关于模糊线性规划模型问题的探讨
- 格式:pdf
- 大小:98.92 KB
- 文档页数:3
具有三角模糊数的线性规划的一种方法这种方法是利用了模糊数学隶属度的概念,我们选取一种计算方法,在该方法下,可以根据精度要求将计算过程细化,即可以分成多个计算区间,这个区间分的越细,我们所用来比较隶属度的样本就越多,从而可以更精确的找出隶属度最大的那个区间,那么在该区间上计算出来的结果就应该是我们想要的结果。
上面所说的隶属度是描述了我们所分区间的到的样本结果是否从属与理想结论的程度,同下面的方法中用距离来刻画是相似的。
记所用三角模糊数形式为0(,,)mpc c c c =设模糊线性规划中带有三角模糊数的目标函数有如下形式:123111()nnnpm i i i i i i f x w c x w c x w c x ====++∑∑∑上式中:w 1+2w +3w =1,0c --------消极量,m c --------可能量,p c -------乐观量,x Q ∈.设001231212(1)p m p mi i i i i i i f wc w c w c wc w c w w c =++=++--根据三角模糊数的性质可以知道001212(1)p m i i i i c wc w c w w c ≤++-- (1)由(1)可以推出 012()/()1p m m i i i i w w c c c c ≤--+ 我们作如下相应记法:102,m p m i i i i i i c c P c c P =-=-那么可以得到:21211i iP w w ≤+P (2)同样 01212(1)pm p i i i i w c w c w w c c ++--≤ (3) 由(3)可以推出2211(1)ii w P w P -≥作如下相应记法:()()22222122111122222212211112(1)(1)(1)max(,,....,)4min(1,1,...,1)5n n n n w P w P w P n P P P w P w P w Pm P P P ---==+++可以得到 1n w m ≤≤ (6)对于1w 是否存在,我们需要做一些限定,我们假定下面的条件成立,即:22222222212122221111111122(1)(1)(1),1,1...,1n n n n w P w P w P w P w P w P P P P P P P ⎛⎫⎛⎫⎛⎫---+++≠∅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(7) 因此若201w ≤≤,那么显然(7)是成立的。
关于模糊规划所提问题回答第三组1.P23三个模糊变量具体要如何解释?答:回收物流系统具有高度复杂性、目标多样性、供需失衡性等显著特点,因而产品回收量、产品处理能力这些参数很难用精确数值表达,存在不确定性,所以那三个变量是不确定变量。
2.P66语言标签部分具体处理还是三角吗?答:语言标签空间是一个个三角的叠加,他用三角模糊数来描述事件发生的可能,而每一件事件所对应的值是一定的,在去模糊化的过程中,采用期望值描绘众事件,然后进行无差异化组合来代替。
3.线性规划和模糊规划的区别?答:线性规划问题的数学模型是将实际问题转化为一组不等式或等式约束下求线性目标函数的最小(大)值问题,它都可以化为矩阵形式;模糊线性规划是将约束条件和目标函数模糊化,引入隶属函数,从而导出一个新的纯属规划问题,它的最优解称为原问题的模糊最优解。
二者区别如下:(1)模糊规划目标函数或者约束函数中的变量有一个或多个为模糊量,而线性规划中的约束条件和目标函数都是确定的。
(2)在求解时,普通线性规划可直接求解,而模糊规划要先去模糊化成普通线性规划再进行求解。
使用模糊规划,主要是由于普通线性规划其约束条件和目标函数都是确定的,但在实际问题中,约束条件可能带有弹性,必须借助模糊集的方法来处理。
4.针对于不同的问题,如何选用最适合去模糊的方法,选择的依据是什么,以及优缺点?答:从这次汇报来看,所涉及到的去模方法有四种,分别为截集,模糊模拟,期望值以及无差异曲线。
选用哪个方法,首先要看模糊变量的选择方式,若对三角模糊数而言,截集是最简明的,而对语言标记空间而言,截集是得不到效果的。
具体的选用什么去模方式方法,需要结合具体的问题来看。
5.混合智能模型解决了模糊规划中的什么问题?(东)答:混合智能算法并不是基于模糊提出的的,本文视角看,由于双层规划一般都是非线性和非凸的,用解析解法来求解是非常困难的,因此通常用智能算法来获得该问题的全局最优解。
6.软件运用中问题如何实现问题的去模?答:在本次汇报中,主要针对的问题是如何建立模糊规划模型以及如何求解。
利用离散步长讨论模糊线性规划问题第一章绪论1.1 选题背景模糊数学是一门崭新的学科,它自1965年由美国著名控制论专家查德教授创始以来,发展十分迅速。
其应用的涉及面极为广泛,几乎遍及理、工、农、医以及社会科学的各个领域。
模糊优化是模糊数学的一个重要的分支,从1970年以来,模糊优化,特别是模糊线性规划就一直是一个引人关注的研究领域。
模糊线性规划是一种采取惩罚函数法利用离散步长求最优解的问题,通过引入惩罚因子,把有约束条件的线性规划转变成无约束条件的线性规划。
再采用计算机编程采用离散步长的循环坐标法进行运算。
1.2本文研究的目的及意义现实生活中,由于不确定性在现实生活中的普遍存在,使得模糊线性规划的研究和应用越来越广泛。
人具有处理模糊信息的能力,善于判断和处理模糊现象。
但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象。
