有限元发展
- 格式:ppt
- 大小:2.84 MB
- 文档页数:20
有限元的发展历史和趋势
一、发展历史
1、古代初期
从古代存在已久的古典有限元法源于单元方程理论,其发展溯源可见其有权威。
已有古典有限元技术,曾经是一个古典概率分析方法,并在一系列经典课本中展现出来,如古典电磁学、经典水力学等。
其在结构力学及电磁学等科学领域的应用,极大地推进了科研发展。
2、20世纪初
在20世纪初,有许多科学家把它应用于结构力学及建筑结构设计等方面,如J.H.Argyris在1918年提出的形式框架有限元法,C. Taylor 於1926年提出基于单元分析的结构有限元法,R. Clough在1960年发明的有限元法等。
在此时期,有许多研究者为改善古典有限元技术而努力,提出了许多新的有限元理论,如Galerkin形式有限元法,Ritz形式有限元法,Rayleigh-Ritz有限元法,几何与元素相结合的有限元法等。
3、20世纪60年代
在20世纪60年代,美国工程师B. A. Szabo首先把有限元法用于电磁场的研究,他在1963年出版了第一本专门介绍有限元法的著作《有限元法在电磁场理论中的应用》,在此后又出版了《有限元法的数学原理》(1969年)、《有限元法及其应用》(1972年)等。
20世纪70年代,许多科学家又着手开发新的有限元技术,从而把有限元法应用到各种工程。
有限元分析系统的发展现状与展望
一、简介
有限元分析是一种应用于结构分析和设计的计算机化方法,它是利用
变分原理计算工程结构的有限元分析程序。
它是结构设计的一种重要手段,在结构设计中,它可以帮助工程师更好地了解受力状况,更好地优化设计。
在结构分析过程中,有限元分析可以精确地模拟出复杂的结构问题,并有
效地估算出结构的受力性能。
本文将从发展现状和展望两方面对有限元分
析系统进行详细介绍。
二、发展现状
1、算法及程序的发展。
有限元分析的主要发展方向之一就是算法和
程序的发展。
在这方面,目前发展非常迅速,具有显著的改进。
例如,在
有限元分析算法方面,目前已经发展出了各种适用于不同工程问题的算法,如结构本构分析算法、局部应变算法、有限元空间算法等。
在有限元分析
程序方面,目前已经开发出稳定可靠、功能强大的程序,以解决复杂结构
分析问题。
2、计算机硬件的发展。
在近年来,计算机硬件得到了极大的发展,
大大提高了计算速度和计算精度。
在有限元分析中,计算机硬件的发展对
数值解决复杂工程问题具有重要意义,在解决实际工程问题方面带来了重
大改进。
有限元方法在应用数学中的发展趋势是什么有限元方法作为应用数学中的一个重要工具,在解决各种实际问题方面发挥着关键作用。
随着科学技术的不断进步和应用需求的日益复杂,有限元方法也在不断发展和演变。
在过去的几十年里,有限元方法已经取得了显著的成就。
它成功地应用于结构力学、流体力学、电磁学等众多领域,为工程设计和科学研究提供了准确而可靠的数值解。
然而,时代在发展,新的挑战和需求不断涌现,这也促使有限元方法朝着更先进、更高效、更精确的方向迈进。
一方面,随着计算机技术的飞速发展,计算能力得到了极大的提升。
这使得有限元方法能够处理更加大规模和复杂的问题。
以往由于计算资源的限制,一些复杂的三维模型或者多物理场耦合问题可能难以进行精确模拟。
如今,高性能计算的出现为有限元方法打开了新的大门,使其能够在更短的时间内获得更精细的结果。
同时,多物理场耦合问题的研究成为了有限元方法发展的一个重要方向。
在许多实际应用中,物理现象往往不是单一的,而是涉及多个物理场的相互作用。
例如,在能源领域,电池的性能不仅取决于电化学过程,还受到热传递和力学变形的影响。
有限元方法需要能够有效地处理这些多物理场耦合问题,以提供更全面和准确的模拟结果。
在精度方面,有限元方法也在不断改进。
传统的有限元方法在处理某些问题时可能会出现精度不足的情况,特别是对于具有奇异性或者复杂边界条件的问题。
为了提高精度,新的数值算法和单元类型不断被提出。
例如,自适应有限元方法能够根据问题的特点自动调整网格的疏密程度,从而在保证计算效率的前提下提高精度。
另外,有限元方法与其他数值方法的结合也成为了一个趋势。
例如,有限元方法与边界元方法的结合,可以更好地处理无界区域的问题;与蒙特卡罗方法的结合,可以用于处理不确定性和随机性问题。
