双轮平衡车
- 格式:doc
- 大小:103.50 KB
- 文档页数:3
双轮平衡车原理
双轮平衡车是一种智能交通工具,它可以通过感应和控制器的协同作用来保持平衡。
其原理是基于倒立摆的控制理论和陀螺效应。
在双轮平衡车的车身上,有一个称为陀螺仪或加速度计的传感器,用于检测车身的倾斜角度和加速度。
陀螺仪可以感知车身的前后倾斜,加速度计可以感知车身的左右倾斜。
当操纵者希望车辆保持平衡时,控制器会接收到陀螺仪和加速度计传感器的数据,并进行分析和计算。
根据车身的倾斜角度和加速度,控制器会发送指令给车身上的电机。
根据指令,电机会分别给两个轮子提供不同的动力,从而使得车辆可以保持平衡。
如果车辆向前倾斜,控制器会让后轮旋转更快,向后输出动力,使车辆恢复平衡。
如果车辆向后倾斜,控制器会让前轮旋转更快,向前输出动力,同样可以使车辆恢复平衡。
这种通过感应器和控制器的反馈调节,使得双轮平衡车能够自动保持平衡的原理就是基于倒立摆的控制理论和陀螺效应。
通过不断地调整电机的转速和输出动力,车辆可以保持在一个平衡的状态,从而实现平稳行驶。
菠萝车的使用技巧菠萝车是一种双轮平衡车,被称为“个人交通工具的革命”。
它不仅适用于日常代步,还可以作为娱乐工具,因其易学易用、绿色环保的特点,受到了越来越多人的喜爱。
下面给大家介绍一些菠萝车的使用技巧。
首先要熟悉菠萝车的结构。
菠萝车包括两个车轮、一个脚踏板和一个把手。
脚踏板上有两个标识,表示左脚和右脚的位置。
双脚分别放在标识上,保持身体平衡。
第一次使用菠萝车时,一定要选择一个平整的地面进行操作。
站在车旁边,双手去抓住车把手,步伐保持稳定,将一个脚放在踏板上,然后利用重心控制车身平衡。
一开始可能会感到不习惯,但只要保持冷静,稍作调整就能掌握平衡。
当菠萝车保持平衡时,我们开始学习基本的操作技巧。
首先,要学会前进和后退。
借助于身体前倾或后仰的动作,使车速保持相对平稳。
当想要停下时,将身体重心回正即可。
然后是学习转弯,因为两个车轮可以独立转动,所以菠萝车具备很好的转弯能力。
转弯时,可以通过身体转动的方式来控制车轮的转动方向。
当想要向左转时,身体向左倾斜,右车轮转动;想要向右转时,身体向右倾斜,左车轮转动。
菠萝车在使用过程中,需要注意以下几点。
首先,要选择合适的速度行驶,不要过快,以免造成危险。
其次,行驶时注意观察路面情况,避免碰到障碍物或凸起的地方。
同时要遵守交通规则,尤其在人多的地方要减速慢行,以免造成伤害。
另外,菠萝车在使用过程中可能会出现一些故障,如电池电量不足、车速异常等。
在这种情况下,应及时停下来检查和处理,避免长时间使用无效造成更大的损坏。
总之,学习并掌握好菠萝车的使用技巧是非常重要的。
只有灵活运用这些技巧,才能更好地享受菠萝车带来的便利和乐趣。
基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定;本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合;系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID 算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态;整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态;通过蓝牙,还可以控制小车前进,后退,左右转;关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法Design of Control System of Two-Wheel Self-Balance Vehicle based onMicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometergyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG for controlling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable state quickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around. Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion;Complementary filter; PID algorithm1 绪论自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求;比如,户外移动机器人需要在凹凸不平的地面上行走,有时机器人所需要运行的地方比较狭窄等;如何解决机器人在这些环境中运行的问题,已成为现实应用中所需要面对的一个问题;两轮自平衡小车就是在这些的需求下所产生的;这种机器人相对于其他移动机器人的最显着特点是:采用了两轮共轴、各自独立驱动的方式工作,车身重心位于车轮轴上方,通过车轮的前后滚动来保持车身的动态平衡,并可以在直立平衡状态下完成前进、后退、左右转等任务;正是由于其特殊的构造,两轮自平衡小车适应地形变化的能力较强,且运动灵活,可以胜任一些复杂环境中的工作;两轮自平衡车自面世以来,一直受到世界各国机器人爱好者和研究者的关注,这不仅是因为两轮自平衡车具有独特的外形和结构,更重要的是因为其自身的本质不稳定性和非线性使它成为很好的验证控制理论和控制方法的平台,具有很高的研究价值;早在1987年,日本电信大学教授山藤一雄就提出了两轮自平衡机器人的概念;这个基本的概念就是用数字处理器来侦测平衡的改变,然后以平行的双轮来保持机器的平稳;本世纪初;美国发明家狄恩·卡门与他的DEKA公司研发出了可以用于载人的两轮自平衡车,并命名为赛格威,投入市场后,引发了自平衡车的流行;由于两轮自平衡车有着活动灵活,环境无害等优点,其被广泛应用于各类高规格社会活动中,目前该车已用于奥运会、世博会、机场、火车站等大型场合;自平衡小车研究意义由于两轮自平衡小车具有结构特殊、体积小、运动灵活、适应地形变化能力强、能够