模糊数学5-模糊线性规划
- 格式:ppt
- 大小:205.00 KB
- 文档页数:21
具有三角模糊数的线性规划的一种方法这种方法是利用了模糊数学隶属度的概念,我们选取一种计算方法,在该方法下,可以根据精度要求将计算过程细化,即可以分成多个计算区间,这个区间分的越细,我们所用来比较隶属度的样本就越多,从而可以更精确的找出隶属度最大的那个区间,那么在该区间上计算出来的结果就应该是我们想要的结果。
上面所说的隶属度是描述了我们所分区间的到的样本结果是否从属与理想结论的程度,同下面的方法中用距离来刻画是相似的。
记所用三角模糊数形式为0(,,)mpc c c c =设模糊线性规划中带有三角模糊数的目标函数有如下形式:123111()nnnpm i i i i i i f x w c x w c x w c x ====++∑∑∑上式中:w 1+2w +3w =1,0c --------消极量,m c --------可能量,p c -------乐观量,x Q ∈.设001231212(1)p m p mi i i i i i i f wc w c w c wc w c w w c =++=++--根据三角模糊数的性质可以知道001212(1)p m i i i i c wc w c w w c ≤++-- (1)由(1)可以推出 012()/()1p m m i i i i w w c c c c ≤--+ 我们作如下相应记法:102,m p m i i i i i i c c P c c P =-=-那么可以得到:21211i iP w w ≤+P (2)同样 01212(1)pm p i i i i w c w c w w c c ++--≤ (3) 由(3)可以推出2211(1)ii w P w P -≥作如下相应记法:()()22222122111122222212211112(1)(1)(1)max(,,....,)4min(1,1,...,1)5n n n n w P w P w P n P P P w P w P w Pm P P P ---==+++可以得到 1n w m ≤≤ (6)对于1w 是否存在,我们需要做一些限定,我们假定下面的条件成立,即:22222222212122221111111122(1)(1)(1),1,1...,1n n n n w P w P w P w P w P w P P P P P P P ⎛⎫⎛⎫⎛⎫---+++≠∅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(7) 因此若201w ≤≤,那么显然(7)是成立的。
《模糊数学》教学大纲院系名称数学与应用数学系制定人董媛媛制定时间 2008年7月6日《模糊数学》教学大纲一、总则1、课程代码:2、课程名称:中文名称:模糊数学英文名称:Fuzzy Mathematics3、开课对象:数学与应用数学专业的本科生4、课程性质:专业任选课模糊数学诞生于1965年,40余年来,它的思想已广泛渗透到数学的许多分支,在科技、工程等领域显示出了强大的生命力,并在人文科学(经济、管理、社会等)领域里,也已获得了相当多的应用。
本课程是数学系专业选修课,为数学系本科数学与应用数学专业四年级学生所选修。
5、教学目的和要求:通过本门课程的学习:(1)了解和掌握模糊集合,模糊关系,模糊矩阵,模糊聚类与模糊变换等基本概念和基本理论;掌握模糊聚类分析,模糊模型识别,模糊决策的实际应用所运用的模糊数学方法;初步了解模糊规划及模糊控制理论,并运用上述有关理论和方法进行进一步的科学研究与实际应用;(2)掌握模糊数学有关方面的理论知识和处理模糊现象的基本思维方法;(3)培养学生的抽象概括问题、自我学习接受知识的能力及科学研究能力;同时培养学生综合运用所学知识分析并通过相关数学模型的建立与运用进而解决生活中实际问题的能力。
(4)提高学生的素质,为部分考研学生的后继学习以及将来从事科学研究等工作奠定必要的数学基础。
6、教学内容:本课程主要研究了利用用模糊数学的知识来解决实际问题的理论及其方法。
主要内容有:模糊集合的基本概念、模糊聚类分析、模糊模型识别、模糊决策、模糊线性规划、模糊控制。
7、教学重点与难点:重点:通过本课程的学习,掌握模糊数学的基本思想,基础理论,从而进一步了解模糊理论的基本应用,能够运用模糊理论解决生活中的实际问题。
难点:模糊数学的基本理论及如何正确运用这些理论知识来解决实际问题。
8、先修课程:数学分析、高等代数、概率论与数理统计、运筹学。
9、教学时数教学时数:36学时学分数: 2学分教学时数具体分配:10、教学方式:课堂讲授+习题课,课外作业及批改。
模糊规划的理论方法及应用模糊规划是一种将模糊数学方法应用于决策问题的数学工具。
相比于传统的决策方法,模糊规划考虑到了决策者在面对不确定性和模糊性时的主观认知和感知能力,并利用模糊集合理论来解决这些问题。
本文将介绍模糊规划的理论方法及其在实际应用中的例子。
一、模糊规划的基本概念与原理1. 模糊集合理论模糊集合理论是模糊规划的理论基础,它是Lotfi Zadeh于1965年提出的。
在传统的集合论中,一个元素只能属于集合A或者不属于集合A,而在模糊集合论中,每个元素都有属于集合A的程度或者隶属度。
通过定义隶属函数来刻画元素对一个集合的隶属程度,该函数的取值范围通常是[0,1]。
2. 模糊规划的基本步骤模糊规划的基本步骤包括问题定义、模糊关系构建、决策矩阵建立、权重确定、模糊规则制定、规则评价、推理运算及解的评价等。
其中,模糊关系的建立和模糊规则的制定是模糊规划的核心。
通过对问题的抽象和建模,将模糊的问题转化为可计算和可处理的数学模型,从而能够得出合理的决策结果。
二、模糊规划的实际应用1. 市场营销决策在市场营销中,决策者往往需要面对很多模糊的信息,例如消费者的购买意愿、市场竞争环境等。
模糊规划可以帮助决策者进行市场细分、产品定价、促销策略等决策,从而提高市场的竞争力。
