正比例反比例应用题练习题
- 格式:doc
- 大小:44.00 KB
- 文档页数:7
七年级数学上册正比例与反比例练习题正比例和反比例是数学中重要的概念,可以帮助我们理解事物之间的关系。
在七年级数学上册中,我们学习了正比例和反比例的定义、性质和应用。
为了帮助大家更好地巩固所学知识,下面将提供一些正比例和反比例的练习题,供大家练习。
1. 正比例练习题题目1:某旅行团组织了一次游览活动,团费与参加人数成正比。
团费为1500元时,参加人数为30人。
求参加40人所需的团费。
解答:设参加人数为x,团费为y。
根据已知条件,可以列出比例关系式:30/1500 = 40/y解方程得y = 2000所以,参加40人所需的团费为2000元。
题目2:若两个长方形的长度和宽度成正比,第一个长方形的长度为12cm,宽度为6cm,第二个长方形的长度为18cm,求第二个长方形的宽度。
解答:设第二个长方形的宽度为x。
根据已知条件,可以列出比例关系式:12/6 = 18/x解方程得x = 9所以,第二个长方形的宽度为9cm。
2. 反比例练习题题目1:两个数的乘积为20,当其中一个数增加到原来的2倍时,另一个数变为原来的几分之一?解答:设两个数分别为x和y。
根据已知条件,可以列出反比例关系式:xy = 20当x变为2x时,y变为1/y。
2x * (1/y) = 20解方程得y = 10所以,另一个数变为原来的几分之一为1/10。
题目2:某工程队完成一项工程需要的时间与工人数量成反比。
如果5名工人在10天内完成了工程,那么需要几名工人能在4天内完成同样的工程?解答:设需要的工人数量为x。
根据已知条件,可以列出反比例关系式:5 * 10 = x * 4解方程得x = 12.5所以,需要12.5名工人能在4天内完成同样的工程。
通过以上练习题,我们对正比例和反比例的概念和应用有了更加深入的理解。
希望大家能够认真思考,独立解答每一道题目,加深对正比例和反比例的掌握程度。
如果还有其他问题,可以随时向老师请教。
加油!。
[正比例和反比例练习题]正比例应用题练习题[正比例和反比例练习题]正比例应用题练习题篇一 : 正比例应用题练习题正比例应用题练习题一、判断。
,)1、工作总量一定,工作效率和工作时间成反比例。
2、图上距离和实际距离成正比例。
3、X和Y表示两种变化的相关联的量,同时5X,7Y,0,X和Y不成比例。
4、分数的大小一定,它的分子和分母成正比例。
5、在一定的距离内,车轮周长和它转动的圈数成反比例。
6、两种相关联的量,不成正比例,就成反比例。
二、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例,写在括号里。
1、装配一批电视机,每天装配台数和所需的天数。
2、正方形的边长和周长。
3、水池的容积一定,水管每小时注水量和所用时间。
4、房间面积一定,每块砖的面积和铺砖的块数。
5、在一定时间里,加工每个零件所用的时间和加工零件的个数。
6、在一定时间里,每小时加工零件的个数和加工零件的个数。
三、把下面的数量关系式补充完整:单价×,总价单产量×面积, ×时间,路程总价?,单价总产量?,单产量路程?,时间总价?,数量总产量?,面积路程?,速度工作效率×,工作总量图上距离?,比例尺工作总量?工作时间, 实际距离×,图上距离工作总量?工作效率, ?比例尺,实际距离三、用正比例的知识解答下列各题。
1、小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元,2、小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本,3、运一批煤,18次运了90吨,照这样计算,14次可以运多少吨,4、运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤,5、用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨,6、一种水管,40米重60千克。
[)现称得一捆水管重270千克,这捆水管共长多少米,7、一榨油厂用400千克芝麻可以榨油144千克。
正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。
如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。
如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。
如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。
如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。