方便的实现零半径回转、适合在拥挤和危险的空间内活动、可以胜任一些复杂环境里的工作;因此两轮自平衡车有着广泛的应用前景,其典型应用包括代步工具、通勤车、空间探索、危险品运输、高科技玩具、控制理论测试平台等方面;目前自平衡车的应用如自平衡的代步车正在流行开来;因此两轮自平衡车的研究很有意义;论文的主要内容本论文主要叙述了基于单片机的两轮自平衡车控制系统的设计与实现的整个过程;主要内容为两轮自平衡小车的平衡原理,直立控制,蓝牙控制;整个内容分为六章,包括绪论、课题任务与关键技术、系统原理概述、系统硬件设计、系统软件设计和系统的机械安装及调试;第一章主要讲解了课题的研究背景及意义,国内外研究现状;第二章主要讲解了设计的主要任务与所需的关键技术;第三章主要讲解了两轮自平衡小车控制系统的直立控制原理,转向控制原理;第四章主要讲解了系统的硬件设计,介绍了自平衡小车控制系统的硬件构成,主控芯片STC12C5A60S2的结构及组成,以及稳压电源模块,倾角测量模块,直流电机驱动模块,蓝牙控制模块和两轮测速模块的设计;第五章主要讲解了软件设计的算法功能与框架,主要描述了控制系统的程序实现以及PID算法的使用;第六章主要讲解了系统的调试与参数整定;最后总结与展望,总结本设计的各个模块,并对两轮自平衡小车的优化方向进行简要的阐述;2 课题任务与关键技术主要任务本文研究并设计了一种基于单片机的两轮自平衡小车控制系统,实现了两轮小车的自主直立控制与蓝牙控制功能;系统采用STC12C5A60S2单片机作为核心控制单元,通过增加各种传感器,设计相应电路并编写相应程序完成平衡控制与蓝牙控制;系统需要利用加速度计和陀螺仪获得车体的倾角和角速度,并对数据进行互补滤波融合;通过编码器获得两轮的速度信息;根据获得的数据信息对速度和倾角进行闭环控制;加入蓝牙通信控制,将所有输出数据进行叠加,输出至驱动芯片,实现对小车的控制;关键技术系统设计两轮自平衡车的系统设计包括:车身机械结构设计,硬件系统设计和软件系统设计;在机械结构上必须保持小车重心的稳定性,才能避免控制系统过于复杂;硬件系统必须包含自平衡车所需的所有电子系统与电气设备;软件系统则负责车身平衡控制与目标效果的实现;数学建模模型的建立有助于控制器的设计,以及控制系统各项参数的大概确定;模型的建立主要使用牛顿力学定律;姿态检测两轮自平衡车是一个本质不平衡的系统,控制系统对小车的精确控制依赖于姿态检测系统对车身姿态及运动状态的精确检测;目前,一般采用由陀螺仪和加速度计等惯性传感器组成的姿态检测系统对车身倾角进行实时、准确的检测;但是由于惯性传感器自身固有的特性,随着温度、震动等外界变化,会产生不同程度的噪声与漂移,因此必须采用一些滤波算法,对加速度计和陀螺仪所采集的数据进行融合,使测量角度更加真实稳定;控制算法两轮自平衡车所实现的平衡是一种动态的平衡;在遇到外界干扰时,需要通过控制算法来快速将小车恢复至平衡状态;传统的PID算法在各类工业场合有着广泛的应用,完全可以满足本控制系统的要求,因此本控制系统设计采用PID控制算法;3 系统原理分析控制系统任务分解根据系统要求,小车必须能够在没有外界干预的情况下依靠两个同轴安装的车轮保持平衡,并完成前进,后退,左右转等动作;相对于四轮车,控制系统的任务更为复杂,为了能解决该问题,首先将复杂的问题分解成简单的几个问题进行讨论;对系统要求进行分析,可知维持小车直立,并在受到外界干扰后迅速恢复稳态,完全依赖于一对直流电机对车轮的驱动;因此本控制系统的设计可以从对电机的控制着手,控制电机的转速以及转向来实现对小车的控制;小车的控制任务可以分解成以下三个基本任务:(1)控制小车直立:通过控制两个电机的转向保持小车的直立状态;(2)控制小车车速:通过控制两个电机的转速实现车速控制;(3)控制小车转向:通过控制两个电机的转速差实现转向控制;以上三个任务都是通过控制小车两个车轮的驱动电机完成的;直流电机的控制最终取决于电机两端输入的电压大小,将电机近似认为处于线性状态,因此上述三个基本任务可以等效成三种不同控制目标的电压,将这三种电压进行叠加后,便可以得到最终所需的电压,并将其施加在电机上以达到所追求的控制效果;在这三个任务中,保持小车平衡是关键,三个任务执行的优先级为:平衡控制>速度控制>转向控制;由于小车同时受到三种控制的影响,从平衡控制角度来看,其他两个控制就成为了它的干扰;因此对小车速度、方向的控制应该尽量保持平滑,以减少对平衡控制的干扰;上述三种控制各自独立进行,它们各自假设其他两个控制都已经达到稳定;比如控制小车加速和减速的时候,平衡控制一直在起作用,它会自动改变小车的倾角,使小车实现加速和减速;控制原理生活中有很多直立控制的例子,例如一个正常人可以经过简单的练习,让一根直木棒在水平的掌心中保持直立;这需要两个条件:一是托着木棒的手掌可以移动;二是眼睛可以观察到木棒的倾斜角和倾斜趋势角加速度;可以通过手掌的移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立;这两个条件缺一不可,这就是控制中的负反馈机制;单,因为小车有两个车轮着地,因此车体只会在一个平面内发生倾斜;控制车轮转动便可抵消倾斜的趋势从而保持车体直立;数学模型二轮自平衡小车在建模时可以将其简化为倒立摆,便于进行受力分析并建立其数学模型,从而更好的设计控制系统;图 单摆模型与倒立摆模型通过对单摆模型的观察可知,当物体离开平衡位置后会受到重力与线的合作用力,驱使重物回复至平衡位置,并进行周期运动,由于空气阻力的存在,单摆最终会停在平衡位置;可以得出,单摆保持平衡的条件有两点:(1) 受到与位移方向相反的回复力作用;(2) 受到和运动速度相反的阻尼力作用;如果没有阻尼力的作用,单摆会在平衡位置左右晃动无法停止,如果阻尼力过小,单摆会在平衡位置震荡,如果阻尼力过大,则单摆的回复时间将变长,因此存在一个临界阻尼系数,使得单摆停止在平衡位置所需时间最短;车体垂直,车车体向前倾车体向后倾斜,图 通过车轮控制车体平衡倒立摆在偏离平衡位置时,受到的合力与位移方向相同,因此倒立摆不能像单摆一样稳定在垂直位置,并且会加速偏离平衡位置直至倒下;为了让倒立摆能像单摆一样平衡在稳定位置,只能通过增加额外受力使回复力与位移方向相反;控制车轮做加速运动,以小车作为参考系,重心受到一个额外的惯性力,与车轮加速度大小相同,方向相反;因此倒立摆所受到的回复力为F =mgsinθ−macosθ 3-1根据控制系统的特性,角θ需要控制在很小的范围内,并且假设控制车轮加速度与角θ成正比,比例系数为k 1,因此上式可近似处理为F =mgθ−mk 1θ 3-2此时,只要k 1>g ,回复力的方向便和位移方向相反,此时小车可以恢复到平衡位置;为使小车能在平衡位置尽快的稳定下来,还需要有阻尼力,阻尼力与角速度方向相反,大小成正比;式3-2可变为 F =mgθ−mk 1θ−mk 2θ′ 图 小车受力分析mgsinθ−macosθmgθ m3-3式中,k1,k2均为比例系数,θ为小车倾角,θ′为角速度;只要满足k1>g,k2>0,便可以将小车维持在直立状态;k2是小车回到垂直位置的阻尼系数,选取合适的阻尼系数可以保证小车可以尽快稳定在垂直位置;因此为了控制小车稳定,需要精确的测量小车倾角θ的大小和角速度θ′的大小,并以此控制车轮的加速度;4 系统硬件设计本控制系统主要由以下几个模块组成:STC12C5A60S2单片机最小系统、电源管理模块、车身姿态感应模块、电机驱动模块、速度检测模块、蓝牙模块,各模块关系图如下所示:图硬件设计总体框图STC12C5A60S2单片机介绍本控制系统采用STC12C5A60S2单片机作为控制核心;该单片机是深圳宏晶科技有限公司的典型单片机产品,采用了增强型8051内核,片内集成了60KB程序Flash、1KB数据FlashEEPROM、1280字节RAM、2个16位定时/计数器、44根I/O口线、两个全双工异步串行口UART、高速同步通信端口SPI、8通道10位ADC、2通道PWM/可编程计数器阵列/捕获/比较单元PWM/PCA/CCU、MAX810专用复位电路和硬件看门狗等资源;STC12C5A60S2具有在系统可编程ISP功能和在系统调试ISD功能,可以省去价格较高的专门编程器,开发环境的搭建非常容易,并且该单片机所有指令和标准的8051内核完全兼容,具有良好的兼容性和很强的数据处理能力;STC12C5A60S2系列单片机的内部结构框图如下所示,该单片机中包含中央处理器CPU、程序存储器Flash、数据存储器SRAM、定时/计数器、UART 串口、串口2、I/O接口、高速A/D转换、SPI接口、PCA、看门狗及片内R/C振荡器和外部晶体振荡电路等模块;STC12C5A60S2单片机几乎包含了数据采集和控制中所需的所有单元模块,可称得上一个片上系统;图 STC12C5A60S2系列内部结构框图图单片机最小系统电源管理模块电源管理模块为整个硬件电路提供所需的电源,其稳定性是整个硬件电路可靠运行的基础;为了减少各个模块之间的相互干扰,电源模块由若干相互独立的稳压电路模块组成;整个系统由三节的18650锂电池串联供电;选择LM2596S作为稳压芯片,整个系统的供电模块如下图所示;图系统供电模块示意图LM2596S开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性;该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件;该器件还有其他一些特点:在特定的输入电压和输出载荷的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80uA的待机电流;可实现外部断电;具有自我保护电路;该器件完全可以满足系统需要;稳压电路原理图如下图所示;图稳压电路原理图车身姿态感应模块在第三章原理分析中可知,为了控制小车稳定,需要精确的测量小车倾角θ的大小和角速度θ′的大小,并以此控制车轮的加速度,以此消除小车的倾角;因此小车倾角以及倾角的角速度的测量成为了控制小车直立的关键;测量小车倾角和角速度可以通过加速度传感器和陀螺仪实现;本控制系统的设计使用了整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时的轴间差的问题,减少了大量的封装空间;MPU6050对陀螺仪和加速度计分别用了三个16位的ADC,将其测量的模拟量转化为可输出的数字量,和所有设备寄存器之间的通信采用400kHz 的I2C 接口;为了精确跟踪快速和慢速的运动,传感器的测量范围都是用户可控的,陀螺仪的可测范围为±250,±500,±1000,±2000°/秒dps,加速度计可测范围为±2,±4,±8,±16g;量程越大,测量精度越低;MPU6050实物及坐标轴示意图如下图所示;加速度计MPU6050的加速度计部分可以测量出各轴方向上的加速度,并经过AD 转换后可输出数字信号;加速度检测的基本原理如下图所示;++++X++X图 MPU6050实物图与对应坐标轴示意图 加速度检测的基本原理通过微机械加工技术在硅片上加工形成了一个机械悬臂;它与相邻的电极形成了两个电容;由于加速度使得机械悬臂与两个电极之间的距离发生了变化,从而改变了两个电容的参数;通过集成的开关电容放大电路测量电容参数的变化,形成了与加速度成正比的电压输出;只需要测量出一个轴上的加速度,便可计算出小车的倾角;如下图所示,设小车前进方向是小车直立时MPU6050的Y 轴正向;当小车前倾时,小车重心在Y 轴上所受的力便是重力在Y 轴上的分力,为mgsinθ,因此MPU6050在Y 轴上所获得的加速度为 gsinθ;似乎只需要获得加速度数据就可以获得小车的倾角,但在实际小车的运行过程中,由于小车本身的运动所产生的加速度会产生很大的干扰信号叠加在上述测量信号上,使得输出信号无法准确的反映小车的倾角,如下图所示;小车运动所产生的振动加速度使得输出电压在实际倾角电压附近波动,可以使用低通滤波将其过滤,但也会使得信号无法实时反映小车的倾角变化,从而影响对小车的控制,使得小车无法保持平衡;图 小车受力分析图 加速度计信号波动陀螺仪陀螺仪可以用来测量物体的旋转角速度,它利用了旋转坐标系中的物体会受到克里利奥力的原理,在器件中利用压电陶瓷做成振动单元;当器件旋转时会改变振动频率从而反映出物体旋转的角速度;将MPU6050安装在小车上时,可以测量出小车倾斜的角速度,将角速度信号进行积分便可得到小车的倾角;如下图所示;由于陀螺仪输出的是车模的角速度,不会受到车体振动的影响,因此该信号中的噪声很小,小车的倾角数据又是由所测角速度积分得来,进一步使信号变得平滑,从而使得角度信号更加稳定;但是在实际情况中,测量所得的角速度信号存在微小的误差,经过积分运算之后,会形成累计误差,并会随着时间的延长逐步增加,最终导致电路饱和,无法形成正确的角度信号;如下图所示;测t图 