因此讨论模糊数学规划问题有着科学技术与数学发展的必要性,并且具有较大的应用价值和现实意义。
1.3 国内外研究现状模糊数学的研究主要有以下几个方面第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。
用“模糊集合”作为表现模糊事物的数学模型。
并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。
第二,研究模糊语言学和模糊逻辑。
人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。
第三,研究模糊数学的应用。
模糊数学是以不确定性的事物为其研究对象的。
模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。
实验三 模糊决策与糊线性规划实验目的:会用模糊综合评判模型进行综合评判,掌握将模糊线性规划转化为一般线性规划的方法,会使用数学软件Lindo 求解一般线性规划.实验学时:4学时实验内容:⑴ 教学过程的综合评判等.⑵ 将已知模糊线性规划问题用C 语言编程生成Lindo 软件的数据格式,再用Lindo 软件求解.⑶ 编程求解模糊关系方程的最大解.实验日期:2015年11月6日操作步骤:将模糊线性规划问题⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧≥-=--≥+-≤+++-=.0,,],5.0,4[3],1,6[6],2,8[..,64max 321321321321321x x x x x x x x x x x x t s x x x f 转化为普通线性规划问题,并用Lindo 软件求解.用C 语言编程生成Lindo 软件的数据格式#include<stdio.h>#include<math.h>void main(){double c[]={1,-4,6};//目标系数double A[3][3]={1,1,1,1,-6,1,1,-3,-1};//技术系数矩阵double b[]={8,6,-4};//目标右端常数double fc=38;//第一个线性规划问题的最优值double dc=8.25;//第一、二个线性规划问题的最优值之差double d[]={2,1,0.5};//伸缩指标char opt=1;//0表示min;1表示maxchar cont[]={-1,1,0};//约束条件-1表示≤;0表示=;1表示≥int m=3,n=3;//m 约束条件个数;n 变量个数FILE *fp;int i,j;fp=fopen("xxxx.txt","w");if(opt)fprintf(fp,"Max ");else fprintf(fp,"min ");for(j=0;j<n;j++){if(c[j]==0)continue;if(j&&c[j]>0)fprintf(fp,"+");else if(c[j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(c[j]),j+1);}fprintf(fp,"\ns.t. ");for(i=0;i<m;i++){for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}if(cont[i]==-1)fprintf(fp,"<");else if(cont[i]==0)fprintf(fp,"=");else fprintf(fp,">");fprintf(fp,"%6.4f\n",b[i]);}fprintf(fp,"\n\n\n");if(opt)fprintf(fp,"Max ");else fprintf(fp,"min ");for(j=0;j<n;j++){if(c[j]==0)continue;if(j&&c[j]>0)fprintf(fp,"+");else if(c[j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(c[j]),j+1);}fprintf(fp,"\ns.t. ");for(i=0;i<m;i++){for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}if(cont[i]==-1)fprintf(fp,"<%6.4f\n",b[i]+d[i]);else if(cont[i]==0){fprintf(fp,"<%6.4f\n",b[i]+d[i]);for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}fprintf(fp,">%6.4f\n",b[i]-d[i]);}else fprintf(fp,">%6.4f\n",b[i]-d[i]);}fprintf(fp,"\n\n\n");fprintf(fp,"Max lmd");fprintf(fp,"\ns.t. ");for(j=0;j<n;j++){if(c[j]==0)continue;if(j&&c[j]>0)fprintf(fp,"+");else if(c[j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(c[j]),j+1);}if(opt)fprintf(fp,"-%6.4flmd>%6.4f\n",dc,fc);else