7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。
8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。
9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。
10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。
答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。
正比例反比例练习题一、正比例关系练习题1. 甲地的人口与时间之间存在着正比例关系,已知2010年时甲地的人口为500万人,而2020年时甲地的人口为600万人。
求2015年时甲地的人口数量。
2. 小明用固定的速度每小时跑5公里,已知小明连续跑了3个小时,求小明跑的总路程。
3. 某机构对某公司年度销售额与广告费用之间的关系进行研究,数据表明销售额与广告费用呈正比例关系,当广告费用为200万元时,销售额为1600万元。
问当广告费用为350万元时,销售额是多少?4. 某工厂生产零件的速度与机器运行时间存在正比例关系,已知机器连续运行10小时可以生产240个零件。
求机器连续运行16小时可以生产多少个零件?5. 一位股民投资了某只股票,大约过了一年,他发现自己的投资金额翻了6倍。
如果他最初投资了8万元,求现在他的投资金额有多少。
二、反比例关系练习题1. 甲地的公交车以固定的速度行驶,已知当车速为30千米/小时时,需要5小时才能到达目的地,求当车速为60千米/小时时,需要多长时间才能到达目的地。
2. 某机器完成一项任务需要的时间与工人数量之间存在反比例关系,已知当有6名工人时,任务可以在8个小时内完成,求如果只有3名工人,需要多长时间才能完成任务。
3. 某水泥厂生产水泥的速度与工人数量之间存在反比例关系,已知当有8名工人时,水泥厂可以生产200吨水泥,求如果只有4名工人,水泥厂可以生产多少吨水泥。
4. 某车间生产零件的速度与工人数量之间存在反比例关系,已知当有10名工人时,车间可以生产600个零件,求如果只有5名工人,车间可以生产多少个零件。
5. 甲地离某市的距离与到达市区所需时间之间存在反比例关系,已知距离为60千米时需要1个小时到达市区,求距离为30千米时需要多长时间才能到达市区。
以上所列的练习题涉及到了正比例关系和反比例关系,通过解题可以巩固对正比例关系和反比例关系的理解,并提高解决实际问题的能力。
在实际生活和工作中,我们常常会遇到各种与比例关系相关的问题,因此掌握好这些知识对我们的学习和工作都具有重要意义。
八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。
根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。
问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。
根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。
2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。
根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。
问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。
根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。
以上为八年级正比例和反比例比例练题的部分解答。
年级正比例和反比例比例练习题
正比例和反比例是数学中重要的概念,在年级研究中经常会遇到这两种类型的题目。
以下是一些年级正比例和反比例比例练题,希望能帮助你更好地理解这两种关系。
正比例题目
1. 一辆汽车以每小时60公里的速度行驶,求2小时内汽车行驶的路程。
解答:
设汽车行驶的路程为x公里,则根据正比例关系可得:
60公里/1小时 = x公里/2小时
解方程得:x = 60 * 2 = 120公里
2. 小明去超市买苹果,苹果的单价是每个2元。
如果小明买了5个苹果,他要支付的金额是多少?
解答:
设小明支付的金额为y元,则根据正比例关系可得:
2元/1个 = y元/5个
解方程得:y = 2 * 5 = 10元
反比例题目
1. 一辆车以每小时60公里的速度行驶,行驶1小时后发现油
箱中的油量减少了1/6。
求这辆车油箱的容量。
解答:
设油箱的容量为z升,则根据反比例关系可得:
60公里/1小时 = z升/1/6升
解方程得:z = 60 * (1/6) = 10升
2. 5个工人需要3天时间完成一项任务,如果再增加3个工人,那么完成该任务需要多少天?