小车的角速度和角图 角度积分漂如上所述,加速度计对加速度很敏感,所获得的数据会由于小车的运动产生高频噪声;而陀螺仪所测得的数据受到车体振动影响很少,但是随着时间延长,容易存在积分漂移;因此可以使用互补滤波,使得这两个传感器正好能弥补相互的缺点;简而言之,互补滤波就是在短时间内采用陀螺仪得到的角度作为最优,定时对加速度转化而来的角度进行取平均值处理来校正陀螺仪所得到的角度;具体实现方法如下图所示;利用加速度计所获得的角度信息θg 与陀螺仪积分后的角度θ进行比较,将比较的误差信号经过比例T g 放大之后与陀螺仪输出的角速度信号叠加之后再进行积分;从上图的框图可以看出,对于加速度计给定的角度θg ,经过比例、积分环节之后产生的角度θ必然最终等于θg ;由于加速度计获得的角度信息不会存在积累误差,所以最终将输出角度θ中的积累误差消除了;加速度计所产生的角度信息θg 中会叠加很强的噪声信号;为了避免该噪声信号对于角度θ的影响,比例系数T g 应该非常小;这样,加速度的噪声图 互补滤波原理框图信号经过比例、积分后,在输出角度信息中就会变得很小;由于存在积分环节,所以无论T g多小,最终输出角度θ必然与加速度计测量的角度θg相等,但是这个调节过程会随着T g的减小而延长;为了避免输出角度θ跟着θg过长,可以采取以下两个方面的措施:(1)仔细调整陀螺仪的放大电路,使得它的零点偏置尽量接近于设定值,并且稳定;(2)在控制电路和程序运行的开始,尽量保持小车处于直立状态,这样一开始就使得输出角度θ和θg相等;此后,加速度计的输出只是消除积分的偏移,输出角度不会出现很大的偏差;电机驱动模块本控制系统采用了TB6612FNG作为直流电机驱动器件,该器件具有很高的集成度,同时能提供足够的输出能力,运行性能和能耗方面也具有优势,因此在集成化、小型化的电机控制系统中,它可以作为理想的电机驱动器件;TB6612FNG是东芝半导体公司生产的一款直流电机驱动器件,它具有大电流MOSFET-H桥结构,双通道电路输出,可同时驱动2个电机;该器件每通道输出最高的连续驱动电流,启动峰值电流达2A/连续脉冲/单脉冲;4种电机控制模式:正转/反转/制动/停止;PWM支持频率高达100kHz;待机状态;片内低压检测电路与热停机保护电路;工作温度:-20~85℃;SSOP24小型贴片封装;如上图所示,TB6612FNG 的主要引脚功能:AIN1/AIN2、BIN1/BIN2、PWMA/PWMB 为控制信号输入端;AO1/AO2、BO1/BO2为2路电机控制输出端;STBY 为正常工作/待机状态控制引脚;VM~15V 和VCC~分别为电机驱动电压输入和逻辑电平输入端;TB6612FNG 是基于MOSFET 的H 桥集成电路,其效率高于晶体管H 桥驱动器,并且外围电路简单,只需外接电源滤波电容就可以直接驱动电机,利于减小系统尺寸;对于PWM 信号,它支持高达100kHz 的频率;TB6612FNG 在本控制系统中的电路连接如下图所示;如上图所示,AIN1/AIN2,BIN1/BIN2以及STBY 连接直单片机的普通I/O 口,STBY 控制器件的工作状态,AIN1/AIN2和BIN1/BIN2的输入决定电机的正反转;单片机的PCA 模块产生PWM 输出作为电机转速的控制手段,连接至TB6612FNG 的PWMA/PWMB;电路采用耐压值25V 的10uF 电解电容和的电容进行电源滤波,使用功率MOSFET 对VM 和VCC 提供电源反接保护;TB6612FNG 图 TB6612FNG 芯片功能示意图图 TB6612FNG 电路连接示意图的逻辑真值表如下图所示;表1 TB6612FNG逻辑真值表输入输出H H H/L H L L制动L H H H L H反转L H L H L L制动H L H H H L正转H L L H L L制动L L H H OFF停止H/L H/L H/L L OFF待机速度检测模块本系统采用安华高公司的L15D11型光电编码器作为车速检测元件,其精度达到车轮每旋转一周,旋转编码器产生448个脉冲,可满足控制精度的要求;图光电编码器由于光电管器件直接输出数字脉冲信号,因此可以直接将这些脉冲信号连接到单片机的计数器或外部中断端口;编码器每个光电管输出两个脉冲信号,它们波形相同,相位相差90°;如果电机正转,第二个脉冲落后90°;如果电机反转,第二个脉冲超前90°;可以通过这个关系判断电机是否正反转,但是在实际电路中,只检测一路脉冲信号,通过该信号得到电机。
两轮平衡车的应用场景
近年来,两轮平衡车(也称为电动独轮车)因其小巧、轻便、易携带和环保等优点,受到了越来越多人的喜爱和追捧。
它的主要应用场景如下:
1.出行代步。
随着城市化进程的加快,人们日益感受到交通拥堵的烦扰,而传统交通工具的疲劳和费用也让人烦恼。
相比之下,两轮平衡车无需担心交通拥堵、无需消耗体力,一键启动即可畅游城市。
2.旅游观光。
旅游是很多人的爱好,而两轮平衡车是一款旅游观光的理想伴侣。
它小巧轻便,穿行于熙攘的人流中非常便捷。
此外,它还可以通过手机连接导航软件,帮助人们在城市和景区中寻找最佳路线和景点。
3.体育锻炼。
两轮平衡车不仅可以代步,还可以成为一种有趣的运动方式。
因为使用时需要身体前后左右的控制和平衡,所以它有一定的锻炼身体和提升平衡能力的作用,而这些都是人们日常生活中很重要的事情。
4.社交互动。
两轮平衡车不仅可以带给人们方便和乐趣,还可以成为一种社交工具。
当人们以两轮平衡车为媒介与他人交流时,就能够更轻松地建立起友谊和互动,增加彼此的交流机会。
总之,两轮平衡车是一种多实用功能和多场景的工具,无论是出行、旅游、体育锻炼还是社交互动,它都能为人们带来很多好处。
不过,使用时也需要注意安全问题,预防意外发生。