fprintf(fp,"+%6.4flmd<%6.4f\n",dc,fc);for(i=0;i<m;i++){for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}if(cont[i]==-1)fprintf(fp,"+%6.4flmd<%6.4f\n",d[i],b[i]+d[i]);else if(cont[i]==0){fprintf(fp,"+%6.4flmd<%6.4f\n",d[i],b[i]+d[i]);for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}fprintf(fp,"-%6.4flmd>%6.4f\n",d[i],b[i]-d[i]);}else fprintf(fp,"-%6.4flmd>%6.4f\n",d[i],b[i]-d[i]);}fclose(fp);}结果:C语言编程生成的Lindo软件数据格式:Max 1.0000x1-4.0000x2+6.0000x3s.t. 1.0000x1+1.0000x2+1.0000x3<8.00001.0000x1-6.0000x2+1.0000x3>6.00001.0000x1-3.0000x2-1.0000x3=-4.0000Max 1.0000x1-4.0000x2+6.0000x3s.t. 1.0000x1+1.0000x2+1.0000x3<10.00001.0000x1-6.0000x2+1.0000x3>5.00001.0000x1-3.0000x2-1.0000x3<-3.50001.0000x1-3.0000x2-1.0000x3>-4.5000Max lmds.t. 1.0000x1-4.0000x2+6.0000x3-8.2500lmd>38.00001.0000x1+1.0000x2+1.0000x3+2.0000lmd<10.00001.0000x1-6.0000x2+1.0000x3-1.0000lmd>5.00001.0000x1-3.0000x2-1.0000x3+0.5000lmd<-3.50001.0000x1-3.0000x2-1.0000x3-0.5000lmd>-4.5000求解结果:LP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION VALUE1) 38.00000VARIABLE VALUE REDUCED COST X1 2.000000 0.000000X2 0.000000 15.000000X3 6.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 3.5000003) 2.000000 0.0000004) 0.000000 -2.500000NO. ITERATIONS= 2RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASE X1 1.000000 15.000000 7.000000X2 -4.000000 15.000000 INFINITYX3 6.000000 INFINITY 7.000000RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 8.000000 INFINITY 2.0000003 6.000000 2.000000 INFINITY4 -4.000000 12.000000 4.000000OBJECTIVE FUNCTION VALUE1) 46.25000VARIABLE VALUE REDUCED COSTX1 2.750000 0.000000X2 0.000000 15.000000X3 7.250000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 3.5000003) 5.000000 0.0000004) 1.000000 0.0000005) 0.000000 -2.500000NO. ITERATIONS= 1RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASE X1 1.000000 5.000000 7.000000X2 -4.000000 15.000000 INFINITYX3 6.000000 INFINITY 5.000000RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 10.000000 INFINITY 5.0000003 5.000000 5.000000 INFINITY4 -3.500000 INFINITY 1.0000005 -4.500000 1.000000 5.500000 VARIABLE VALUE REDUCED COSTLMD 0.500000 0.000000X1 2.375000 0.000000X2 0.000000 0.909091X3 6.625000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -0.0606063) 0.000000 0.2121214) 3.500000 0.0000005) 0.500000 0.0000006) 0.000000 -0.151515NO. ITERATIONS= 4RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASE LMD 1.000000 INFINITY 1.000000X1 0.000000 0.246914 0.622222X2 0.000000 0.909091 INFINITYX3 0.000000 0.800000 0.487805RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 38.000000 8.250000 8.2500003 10.000000 2.357143 2.3571434 5.000000 3.500000 INFINITY5 -3.500000 INFINITY 0.5000006 -4.500000 0.589286 3.870370所以最优解是2.375*1+(-4)*0+6*6.625=42.125。
收稿日期:2006211206.作者简介:包金梅(19612),女(蒙古族),哲盟人,内蒙古广播电视大学副教授,主要从事经济数学、数学思想与方法的研究. 文章编号:16722691X (2007)022*******关于模糊线性规划模型问题的探讨包金梅(内蒙古广播电视大学,内蒙古呼和浩特010010)摘 要:通过开发区建设实现发展期望目标的模糊线性规划模型的构建与解析,在给定的模糊隶属度水平下,将模型转化为线性规划模型,通过确定模型的最佳目标函数,求出目标函数的最优值,从而为决策者提供更多的决策信息.关键词:模糊线性规划模型;约束条件;优化方案中图分类号:O221.1 文献标识码:A0 引言自威廉・配第在经济论文中最早运用数学以来,经济学与数学就结下了不解之缘.数学的应用,不仅给经济学研究带来了新的工具,也促进了经济学的发展.随着我国经济的蓬勃发展,人们越来越重视利用数学定量地解决经济、管理领域中的各种问题.用数学定量地解决经济、管理科学和经济管理实际中的问题,恰当的建立与这些问题相关的经济数学模型是关键所在.数学模型的建立不仅是用数学解决经济、管理问题的第一步,它还贯穿在解决问题的全过程中.经济数学模型有很多种,本文主要通过开发区实现发展期望目标模糊线性规划数学模型的分析,对模糊线性规划数学模型的标准形式和单纯形解法原理的探讨,从而研究和解决一些特定的经济问题.模糊线性规划研究的问题主要有两类:一是某项任务确定后,如何统筹安排,尽量作到用最少的人力物力资源去完成这一任务.二是已有一定数量的人力物力资源,如何安排使用他们,使得完成任务最多.其实这两类问题是一个问题的两个方面,就是所谓寻求整个问题的某个整体指标最优的问题.例如 开发区建设是在一定的时空范围内展开的,其可利用的资源条件是有限的,对于开发区来说,涉及的资源主要有:资金、人力、土地、技术、原料、能源、交通、通讯、信息等.我国开发区建设中最为关键和制约程度比较大的资源是资金、土地、主要生产资料和能源.如何在有限的资金、土地等资源条件下,实现发展期望的目标?下面对模型将作一探讨[1].1 模型的构建与解析建立线性规划问题的数学模型,就是从实际问题出发,抓住主要因素,确定决策变量,找出约束条件,并建立模糊线性规划模型.而许多经济问题的模糊线性规划模型尽管特点不同,但都具有以下三个基本特征[2]:第一、每一个经济问题都用一组未知变量(x 1,x 2,…,x n )表示某一规划方案,这组未知变量的一组定值代表一个具体的方案,而且这些经济问题中的变量往往都有非负的要求.第二、这些经济问题的研究和解决,都必须满足一定的条件.对于模糊线性规划模型问题来说,这些条件即约束条件都可写为线性等式和线性不等式的形式.第三、解决这些经济问题往往都有许多不同的方案可供选择,也就是说满足约束条件的方案可能有许多个.我们要求从中选出一个最优方案.这里有一个衡量标准问题,即根据什么数量标准来评定一个方案是最优的,这个数量标准我们称之为目标函数.目标函数是根据经济问题的性质和要求确定的,按照研究问题的不同,常常要求目标函数取最大或最小值,每一个问题的目标函数和约束条件都是线性的.第21卷第2期甘肃联合大学学报(自然科学版)Vol.21No.2 2007年3月Journal of Gansu Lianhe University (Natural Sciences )Mar.2007 根据上述三个基本特征,我们可以抽象出线性规划问题的模糊数学模型.它一般地可表示为:在线性约束条件6n j=1a ij X j≤(≥)B i(i=1,2,…,m).(1)以及非负约束条件x j≥0(j=1,2,…,n)(2)下,求一组未知变量x j(j=1,2,…,n)的值,使z=6n j=1c j x j→min(max).(3) 若采用矩阵记号,上述线性规划模型的一般形式可进一步描述为:在约束条件A X≤(≥)B,(4)以及x≥0,(5)下,求未知向量x=[x1,x2,…,x n]T,使得Z=CX→min(max).(6)其中X=X1X2…X n,A=a11a12 (1)a21a22 (2)a n1a n2…a nn,B=b1b2…b m,C=(c1,c2,…,c n). 例如 在开发区开发建设与发展中,发展指标有的是越高(越优)越好,越高对发展的贡献越大.从定量的角度来讲,这一发展指标对社会发展贡献的系数是一个正值.比如社会生产总值、国内生产总值、国民收入、财政收入、外贸出口总额等发展指标就是如此,有的发展指标只须达到一定数量就可以了,比如在一定时期内,固定资产投资,实际利用外资额,第二产业、第三产业的比重,并非越多越好,还有的发展指标,在一定时期内,必须有所控制,比如,人口、进口总额发展指标,在某一时期必须限制在一定范围之内.