这种结合能够充分发挥不同方法的优势,为解决复杂问题提供更强大的手段。
在模型的建立和优化方面,有限元方法也面临着新的挑战和机遇。
随着人工智能和机器学习技术的发展,如何利用这些技术来自动建立有限元模型、优化模型参数,成为了研究的热点。
有限元的发展历史和趋势
有限元法(Finite-Element Method,以下简称FEM)是现代工程和
科学研究中一种常用的方法,它可以大大提高计算的效率,减轻计算工作,帮助计算者迅速解决复杂的数学问题。
1960年,Timoshenko和Gere在《力学原理》一书中首次提出了有限
元分析的概念,这成为有限元技术的开端。
他们认为,由许多有限尺寸的
单元组成的实体可以被视为由有限多边形尺寸的单元组成,这就被称为有
限元分析,成为20世纪70年代结构力学计算的基础。
随着计算资源的发展,解决复杂结构和场问题的能力也发生了巨大变化。
尤其是在80年代,由于计算的速度和计算量的大幅度增加,有限元
法被广泛应用于航空航天、电力、原子能、汽车等领域,扮演着越来越重
要的角色。
此外,它还用于求解许多复杂的场问题,从而获得了巨大进展。
随着信息技术的发展,芯片技术和并行计算的应用使有限元法取得了
新的发展,目前已经应用于许多领域,比如:土木工程、流体力学、医学
工程、声学、生物工程、材料科学等领域。
有限元的发展历史和趋势摘要1965年,“有限元”这个名词第一次在我国出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。
有限元法(Finite Element Method,简写为FEM)是求解微分方程的一种非常有效的数值计算方法,用这种方法进行波动数值模拟受到越来越多的重视。
有限元法起源于固体力学,并逐步扩展到热传导、计算流体力学、电磁学等不同领域,已经成为数学物理中很重要的数值计算方法。
关键词有限元数值发展趋势前言有限元方法在数值计算方法中具有极为重要的地位,有限元方法在应用中不仅本身具有很大的潜力,而且,结合其它理论和方法还有广阔的发展前景。
1有限元的发展历程有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。
有限元法是受内外动力的综合作用而产生的。
1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。
有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。
1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。
有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。
在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。
在国内,我国数学家冯康在特定的环境中独立于西方提出了有限元法。
1965年,他发表论文《基于变分原理的差分格式》,标志着有限元法在我国的诞生。
冯康的这篇文章不但提出了有限元法,而且初步发展了有限元法。
他得出了有限元法在特定条件下的表达式,独创了“冯氏大定理”并且初步证明了有限元法解的收敛性。
有限元的发展历史现状及应用前景有限元方法是一种数值计算方法,主要用于求解连续介质的力学问题。
它通过将连续介质离散成有限数量的元素,并基于一定的数学方法和力学理论,将问题转化为求解代数方程组的问题。
有限元方法在解决复杂工程问题、优化设计和预测结构性能等方面具有广泛的应用。
有限元方法的历史可以追溯到19世纪末的工程力学中。
当时,许多工程问题的解决都要依赖于解析方法,但对于复杂的几何形状和边界条件来说,解析方法无法有效地求解。
1956年,美国工程师D.R. Courtney提出了有限元方法的一般形式。
此后,有限元方法得到了快速发展,成为计算力学领域的重要工具。
有限元方法的原理是将连续介质离散成有限数量的元素,如三角形单元或四边形单元,并将元素之间的关系用数学公式表达出来。
通过构建系统方程组,根据边界条件,可以求解出未知变量的数值解。
有限元方法通过近似处理和插值方法,能够在不同的几何形状和边界条件下求解力学问题。
有限元方法的应用非常广泛。
在工程领域中,有限元方法在结构力学、热传导、流体力学等方面得到了广泛应用。