摘要双轮自平衡车是一个高度不稳定两轮机器人,是一种多变量、非线性、绝对不稳定的系统,需要在完成平衡控制的同时实现直立行走等任务因其既有理论意义又有实用价值,双轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。
本文主要介绍了双轮平衡车的控制系统硬件设计方案。
此方案采用ATmega328 作为核心控制器,在此基础上增加了各种接口电路板组成整个硬件系统,包括单片机最小系统,姿态检测模块,直流驱动电机控制模块,电源管理模块,测速编码模块,串口调试等模块。
对于姿态检测系统而言,单独使用陀螺仪或者加速度计,都不能提供有效而可靠的信息来保证车体的平衡。
所以采用一种简易互补滤波方法来融合陀螺仪和加速度计的输出信号,补偿陀螺仪的漂移误差和加速度计的动态误差,得到一个更优的倾角近似值。
本文先阐述了系统方案原理,再分别就各模块工作原理进行详细的介绍与分析,最终完成车模的制作和电路原理图以及1PCB 板的绘制。
最后根据调试情况对整个系统做了修改,基本达到设计要求。
关键词双轮自平衡车模块设计传感器AbstractTwo-wheeled self-balanced car is a highly unstable robots, it is a system with Multivariable, nonlinear and absolute instability, it needs to complete the balance control tasks such as walking upright because of both theoretical significance and practical value. Two-wheeled self-balanced car in the last decade has aroused widespread concern in the robotics laboratory.This paper describes the control system hardware design of the wheel balanced car.This program uses ATmega328 as the core controller,base on this increase of various interface circuit board to building the hardware system. Peripheral circuits including the smallest single-chip system, the gesture detection module, the DC drive motor control module, power management module, velocity encoding module and serial debugging module. For the posture monitoring system,the information solely depends on the gyroscope or the accelerometer couldn’t make sure the balance of vehide.So the signals from the gyroscope and accelerometer were integrated by a simple method of complementary filtering for an optimal angle to compensate the gyroscope drift error and the accelerometer dynamic error.This article first describes the principle of the system program,then described in detail each module how to working out, the final completion of car models produced and circuit schematics and the PCB drawing.In the end, according to debug the situation on the whole system changes, the hardware system basically reached the design requirements.Keywords two-wheeled self-balanced car modular design sensor目录前言 (1)第1章绪论 (2)1.1 设计的依据与意义 (2)1.2 国内外同类设计的概况综述 (3)1.3 设计要求与内容 (3)第2章总体硬件方案设计 (5)2.1 总体分析 (5)2.2 总体方案设计 (5)2.3 方案框图 (7)第3章单元模块设计 (8)3.1 姿态检测模块 (8)3.2 单片机控制单元模块电路 (14)3.3 电机驱动模块 (19)3.4 串行通信模块 (21)3.5 电源管理模块 (24)结论 (26)参考文献 (27)致谢 (28)附录 (29)前言自平衡车自动平衡运作原理主要是建立在一种被称为“动态稳定”(DynamicStabilization)的基本原理上,也就是车辆本身的自动平衡能力。
两轮自平衡车控制系统的设计与实现一、自平衡车系统概述1、定义自平衡车是一种以双轮直立结构/双轮平移结构的小型无线遥控电动车,最初由电动车作为主要的运动机构,但也有可能有其他特殊机构,进行实时控制,使其能够在平衡和模式控制下,保持水平稳定态,实现自动平衡、自主康复和自由行走。
2、系统功能自平衡车系统的功能是通过实时控制平衡并实现模式控制,使自平衡车实现自动平衡、自主康复和自由行走,从而达到智能化的操作目的,解决双轮自行车无主动平衡功能的问题。
二、系统设计1、硬件系统自平衡车的硬件系统由电池、ESC(电子转向控制器)、遥控组件、周边传感器组件、电路板组件等构成。
2、软件系统自平衡车的控制系统主要由ARMCortex-M0 MCU、单片机程序、PID算法组成。