因为超过了一定的阈值,它对社会发展贡献系统便是一个负值.设有发展指标X1,X2,…,X n,X i(i=1,2,…,n),对社会发展指标Y的贡献是c j,对资源j 的消耗为a ij.再假设资源约束为B1,B2,…,B m, B i(i=1,2,…,m)为模糊约束,允许增加量为d j,隶属函数为μj(d).根据上述问题的三个基本特征对发展指标和资源约束指标体系的分析,可建立开发区发展指标模糊线性规划模型如下:max Y=6n i=1c i X i,s.t.6n i=1a ij X i<B j,j=1,2,…,m.(7) X k≤e或X k≥e,e为常数,k∈{1,2,…,n}. 2 模型的求解首先,若存在X k≥e,k∈{1,2,…,n}的情形,总可以通过变换,将X k≥e转化为X k≤e,故模型(7)可转化为max Y=6n i=1c i X i,s.t.6n i=1a ij x i<B j,j=1,2,…,m.(8) X k≤e,e为常数,k∈{1,2,…,n}.模型(8)解法如下:先求解max Y=6n i=1c i X i,s.t.6n i=1a ij x i<B′j,j=1,2,…,m.(9)X k≤e,e为常数,k∈{1,2,…,n}.其中B′j=B j+d j,得到M=max Y. 再建立线性规划模型max Y=6n i=1c i X i/M,s.t.X∈EλL=X|6n i=1a ij x j≤BλL j,x k≤e.(10)其中Bλl j=B j+dλl j,dλl j=max{d|μj(d)≥λl}.算法如下:①取l=1,并设定λl=λ1,0<λ1<1.②求解普通线性规划(10),得到max Y=Y L, X∈EλL.③对给定的精度ε>0计算ε1=λ1-Y l.如|ε1|>ε转到(4);如|ε1|≤ε转到(8).④取λl+1=λl-r lεl,重复2,其中r l的取法为0<r l<1,使0≤λl+1≤1. (8)取最优水平为λ1,相应地使Y l(X3)= max Y l,X∈Eλl,λl为最优水平的X3便是规划31第2期 包金梅:关于模糊线性规划模型问题的探讨 (10)的解,也是规划模型(8)的解.3 模型的应用假设某开发区一定时期内主要资源约束为资金:240~250亿元,土地:110~120个单位,发展指标为X1:国内生产总值(亿元),X2:人口总数(万人)≤20.假定发展指标对社会发展指数Y的贡献向量为(0.8,0.2),发展指标对资源的消耗矩阵为0.450.30.2.根据模型(7)的结构建立经济发展规划模型如下max Y=0.8X1+0.2X2s.t0.4X1+5X2<110X2≤20,X1,X2≥10其中资金、土地资源为模糊约束,容许增加量均为10个单位,假设隶属函数分别为μ1(d)=μ2(d)=1-0.1d,0≤d<10,0,d≥10.取精度ε=0.01,λ1=0.8,根据前述算法计算得优化发展目标为(X1,X2)=(360.2,19.6).即在这一时期内,国内生产总值发展目标为360. 2亿元人民币,人口规模为19.6万人,可供决策时参考.参考文献:[1]韦澄芬.优化数学要议[M].北京:商务印书馆,1985.[2]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002:1272161.[3]钱颂迪.运筹学[M].北京:清华大学出版社,1990.[4]马仲蕃,魏权龄,赖炎连.数学规划讲义[M].北京:中国人民大学出版社,1981.[5]张建中,许绍吉.线性规划[M].北京:科学出版社,1990.[6]林炳耀.计量地理学概论[M].北京:高等教育出版社,1985.[7]张超,扬秉赓.计量地理学基础[M].北京:高等教育出版社,1990.[8]徐建华.甘肃中部干旱地区产业结构探讨[J].科学・经济・社会,1987,5(5):2782281.[9]陈锡康.经济数学方法与模型[M].北京:中国财政经济出版社,1984.Inquiring into the Standard Form about the Fuzzy Linear Programming ModelB A O J i n2mei(Inner Mongolia Broadcast Television University,Huhhot010010,China)Abstract:Through t he const ruction and analysis of t he f uzzy linear programming model used for t he p rediction of t he develop ment of t he Economic Develop ment Done,when certain f uzzy f unctions are set,t he paper convet s t he model into t he linear p rogramming model,hinds t he optimal values of t he objective f unctions t hrough determining t he models optimal objective fractions,t hus to be able to p ro2 vide t he decision2information.K ey w ords:f uzzy linear p rogramming model;const raint conditio n;optimization formula 41 甘肃联合大学学报(自然科学版) 第21卷。