解答:
设完成任务需要的天数为t天,则根据反比例关系可得:
5个工人/3天 = 8个工人/t天
解方程得:t = 3 * 5 / 8 = 1.875天,约等于1.88天
以上是一些年级正比例和反比例比例练题的解答,在解题过程中需要注意明确所给的条件,并正确运用正比例和反比例的概念。
希望这些题目对你的研究有所帮助!。
正比例反比例经典题型一、选择题(每题3分,共30分)1. 下面两种相关联的量,不成正比例关系的是()。
A. 一个人的年龄和体重。
B. 正方形的周长和边长。
C. 路程和时间(速度一定时)。
D. 圆柱的底面积一定,体积和高。
答案:A。
解析:一个人的年龄和体重不是成比例关系,年龄增长体重不一定按照固定比例变化;而正方形周长÷边长 = 4(一定),是正比例关系;路程÷时间=速度(一定),是正比例关系;圆柱体积÷高 = 底面积(一定),是正比例关系。
2. 当()时,x和y成反比例关系。
A. x+y = 5B. xy = 5C. x÷y = 5D. y = 5x答案:B。
解析:如果xy = k(k为常数且k≠0),那么x和y 成反比例关系,这里xy = 5符合反比例关系的定义;x + y=5不是比例关系;x÷y = 5即x = 5y是正比例关系;y = 5x也是正比例关系。
3. 长方形的面积一定,长和宽()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:B。
解析:因为长方形面积 = 长×宽,面积一定,也就是长和宽的乘积是固定值,所以长和宽成反比例关系。
4. 下面成正比例关系的是()。
A. 圆的面积和半径B. 圆的周长和半径C. 圆锥的体积和高(底面积一定时)。
D. B和C答案:D。
解析:圆的面积÷半径的平方=π(一定),但圆的面积和半径不成正比例;圆的周长÷半径= 2π(一定),是正比例关系;圆锥体积÷高= 1/3×底面积(底面积一定时),是正比例关系,所以圆的周长和半径、圆锥的体积和高(底面积一定时)成正比例关系。
5. 已知y = 8x,x和y()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:A。
解析:y÷x = 8(一定),所以x和y成正比例关系。
6. 一本书的总页数一定,已经看的页数和未看的页数()。
小学数学正比反比练习题正文:一、正比例关系练习题1. 小明每天骑自行车上学,他的速度和用时的关系是什么?如果他以每小时15公里的速度骑行,那么骑行5小时能够走多远?2. 一辆汽车以每小时80公里的速度行驶,行驶4小时后,它能够走多远?3. 将正比例关系列为函数的形式:设x是小明骑自行车所花费的时间(小时),y是他骑行的距离(公里),写出函数y和x之间的关系式。
4. 小明骑自行车到山上游玩,用时与距离的关系是正比例关系。
他用时2小时到达离家20公里的山脚,那么他用时3小时能够到达离家多远的山脚?5. 一辆汽车以每小时60公里的速度行驶,行驶2小时15分钟后,它能够走多远?二、反比例关系练习题1. 公司A生产一批产品需要5个工人工作3天完成,那么如果只有3个工人参与生产,需要多少天才能完成?2. 某项工程由6个工人完成,需要12天,如果增加工人的数量,能否缩短工期?为什么?3. 设x是某项工程所需要的工人数,y是完成这项工程所需的天数。
当工人数增加时,工期缩短了吗?写出x和y之间的关系式。
4. 利用反比例关系解决实际问题:某项工程由10个工人完成,需要20天。
如果只有5个工人参与工作,那么需要多少天才能完成?5. 公司A和公司B生产某种产品,两个公司的产能成反比例关系。
如果公司B的产能是公司A的2倍,那么公司B需要多久才能完成和公司A一样多的产品?结语:通过以上练习题,我们可以更好地理解小学数学中的正比例关系和反比例关系。
掌握了这两种关系的概念和求解方法,我们可以更好地应用于实际生活中的问题求解。
希望同学们能够通过不断地练习,加深对正反比例关系的理解和运用能力。
正比例与反比例练习题一、选择题1. 某商品的单价和数量成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定2. 圆的周长与直径之间的关系是什么?A. 正比例B. 反比例C. 无关D. 无法确定3. 速度一定时,路程与时间成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定4. 工作总量一定时,工作效率与工作时间成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定5. 长方形的长一定时,面积与宽成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定二、填空题6. 某工厂生产零件,每天生产的零件数与生产天数的乘积是______。