三、系统实现1、硬件系统实施(1)第一步,在自平衡车上安装ESC,ESC的电池由智能充电器连接,使自平衡车进行自动充电;(2)第二步,给控制器方向键插上遥控器,使用户可以控制车辆移动;(3)第三步,在车辆上安装多个传感器,在控制板上增加芯片,使用户可以对车辆进行实时监测;(4)第四步,在控制板上安装一个ARM Cortex-M0 MCU处理器,将控制算法由单片机程序烧录形成可控制的处理系统。
2、软件系统实施(1)随着ARM处理器的安装,自平衡车可以被SONI的特殊的烧录器进行烧录,该程序可以控制车辆的转向和速度;(2)安装完毕后,需要建立多个变量从传感器接受数据,读取车辆的平衡状态,并控制车辆前后左右的运动;(3)最后,我们选择PID算法来实现车辆实时的控制,根据车辆当前的实际情况,调节PID距离和速度增量使自平衡车实现实时的模式控制。
四、结论本文介绍了自平衡车控制系统的设计思想和实现步骤,通过控制平衡,实现自动平衡、自主康复和自由行走,使得自平衡车有更多的功能,在以后的应用中,自平衡车的研究和应用实际会有很大的推动作用。
智能双轮平衡车的设计原理
智能双轮平衡车是一种能够自主平衡并移动的机器人。
其设计原理基于以下几个方面:
1. 姿态控制原理:智能双轮平衡车通过检测车身的姿态来进行平衡控制。
通常使用陀螺仪或加速度计等传感器来检测车身倾斜的角度,然后使用控制算法来调整电机转速,使得车身保持平衡。
2. 转向控制原理:智能双轮平衡车通过控制两个电机的转速差来实现转向。
当需要车身左转时,右边的电机转速减小,左边的电机转速增加,从而使车身向左转动。
反之,当需要车身右转时,左边的电机转速减小,右边的电机转速增加。
3. 速度控制原理:智能双轮平衡车通过控制两个电机的转速来调节车辆的速度。
通常使用电机控制器或闭环控制算法来根据用户输入的速度指令,控制电机的转速。
4. 充电与电池管理原理:智能双轮平衡车通常使用锂电池作为电源,需要有充电电路和管理系统来管理电池的充电和放电过程。
充电电路通常与电源适配器相连,可以通过检测电池电量来自动充电。
同时,电池管理系统还需要监测电池的电压和温度等参数,以确保使用安全。
5. 用户交互原理:智能双轮平衡车通常会配备有界面或传感器,供用户与车辆
进行交互。
这些界面可以是按钮、触摸屏、语音控制等,用户可以通过这些界面给车辆发送指令,比如控制车辆前进、后退、转向等。
综上所述,智能双轮平衡车的设计原理主要涉及姿态控制、转向控制、速度控制、充电与电池管理以及用户交互等方面,通过使用传感器、控制算法和相应的硬件设备,实现车辆的平衡和移动。
电气电子工程学院自主创新作品两轮平衡小车摘要两轮自平衡小车具有体积小、结构简单、运动灵活的特点,适用于狭小和危险的工作空间,在安防和军事上有广泛的应用前景。
两轮自平衡小车是一种两轮左右平衡布置的,像传统倒立摆一样,本身是一种自然不稳定体,其动力学方程具有多变量、非线性、强耦合、时变、参数不确定性等特性,需要施加强有力的控制手段才能使其保持平衡。
本作品采用STM32单片机作为主控制器,用一个陀螺仪传感器来检测车的状态,通过dvr8800控制小车两个电机,来使小车保持平衡状态,通过2.4G模块无线通讯进行遥控来控制小车运行状态。
关键词:智能小车;单片机;陀螺仪。
目录一.前言 (4)一.两轮平衡车的平衡原理 (4)2.1 平衡车的机械结构..........................................................................错误!未定义书签。
2.2 两轮车倾倒原因的受力分析 (4)2.3 平衡的方法 (5)三.系统方案分析与选择论证 (5)3.1 系统方案设计 (5)3.1.1 主控芯片方案 (5)3.1.2 姿态检测传感器方案 (6)3.1.3 电机选择方案 (6)3.2 系统最终方案 (7)四.主要芯片介绍和系统模块硬件设计 (7)4.1.STM32单片机简介(stm32rbt6) (7)4.2.陀螺仪传感器 (8)4.3.TB6612 (8)4.4.编码器 (9)4.5. 主控电路 (9)4.6 电机驱动电路 (10)五.系统软件设计 (11)5.1 PID概述 (11)5.2 数字PID算法 (12)5.3 PID控制器设计 (13)六.硬件电路 (14)七.制作困难 (15)八.结论 (16)九.参考文献 (16)一.前言应用意义。
自平衡车巧妙地利用地心引力使其自身保持平衡,并使得重力本身成为运动动能的提供者,载重越大,行驶动能也就越大,具有环保的特点(胡春亮等,2007)。
摘 要一种采用双PID串级控制的双轮自平衡车的研制双轮自平衡车因其动力学系统同时具有多变量,非线性,不稳定,强耦合等特性,在研究各种控制方法等方面是较为领先的领域,所以双轮自平衡车的发展引起了人们广泛的关注。
双轮自平衡车可以用倒立摆模型进行分析,因其系统极其不稳定,务必要用强效巧妙的控制方法才能维持其稳定。
系统整体上主要由姿态传感子系统、CPU处理子系统、驱动子系统三部分构建而成,其中获取精确的姿态信息以及将获得数据进行融合和处理的算法决定了自平衡车的优劣。
其原理是自平衡车通过姿态传感器(MPU6050)高频率实时检测运行情况,将所采集的俯仰角和角度及加速度变化率传输给CPU,经由CPU融合处理并输出调整姿态的指令,从而驱动电动机使两个轮的转速发生相应的改变,实现车体平衡以及加速和减速的目的。
本文研制了一种采用双PID串级控制的双轮自平衡车,系统以STM32最小系统为核心板,采用运动处理传感器MPU6050实时检测角速度以及角度,并通过互补滤波的方式进行数据融合,用于减小传感信号温度漂移的影响,同时使自平衡车即使受到很大的外界干扰(如推拉、震动、颠簸等)也能够快速进行调整。
系统通过串级PID(Proportion Integration Differentiation)算法进行车体的控制,通过PD(Proportion Differentiation)控制使得车身能够直立运行,通过安装在直流电机上的测速码盘实时反馈电机转速和方向,并通过PI(Proportion Integration)控制来控制车身的速度。
该双轮自平衡车运用TB6612FNG电机驱动系统,调节PWM输出的占空比来改变电机的转速。