在建筑工程中,有限元方法可以用于分析建筑结构的强度和刚度,评估结构的安全性。
在航空航天领域,有限元方法可以用于分析飞机部件的应力分布和疲劳寿命,优化结构设计。
在汽车工业中,有限元方法可用于分析汽车部件的刚度和强度,提高车辆的安全性和性能。
此外,在地震工程、电力工程、化工工程等领域,有限元方法也发挥着重要的作用。
未来,有限元方法的应用前景非常广阔。
随着计算机技术和数值算法的不断发展,有限元方法的计算效率将进一步提高,可以求解更加复杂和大规模的问题。
有限元方法在模拟和解决多物理场耦合问题方面也将得到更多的应用。
例如,结构-流体耦合问题、热-结构耦合问题等。
此外,随着材料科学和生物医学工程的发展,有限元方法还将应用于材料力学、生物力学等领域。
总之,有限元方法作为一种求解力学问题的数值计算方法,在工程领域具有重要的地位和广泛的应用。
医学有限元的发展历程一、有限元方法的起源与基础理论有限元方法(Finite Element Method,简称FEM)起源于20世纪40年代,由Courant首次提出用于解决流体力学问题。
这种方法的核心思想是将连续的求解域离散化为有限个小的、互连的子域(即有限元),从而将复杂的偏微分方程简化为每个小单元上的代数方程。
二、医学领域有限元的早期应用在医学领域,有限元方法的应用起步较晚,但发展迅速。
早期主要应用于生物力学和生物医学工程领域,如骨骼生物力学、心脏模型等。
随着计算机技术的进步,特别是X射线CT技术的出现,医学影像数据可用于生成详细的人体组织结构模型,从而为有限元分析提供了更精确的物理模型。
三、医学有限元在生物力学研究中的应用生物力学是医学有限元应用的重要领域。
通过有限元分析,可以模拟人体各种生理和病理状态下的生物力学行为,如骨骼应力分布、关节运动、血流动力学等。
这些研究有助于深入理解疾病的发病机制,并为疾病的诊断和治疗提供依据。
四、医学有限元在组织工程和再生医学中的应用组织工程和再生医学是近年来发展迅速的领域,有限元方法在模拟和预测组织或器官的生长、发育和功能方面具有重要价值。
例如,通过建立有限元模型来模拟软骨、骨骼、肌肉等组织的生长和修复过程,有助于优化组织工程的设计和实验方案。
五、医学有限元在药物研发和个性化治疗中的应用随着个性化医疗的发展,有限元方法在药物研发和个性化治疗中的应用逐渐增多。
例如,利用有限元模拟药物在人体内的分布和扩散过程,可以预测药物的疗效和副作用,为新药研发提供有力支持。
此外,通过建立患者的个体化有限元模型,可以制定个性化的治疗方案,提高治疗效果。
六、医学有限元技术的进步和挑战随着计算技术的不断进步,医学有限元分析的规模和精度也在不断提高。
例如,高精度算法的发展使得模型的计算更加精确和快速;大规模并行计算技术的应用使得可以对更大规模的人体组织结构进行模拟和分析。
然而,医学有限元技术的发展仍面临一些挑战,如建立更精确的生物材料模型、处理复杂的边界条件和多物理场耦合问题等。
有限元方法的发展史有限元方法是一种数学计算方法,用于解决连续介质力学问题。
它的发展历史可以追溯到20世纪50年代,经过几十年的发展和完善,如今已成为工程和科学领域中最常用的数值计算方法之一。
有限元方法的发展始于20世纪50年代,当时工程师和科学家们面临着处理复杂结构和材料行为的问题。
传统的解析方法往往无法应用于这些问题,因此需要一种新的计算方法来模拟和分析实际情况。
有限元方法的出现正好满足了这一需求。
最早的有限元方法是由地球物理学家Turner等人在20世纪50年代末提出的。
他们使用有限差分法来近似计算连续介质的力学行为。
随着计算机技术的进步,有限元方法得以快速发展。
1960年代,有限元方法开始在工程领域得到广泛应用,特别是在结构力学和固体力学领域。
有限元方法的发展受益于计算机硬件和软件技术的进步。
计算机的出现大大提高了计算能力和效率,使得有限元方法可以应用于更加复杂的问题。
同时,有限元方法的软件也逐渐得到了完善和发展,使得用户能够更加方便地进行模拟和分析。
在有限元方法的发展过程中,还出现了许多改进和扩展的方法。
例如,有限元方法可以用于处理非线性材料行为、动力学问题、热传导问题等。
不断的改进和扩展使得有限元方法的应用领域越来越广泛,已经涉及到了各个工程和科学领域。
