的延长线上:点也可以位于一个平面的延长线上,这时点与平面上的任意三个点构成的向量仍在同一个平面内。
3. 点在平面内但不在平面上:有时,一个点位于一个平面内部但不在平面上。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
4. 点与平面相交:在三维空间中,点还可以与一个平面相交。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
三、线和面的位置关系线和面的位置关系主要有以下几种情况。
1. 线在平面上:如果一条直线位于一个平面上,那么直线上的任意两点构成的向量都在同一个平面内。
2. 线与平面相交于一点:一个直线也可以与一个平面相交于一点。
这时,直线上的任意两点构成的向量不在同一个平面内。
3. 线与平面平行:若一条直线与一个平面平行,则直线上的任意两点构成的向量与平面内的向量平行。
但是,直线与平面平行并不意味着直线在平面上。
4. 线在平面的延长线上:一条直线还可以位于一个平面的延长线上,这时直线上的任意两点构成的向量仍在同一个平面内。
空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:b A =a α⊂α=∅ αBAβαABαβαβBAAβαBAα=l β= 二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。
空间点、线、面之间的位置关系一、空间点、直线、平面之间的位置关系 1、平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内; 公理2:过不在一条直线上的三点,有且只有一个平面;公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
公理4(又称平行公理):平行于同一条直线的两条直线平行;等角定理:空间中如果两个角的两边分别对应平行,那么着两个角相等或互补. 2、空间中直线与直线之间的位置关系 (1)位置关系的分类⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线平行直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b 是两条异面直线,经过空间中任一点O 作直线a ’∥a,b ’∥b,把a ’与b ’所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角) ②范围:02π⎛⎤⎥⎝⎦,3、空间中直线与平面之间的位置关系 位置关系 直线a 在平面α内直线a 与平面α相交 直线a 与平面α平行公共点 有无数个公共点有且只有一个公共点没有公共点符号表示a α⊂a A α= //a α图形表示4、空间中平面与平面之间的位置关系 位置关系 图示表示法 公共点个数两平面平行//αβ两平面相交斜交aαβ=有无数个公共点在一条直线上垂直αβ⊥aαβ=有无数个公共点在一条直线上二、直线、平面平行的判定及其性质1、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;2、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
注:能否由线线平行得到面面平行?(可以。
只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,这两个平面就平行)三、直线、平面垂直的判定及其性质1、直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直;(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;2、平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直;(2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直;(2)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
点线面位置关系总结在几何学中,点、线和面是最基本的几何图形。
它们之间的位置关系非常重要,可以帮助我们更好地理解和描述空间中的对象。
本文将对点线面位置关系进行总结,并探讨其应用。
一、点与线的位置关系1. 点在直线上:当一个点位于某条直线上时,我们可以说该点在直线上。
一个直线可以有无限个点。
2. 点在线段的内部:如果一个点位于一个线段的两个端点之间,我们可以说该点在线段的内部。
一个线段上可以有无限个点。
3. 点在线段的延长线上:如果一个点位于一个线段的延长线上,我们可以说该点在线段的延长线上。
延长线上也可以有无限个点。
4. 点在线段的外部:如果一个点既不在线段上,也不在线段的延长线上,我们可以说该点在线段的外部。
5. 点垂直于线:当一个点与一条直线垂直相交时,我们可以说该点垂直于线。
此时,点到直线的距离是最短的。
6. 点平行于线:当一个点与一条直线平行时,我们可以说该点平行于线。
此时,点到直线的距离是不变的。
二、点与面的位置关系1. 点在平面上:当一个点位于一个平面上时,我们可以说该点在平面上。
一个平面可以有无限个点。
2. 点在平面内部:如果一个点位于一个平面的边界之内,我们可以说该点在平面的内部。
一个平面内部可以有无限多个点。
3. 点在平面外部:如果一个点不在平面上,也不在平面的边界之内,我们可以说该点在平面的外部。
三、线与面的位置关系1. 线在平面上:当一条直线完全位于一个平面上时,我们可以说该线在平面上。
一条直线可以有无限个点。
2. 线与平面相交:当一条直线与一个平面相交时,我们可以说该线与平面相交。
相交点有可能是一个点、一条线或者空集。
3. 线平行于平面:当一条直线与一个平面平行时,我们可以说该线平行于平面。
此时,线上的所有点到平面的距离是相等的。
4. 线垂直于平面:当一条直线与一个平面垂直相交时,我们可以说该线垂直于平面。
此时,线上的所有点到平面的距离是最短的。
四、面与面的位置关系1. 平行面:当两个平面之间的夹角为0度时,我们可以说这两个平面是平行的。
点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。
公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。
1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。
范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。