系统通过LM2940以及ASM1117子系统作为电源驱动,准确的转换电压并对STM32和电机供电。
最后对系统进行控制参数的调整和优化,最终实现让双轮自平衡车直立平衡运行的目标。
关键词:双轮平衡车,PID控制,互补滤波,姿态检测ABSTRACTDeveloping of a dual-wheel self-balancing vehicle using double PID cascade controlThe dual-wheeled self-balancing vehicle is a leading field in the research of various control methods because of its dynamic system of multi-variable, nonlinear, unstable and strong coupling, so the development of self-balancing two-wheeled vehicles has attracted widespread attention.The dual-wheel self-balancing vehicle can be analyzed by using inverted pendulum model. The system is extremely unstable, so it is important to use a effective method to maintain its stability. The system is mainly composed of three parts: attitude sensing subsystem, CPU processing subsystem and driving subsystem. The accurate attitude information and the algorithm which gets the data to be fused and processed determine the performance of self-balancing vehicle. The self-balancing vehicle detects operating conditions through the real-time high-frequency sensor (MPU6050), the collected pitch angle and acceleration rate of change is transmitted to the CPU, CPU fusion processing and output adjustment attitude commands, which drive the motor to make two wheels' speed change to achieve the purpose of acceleration, deceleration and balancing the body.In this paper, a dual-wheel self-balancing vehicle using double PID cascade control is developed. Using STM32 as the cord board and motion detection sensor(MPU6050)detects angular velocity and angle in real time. And performing data fusion by complement filter to reduce the influence of the temperature drift of the sensing signal. At the same time, even if the self-balancing vehicle suffers from great external interference (Push and pull, vibration, bump, etc.) can also be quickly adjusted. The system controls the vehicle body through the Proportion Integration Differentiation (PID) algorithm. By the control of PD (Proportion Differentiation), the vehicle body can be erected. The speed and direction of the motor are fed back in real time by the speed encoder installed on the DC motor. And using the control of Proportion Integration(PI) to control the body speed. The TB6612FNG driving system of motor is used in the self-balancing dual-wheel vehicle, and the motor speed is changed by adjusting the PWM output duty cycle. The system is powered by the LM2940 and the ASM1117 subsystem, which can convert voltage accurately, power theSTM32 and the motor. Finally, two-wheeled self-balancing vehicle upright balance operation is achieved by adjusting and optimizing the control