近年来,随着计算机技术的不断进步,有限元方法也在不断发展。
高性能计算机和并行计算技术的出现,使得有限元方法可以应用于更加复杂和大规模的问题。
同时,有限元方法的优化和自适应技术也得到了广泛研究和应用,进一步提高了计算效率和准确性。
有限元方法的发展经历了几十年的演变和完善,从最初的简单近似到如今的复杂应用,它已经成为工程和科学领域中不可或缺的数值计算方法。
随着计算机技术的不断进步和应用需求的不断增加,有限元方法将继续发展,并为解决更加复杂和真实的问题提供有效的数值计算手段。
有限元方法的发展及应用有限元方法的发展可以追溯到20世纪50年代,当时数学家、工程师和物理学家开始使用有限元方法来解决结构力学问题。
最早的有限元方法是基于简单的三角形或四边形划分网格,通过近似的方式将连续介质离散化为有限数量的元素。
然后,通过求解一个代数方程组来得到数值解。
这种方法由于计算量小、理论基础牢固而得到了广泛应用。
随着计算机科学的发展,有限元方法得到了更广泛的应用。
计算机技术的进步使得复杂的有限元模型能够被处理,并且计算速度得到了大幅提升。
有限元方法的应用也从最初的结构力学问题扩展到了流体力学、热传导、电磁场、生物医学工程等领域。
有限元方法在工程领域具有很大的应用潜力。
在结构工程中,有限元方法可以用于分析房屋、桥梁和建筑物等结构的强度和刚度。
在汽车工程中,有限元方法可以用于分析汽车的碰撞和安全性能。
在航空航天工程中,有限元方法可以用于分析飞机的气动力学特性和结构强度。
在电子工程和电力工程中,有限元方法可以用于分析电路和传输线的电磁场特性。
有限元方法的应用不仅限于工程领域,还涉及到了其他学科的研究。
在生物医学工程中,有限元方法可以用于模拟人体组织的生物力学行为,如骨骼系统、心脏和血管的应力分布等。
在地球科学中,有限元方法可以用于分析地下水流动、地震波传播和岩土工程等问题。
在物理学中,有限元方法可以用于分析电磁场、热传导和量子力学等问题。
总之,有限元方法的发展及其应用已经取得了巨大的成功。
它在工程、力学、物理和地球科学等领域中得到了广泛应用,并为实际工程问题的解决提供了有效的数值方法。
然而,有限元方法的进一步发展仍面临着一些挑战,需要继续改进算法和技术,以满足更加复杂和多样化的工程问题的需求。
有限元发展概况有限元发展概况⼀、有限元法介绍有限元法的基本思想是将结构离散化,⽤有限个容易分析的单元来表⽰复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数⽬是有限的,节点的数⽬也是有限的,所以称为有限元法(FEM,FiniteElementMethod)。
有限元法是最重要的⼯程分析技术之⼀。
它⼴泛应⽤于弹塑性⼒学、断裂⼒学、流体⼒学、热传导等领域。
有限元法是60年代以来发展起来的新的数值计算⽅法,是计算机时代的产物。
虽然有限元的概念早在40年代就有⼈提出,但由于当时计算机尚未出现,它并未受到⼈们的重视。
随着计算机技术的发展,有限元法在各个⼯程领域中不断得到深⼊应⽤,现已遍及宇航⼯业、核⼯业、机电、化⼯、建筑、海洋等⼯业,是机械产品动、静、热特性分析的重要⼿段。
早在70年代初期就有⼈给出结论:有限元法在产品结构设计中的应⽤,使机电产品设计产⽣⾰命性的变化,理论设计代替了经验类⽐设计。
⽬前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强⼤,使⽤越来越⽅便。
⼆、有限元法的孕育过程及诞⽣和发展⼤约在300年前,⽜顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。
虽然,积分运算与有限元技术对定义域的划分是不同的,前者进⾏⽆限划分⽽后者进⾏有限划分,但积分运算为实现有限元技术准备好了⼀个理论基础。
在⽜顿之后约⼀百年,著名数学家⾼斯提出了加权余值法及线性代数⽅程组的解法。
这两项成果的前者被⽤来将微分⽅程改写为积分表达式,后者被⽤来求解有限元法所得出的代数⽅程组。
在18世纪,另⼀位数学家拉格郎⽇提出泛函分析。
泛函分析是将偏微分⽅程改写为积分表达式的另⼀途经。
在19世纪末及20世纪初,数学家瑞雷和⾥兹⾸先提出可对全定义域运⽤展开函数来表达其上的未知函数。
1915年,数学家伽辽⾦提出了选择展开函数中形函数的伽辽⾦法,该⽅法被⼴泛地⽤于有限元。