7. 某工厂生产零件,每天生产的零件数与生产天数的比值是______。
8. 某商品的单价为10元,买了5个,总价为______元。
9. 某商品的总价为100元,单价为10元,可以买______个。
10. 某商品的总价为100元,如果单价减少一半,可以买______个。
三、应用题11. 某工厂生产零件,如果每天生产100个零件,需要20天完成。
如果每天生产200个零件,需要多少天完成?12. 某工厂生产零件,如果每天生产100个零件,需要20天完成。
如果每天生产零件的数量减少一半,需要多少天完成?13. 某工厂生产零件,如果每天生产零件的数量增加一倍,生产天数会减少多少?14. 某工厂生产零件,生产总量为2000个。
如果每天生产100个,需要20天完成。
如果每天生产200个,需要多少天完成?15. 某工厂生产零件,生产总量为2000个。
如果每天生产200个,需要10天完成。
如果生产总量增加到4000个,需要多少天完成?四、探究题16. 某工厂生产零件,生产总量一定。
请探究每天生产零件的数量与生产天数之间的关系,并用数学公式表达。
17. 某工厂生产零件,生产总量一定。
如果每天生产零件的数量增加,生产天数会如何变化?18. 某工厂生产零件,生产总量一定。
正反比例练习题大全1、判断正方形的边长和周长是否成比例。
2、判断正方形的边长和面积是否成比例。
3、判断数a和数b是否成正比例,已知a是b的5倍。
4、已知4a=3b,判断a和b是否成反比例,成比例的比值是多少。
5、判断圆的直径和圆周率是否成正比例,已知圆的周长一定。
6、已知8A=B,判断A和B是否成反比例。
7、判断长方体的底面积和高是否成正比例,已知体积一定。
8、判断x与y是否成比例,已知3x与y成比例。
9、判断圆的面积和半径的平方是否成正比例。
10、判断圆锥的底面积和高是否成正比例,已知体积一定。
11、判断三角形的底和面积是否成正比例,已知高一定。
12、判断车轮的直径和转数是否成正比例,已知路程一定。
13、判断出勤人数和出勤率是否成正比例,已知全班总人数一定。
14、判断已走路程和未走路程是否成反比例,已知从甲地到乙地。
15、判断被减数和差是否成正比例,已知减数一定。
16、已知甲数的3/4是乙数,判断甲数和乙数是否成比例。
17、已知3x=y(x和y都不等于0),判断x和y是否成比例。
18、已知xy=1,判断x和y是否成反比例。
19、已知5A=B,判断A和B是否成反比例。
20、已知x+y=6,判断x和y是否成反比例。
21、已知x和y互为倒数,判断x和y是否成反比例。
22、已知3:x=y:16,判断x和y是否成比例。
23、已知20:x=12:y,判断x和y是否成比例。
24、已知ab=k+2(k一定),判断a和b是否成反比例。
25、已知《小学生作文》的单价一定,判断总价和订阅的数量是否成正比例。
26、判断小新跳高的高度和他的身高是否成比例。
27、已知学校全班的人数一定,判断每组的人数和级数是否成正比例。
28、判断圆柱的底面积和高是否成正比例,已知体积一定。
29、已知书的总册数一定,判断每包的册数和包数是否成正比例。
30、判断在一块菜地上种的黄瓜和西红柿的面积是否成比例。
31、已知小麦每公顷产量一定,判断小麦的公顷数和总产量是否成正比例。
正比例反比例应用题练习题1、淮光化肥厂要生产一批化肥,原计划每天生产432吨,25天完成;实际每天生产540吨,只要多少天就能完成?2、某工程大队计划30天挖水渠3750米,实际每天比原计划多挖25米,实际只用多少天完成?3、某工人制造一个机器零件所用的时间由40分钟减少到24分钟,原来需要8小时完成的任务,现在可以提前几小时完成?4、有一本书,每页16行,每行36个字,共有150页,现在要改为每页18行,每行24个字。
该书应有多少页?5、一项工程,25人每天工作8小时,36天可以完成;现在增加5人,限40天完成。
每天应工作几小时?6、一间教室用边长0.4米的正方形砖铺地,需要300块,如果改用边长为0.5米的正方形砖铺地,需要多少块?7、一对互相咬合的齿轮,主动轮有40个齿,从动轮有30个齿,如果主动轮每分钟转180转,从动轮每分钟转多少转?8、电视机厂试制一批新产品,原计划每天生产40台,30天完成。
实际每天比原计划多生产25%,实际多少天完成?9、农机厂的配件车间,生产每个配件的时间,由原来的7分钟减少了4.5分钟,原来每天生产140个配件,现在每天可生产多少个?10、电扇厂计划20天生产电扇1600台,生产5天后,由于改进技术,效率提高25%,完成计划还要多少天?11、兄妹两人同时从甲、乙两地相向而行,兄走完全程需2小时,妹走完全程需3小时,两人相遇时,兄比妹多走2.4千米,求甲乙两地之间的距离。