parameters.Keywords:a auto-balancing vehicle with two wheels, PID control, Complementary filter, attitude detection目 录摘 要 (I)ABSTRACT (II)第一章 绪论 (1)1.1研究背景及意义 (1)1.2国内外研究现状 (1)1.2.1国外现状 (1)1.2.2国内现状 (5)1.3本文主要内容及章节内容 (6)第二章 平衡车系统原理分析 (7)2.1控制系统任务分析 (7)2.2平衡车数学模型 (8)2.2.1 平衡车的受力分析 (8)2.2.2平衡车的运动微分方程 (11)2.3 串级PID在平衡控制和速度控制中的应用 (12)2.3.1 PID算法简介 (12)2.3.2 PID算法在平衡控制中的应用原理 (14)2.3.3 PID算法在速度控制中的应用原理 (14)2.3.4 串级PID的原理及在系统中的应用 (15)2.4基于互补滤波的数据融合 (16)2.5本章小结 (16)第三章 系统硬件电路设计 (17)3.1 单片机最小系统STM32F103C8T6 (18)3.2系统电源模块 (19)3.3 运动处理传感器模块 (20)3.4电机驱动电路 (21)3.5编码器电路 (23)3.6底板综合设计 (24)3.7系统遥控电路设计 (26)3.7.1 单片机STC89C52 (26)3.7.2 无线收发器模块NRF24L01 (27)3.7.3 液晶显示模块12864 (28)3.8本章总结 (29)第四章 系统软件程序设计 (30)4.1主程序框架与初始化 (30)4.2 数据采集 (32)4.2.1.输入信号采集函数 (32)4.2.2.捕获电机脉冲函数 (32)4.3互补滤波数据融合算法 (33)4.4 串级PID控制 (33)4.4.1直立PD控制 (33)4.4.2速度PI控制 (34)4.5电机PWM输出 (36)4.6程序优化 (37)4.7本章小结 (37)第五章 系统调试 (38)5.1系统开发平台 (38)5.2姿态检测系统调试 (39)5.3控制系统PID参数的整定 (41)5.3.1直立PD控制参数调试 (41)5.3.2速度PI控制参数调试 (41)5.4本章小结 (42)第六章 总结与展望 (43)6.1总结 (43)6.2展望 (43)参考文献 (44)作者简介及攻读硕士期间发表的论文 (46)致 谢 (47)第一章 绪论1.1研究背景及意义近年来,双轮自平衡车的发展势头迅猛主要有以下两个原因,其一是它的实用性很强,可以应用到绝大多数领域,其二是支撑搭建双轮自平衡车的理论体系逐渐完善,技术手段日益先进,如数据获取更简单有效,数据处理更科学精确。
双轮平衡车
百科名片
双轮平衡车,又叫电动平衡车,双轮思维车、双轮代步车、体感车、射位车、智感车等。
其运作原理主要是建立在一种被称为“动态稳定”(Dynamic Stabilization)的基本原理上,利用车体内部的陀螺仪和加速度传感器,来检测车体姿态的变化,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。
[1]
中文名:双轮平衡车外文名:Airwheel
别名:双轮代步车、双轮思维车、体
感车目录
驾驶方法
技术特点:
原理
功能配置
产品特色
主要品牌
驾驶方法
类似人体自身的平衡系统,当身体重心前倾时,为了保证平衡,需要往前走,重心后倾时同理。
同时,电动平衡车的转向由把手握及伸缩杆来实现,摆动把手握会连带着伸缩杆使车辆左右两个车轮产生转速差(例如伸缩杆向左摆动时,右轮的转速会比左轮快),达到转向的效果。
车辆的能量来源是一个锂电池组,单次充电可保证20-30公里的续航里程和15公里的最高时速。
在骑行时,将方向操纵杆指向需要前进的方向,车体将会朝着指向的方向行驶。
当方向操纵杆处于车体正中间位置时,系统将朝正前方行驶。
当转方向操纵杆时,系统会相应地控制左右两边的速度差,实现转向,让身体跟随方向操纵杆倾斜的方向倾斜,将会获得更好的转向体验。
突破性的垂直转向设计,颠覆传统的驾驭方式,更符合人体的操作习惯。
[2]
技术特点:
1、左右两轮电动车,独特的平衡设计方案。
2、集“嵌入式+工业设计+艺术设计”的产品集成创新技术,以嵌入式技术提升产品的内在智能化,以适应当代产品数字化、智能化的趋势,实现由内而外的创新。
3、产品信息建模,建立一套既包含产品形状特征,也包含用户认知意象的心理特征体系,并在此基础上进一步开发以用户对产品的最终要求驱动的产品生成系统。
原理
运作原理主要是建立在一种被称为“动态稳定”(DynamicStabilization)的基本原理上,也就是车辆本身的自动平衡能力。
以内置的精密固态陀螺仪(Solid-StateGyroscopes)来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。
功能配置
代步出行,代步是双轮平衡车以及同类型产品具有的物理特性,时速最高可达18公里,单次充电可完成20至45公里的续航里程。
移动视频,双轮平衡车可以与手机、DV、相机等设备结合,利用其自动行走功能,成为移动拍摄平台。
APP应用,通过APP应用,电动平衡车可以与手机互联,通过手机APP,可以实时了解体感车的行驶、售后信息,同时,APP还可以实现交友、分享等功能。
产品特色
1.电力驱动,噪音小:
电动平衡车采用锂电池组作为动力来源,实现了碳的零排放,并采用了动力转换技术,能够在下坡行驶的过程中自动为锂电池组进行充电,使电能与动能可以循环利用,同时由于改良了电机性能,所以电动平衡车的噪音非常小。
2.体积小,重量轻:两双拖鞋大小的垂直投影面积,占地空间小,并且把手可以快速拆卸。
电动平衡车整车重量在15公斤左右,同时车体配有提拉杆,便于搬运携带。
3.站立式驾驶双轮平平衡车采用站立式驾驶方式,通过身体重心和操控杆控制车体运行。
同时可以使用配件中的短把手,用小腿控制车体运动,解放双手。
主要品牌
双轮平衡车也叫双轮代步车,目前国内的主要品牌有:爱尔威平衡车、风行者、奥捷骑、骑客、EOSwheel(独轮)、等,国外最主要的是赛格威(segway)、索罗威尔。