比如,通过模糊规划的方法,可以根据消费者的购买意愿和价格敏感度,确定合适的产品定价,并通过促销策略来满足不同消费者群体的需求。
2. 资源调度问题在资源调度问题中,决策者需要考虑多个因素,例如人力资源、物资配送等。
这些因素往往存在模糊性和随机性,传统的数学模型很难对其进行准确建模和求解。
而模糊规划可以通过考虑不确定性因素,使决策结果更加稳健和鲁棒。
比如,在人力资源调度中,通过模糊规划可以考虑员工的技能水平、工作经验等因素,使得调度结果更加符合实际情况。
3. 供应链管理问题供应链管理中涉及到多个环节和参与方,存在着各种不确定性和模糊性。
模糊规划可以帮助决策者在不确定的环境下进行供应链规划、库存管理、物流优化等决策,从而提高供应链的运作效率和灵活性。
实验三 模糊决策与糊线性规划实验目的:会用模糊综合评判模型进行综合评判,掌握将模糊线性规划转化为一般线性规划的方法,会使用数学软件Lindo 求解一般线性规划.实验学时:4学时实验内容:⑴ 教学过程的综合评判等.⑵ 将已知模糊线性规划问题用C 语言编程生成Lindo 软件的数据格式,再用Lindo 软件求解.⑶ 编程求解模糊关系方程的最大解.实验日期:2015年11月6日操作步骤:将模糊线性规划问题⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧≥-=--≥+-≤+++-=.0,,],5.0,4[3],1,6[6],2,8[..,64max 321321321321321x x x x x x x x x x x x t s x x x f 转化为普通线性规划问题,并用Lindo 软件求解.用C 语言编程生成Lindo 软件的数据格式#include<stdio.h>#include<math.h>void main(){double c[]={1,-4,6};//目标系数double A[3][3]={1,1,1,1,-6,1,1,-3,-1};//技术系数矩阵double b[]={8,6,-4};//目标右端常数double fc=38;//第一个线性规划问题的最优值double dc=8.25;//第一、二个线性规划问题的最优值之差double d[]={2,1,0.5};//伸缩指标char opt=1;//0表示min;1表示maxchar cont[]={-1,1,0};//约束条件-1表示≤;0表示=;1表示≥int m=3,n=3;//m 约束条件个数;n 变量个数FILE *fp;int i,j;fp=fopen("xxxx.txt","w");if(opt)fprintf(fp,"Max ");else fprintf(fp,"min ");for(j=0;j<n;j++){if(c[j]==0)continue;if(j&&c[j]>0)fprintf(fp,"+");else if(c[j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(c[j]),j+1);}fprintf(fp,"\ns.t. ");for(i=0;i<m;i++){for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}if(cont[i]==-1)fprintf(fp,"<");else if(cont[i]==0)fprintf(fp,"=");else fprintf(fp,">");fprintf(fp,"%6.4f\n",b[i]);}fprintf(fp,"\n\n\n");if(opt)fprintf(fp,"Max ");else fprintf(fp,"min ");for(j=0;j<n;j++){if(c[j]==0)continue;if(j&&c[j]>0)fprintf(fp,"+");else if(c[j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(c[j]),j+1);}fprintf(fp,"\ns.t. ");for(i=0;i<m;i++){for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}if(cont[i]==-1)fprintf(fp,"<%6.4f\n",b[i]+d[i]);else if(cont[i]==0){fprintf(fp,"<%6.4f\n",b[i]+d[i]);for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}fprintf(fp,">%6.4f\n",b[i]-d[i]);}else fprintf(fp,">%6.4f\n",b[i]-d[i]);}fprintf(fp,"\n\n\n");fprintf(fp,"Max lmd");fprintf(fp,"\ns.t. ");for(j=0;j<n;j++){if(c[j]==0)continue;if(j&&c[j]>0)fprintf(fp,"+");else if(c[j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(c[j]),j+1);}if(opt)fprintf(fp,"-%6.4flmd>%6.4f\n",dc,fc);else fprintf(fp,"+%6.4flmd<%6.4f\n",dc,fc);for(i=0;i<m;i++){for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}if(cont[i]==-1)fprintf(fp,"+%6.4flmd<%6.4f\n",d[i],b[i]+d[i]);else if(cont[i]==0){fprintf(fp,"+%6.4flmd<%6.4f\n",d[i],b[i]+d[i]);for(j=0;j<n;j++){if(A[i][j]==0)continue;if(j&&A[i][j]>0)fprintf(fp,"+");else