12、某人从甲地去乙地,每小时行7里,又从乙地回到甲地,每小时走4里,已知去时比回来时少用4.5小时,求甲乙两地距离?13、两辆汽车从甲地开往乙地,它们速度的比是10∶9,如果第一辆汽车用2小时,第二辆汽车要用多少小时?14、某工厂每天烧煤1.2吨,比原计划每天少烧0.1吨。
这样原计划烧60天的煤,现在可以烧多少天?15、一个纺织厂的织布车间,以前每人可以看2台织布机,每班用15人,现在每人多看3台织布机,每班可以少用几人?16、某化肥厂生产一批化肥,每天生产9吨,需要30天完成。
如果要27天完成,每天应生产多少吨?17、同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?18、加工一批零件,计划每天加工120个,10天完成。
实际比计划每天多加工30个,实际几天完成任务?19、从甲地到乙地,快车每小时行65千米,6小时到达,它比慢车快5千米,慢车需几小时到达?20、一个机械厂有一批煤,原计划每天烧15吨,可以烧60天,实际每天比原计划节约20%,这批煤实际烧了多少天?21、南河村抢收小麦,原计划每天收3.2公顷,15天完成任务。
实际比原计划每天多收25%,实际多少天完成?22、同学们为幼儿园小朋友做一批小玩具。
原计划每天做20件,7天完成。
结果提前2天完成了任务,平均每天做多少件?23、一艘轮船,从甲地到乙地每小时航行20千米,18小时到达。
从乙地返回甲地,每小时多航行4千米,返回需要多少小时?24、一个车间生产一批机器零件,原计划每天生产240个,25天可以完成。
如果要提前5天完成,每天要完成原计划的百分之几?25、有若干桶汽油,计划可用120天,技术革新后,每天实际用汽油10千克,结果比原计划多用了12天。
问原计划每天用多少汽油?26、一辆汽车开往某地,每小时行30千米,预定2小时到达。
行驶半小时后,因故停车15分钟,如果仍要求在预定的时间到达,以后的车速每小时必须加快多少千米?27、一个车间,原来用边长3分米的方砖来铺地,共需方砖640块,现在用边长比原来大1分米的新方砖重新铺地,需要新方砖多少块?28、一个运输队有载重量相同的汽车32辆,每天运货物256吨。
照这样计算,增加8辆这样的汽车,每天要比原来多运货物多少吨?29、有一堆煤,原计划每天烧6吨,可以烧70天,由于技术革新,每天可节省0.4吨,这堆煤可以烧几天?30、前进村计划每天积肥38吨,25天完成任务,如果每天多积肥12吨,可以提前几天完成任务?31、一个工厂加工一批机器,计划每天加工42台,8天完成任务,如果要提前1天交货,每天应增加机器多少台?生产效率提高百分之几?32、一艘轮船以每小时48千米的速度,经过3小时45分由A开往B,回来时每小时慢8千米,需要用多少小时?33、一条排水沟10个人挖,12天可以挖完,现在增加5人,几天可以挖完?34、一个机械厂原计划每天生产56台车床,9天完成任务,如果提前2天完成,每天要多生产多少台?35、甲乙两个齿轮齿数的比是5∶9,乙齿轮每分钟转40周,甲齿轮每分钟转多少周?36、一辆汽车从甲地到乙地,原来每小时行63千米,5小时到达,后来改换行车速度,4小时就到达,现在比原来每小时多行多少千米?37、在一段铁路上,工人同志用每根9米长的新铁轨代替原来每根6米长的旧铁轨,换下360根旧铁轨需多少根新铁轨?38、服装厂用一批布加工制服,用旧剪裁方法每套用布15尺可做1800套,现在用新的剪裁方法每套节省用布10%,用新方法可做多少套?39、有一项任务63人45天完成,工作15天后由于急用要提前12天完成,需要增加多少人?40、开垦一块荒地120人65天完成,如果200人可提前几天完成?41、一架飞机从甲地飞往乙地,每小时飞540千米,3小时到。
回来时每小时飞480千米,比去时要多用几小时?42、解放军某部在一次演习中计划每小时行12里,2.5小时到达,结果提前0.5小时到达,求每小时实际行多少里?43、解放军某部在一次行军中,行程1350里,用了27天,回来时速度加快了20%,求提前几天到达营地?44、甲乙两人各走一段路,速度比是3∶4,所用的时间比是4∶5,路程比是多少?45、甲地到乙地是斜坡路,一辆卡车上坡速度是30千米,下坡速度是45千米,往返一次共需4.5小时,甲乙两地相距多少千米?46、用100千克海水可以晒出3千克盐,照这样计算,45吨海水可以晒多少吨盐?47、2000吨的油菜籽可榨出菜油900吨,照这样计算。
(1)500千克油菜籽可榨油多少千克?(2)要榨出菜油500千克需油籽多少千克?48、一间房子要用方砖铺地,用边长是2分米的方砖,需要432块。
如果用边长是3分米的方砖,需多少块砖?49、师徒两人合做了84个零件,师傅5分钟做一个,徒弟9分钟做一个,要求在相同的时间完成,每人应该分配到多少个零件?50、走同一段路,小玲要12分,小丽要18分,已知小玲和小丽两家相距600米,这天两人同时从家出发向对方家走去,相遇时两人各走多少米?51、某一时刻测得一烟囱在阳光下的影长为16.2米,同样测得一长4米的竹杆影长为1.8米,求烟囱的高度。
52、收割一块田的水稻,2.5小时收割了这块地的5/8,照这样计算,还要多少小时才能收割完这块地?53、某工厂计划生产一批零件,12个人工作6小时,完成了计划的60%,照这样计算,其余的由20个工作来做,还要工作几小时?54、用弹簧秤称物体,称2千克的物体,弹簧长12.5厘米,称6千克的物体,弹簧长13.5厘米,求称5千克的物体时,弹簧全长多少厘米?55、快车从甲站开往乙站,需要8小时,慢车从乙站开往甲站需要10小时,两车同时从两站相向而行,相遇时慢车行了240千米,求两站的距离。
56、客车和货车同时从甲、乙两地的中点反向行驶,3小时后客车到达甲地,货车离乙地还有22千米,已知货车与客车的速度比是5:6,甲、乙两地相距多少千米?57、客、货两车同时从甲、乙两地相对开出,客车每小时行50千米,货车每小时行全程的1/16,相遇时客车和货车所行路程的比是5:6,甲、乙两地相距多少千米?58、甲、乙两车同时从A、B两地相向而行,当甲到达B地时,乙距A地30千米,当乙车到达A地时,甲车超过B地40千米,问A、B两地相距多少千米?59、一对互相咬合的齿轮,主动轮100个齿,每分钟转90转。
要使从动轮每分钟转300转,从动轮应有多少个齿?60、甲城和乙城相距368千米,一摩托车从甲城到乙城,每小时的速度比原计划减少1/5,结果推迟2小时到达,求原计划每小时行多少千米?61、一车汽车从A地到B地,如果每小时行54千米,比原定时间提前1小时到达,如果每小时行45千米,比原定时间推迟1小时到达,那么A地到B地相距多少千米?62、甲乙两车从相距180千米的A地去B地,甲车比乙车晚3/2小时出发,结果两车同时到达,甲乙两车速度的比是4:3,甲车每小时行多少千米?63、东风机械厂加工一批零件,30人工作,每天工作8小时,20天可以完成,后来实际工作人数减少5人,并且提前4天完成任务,问每天工作几小时?64、一项工程,甲乙两队合做8天完成,已知单独做时甲完成1/4与乙完成1/3所用的时间相等,求单独做时,甲、乙各需多少天?65、一项工程,甲乙两队合做10天完成,已知单独做时,甲1/2小时与乙1/3小时的工作量相等,求单独做时,甲、乙各需多少天?66、判断。
<1>某班男生有8人,女生有10人,男生与女生人数之比是0.8。
()<2>甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。
()<3>在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。
()<4>两个圆的周长比是2∶3,面积之比是4∶9。
()67、选择题<1>固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间()A.成正比例B.成反比例C. 不成比例67、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。
68、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。
若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?69、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。
现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?70、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?71、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?72、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?73、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?74、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?75、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?76、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。