if(A[i][j]<0)fprintf(fp,"-");fprintf(fp,"%6.4fx%d",fabs(A[i][j]),j+1);}fprintf(fp,"-%6.4flmd>%6.4f\n",d[i],b[i]-d[i]);}else fprintf(fp,"-%6.4flmd>%6.4f\n",d[i],b[i]-d[i]);}fclose(fp);}结果:C语言编程生成的Lindo软件数据格式:Max 1.0000x1-4.0000x2+6.0000x3s.t. 1.0000x1+1.0000x2+1.0000x3<8.00001.0000x1-6.0000x2+1.0000x3>6.00001.0000x1-3.0000x2-1.0000x3=-4.0000Max 1.0000x1-4.0000x2+6.0000x3s.t. 1.0000x1+1.0000x2+1.0000x3<10.00001.0000x1-6.0000x2+1.0000x3>5.00001.0000x1-3.0000x2-1.0000x3<-3.50001.0000x1-3.0000x2-1.0000x3>-4.5000Max lmds.t. 1.0000x1-4.0000x2+6.0000x3-8.2500lmd>38.00001.0000x1+1.0000x2+1.0000x3+2.0000lmd<10.00001.0000x1-6.0000x2+1.0000x3-1.0000lmd>5.00001.0000x1-3.0000x2-1.0000x3+0.5000lmd<-3.50001.0000x1-3.0000x2-1.0000x3-0.5000lmd>-4.5000求解结果:LP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION VALUE1) 38.00000VARIABLE VALUE REDUCED COST X1 2.000000 0.000000X2 0.000000 15.000000X3 6.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 3.5000003) 2.000000 0.0000004) 0.000000 -2.500000NO. ITERATIONS= 2RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASE X1 1.000000 15.000000 7.000000X2 -4.000000 15.000000 INFINITYX3 6.000000 INFINITY 7.000000RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 8.000000 INFINITY 2.0000003 6.000000 2.000000 INFINITY4 -4.000000 12.000000 4.000000OBJECTIVE FUNCTION VALUE1) 46.25000VARIABLE VALUE REDUCED COSTX1 2.750000 0.000000X2 0.000000 15.000000X3 7.250000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 3.5000003) 5.000000 0.0000004) 1.000000 0.0000005) 0.000000 -2.500000NO. ITERATIONS= 1RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASE X1 1.000000 5.000000 7.000000X2 -4.000000 15.000000 INFINITYX3 6.000000 INFINITY 5.000000RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 10.000000 INFINITY 5.0000003 5.000000 5.000000 INFINITY4 -3.500000 INFINITY 1.0000005 -4.500000 1.000000 5.500000 VARIABLE VALUE REDUCED COSTLMD 0.500000 0.000000X1 2.375000 0.000000X2 0.000000 0.909091X3 6.625000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -0.0606063) 0.000000 0.2121214) 3.500000 0.0000005) 0.500000 0.0000006) 0.000000 -0.151515NO. ITERATIONS= 4RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASE LMD 1.000000 INFINITY 1.000000X1 0.000000 0.246914 0.622222X2 0.000000 0.909091 INFINITYX3 0.000000 0.800000 0.487805RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 38.000000 8.250000 8.2500003 10.000000 2.357143 2.3571434 5.000000 3.500000 INFINITY5 -3.500000 INFINITY 0.5000006 -4.500000 0.589286 3.870370所以最优解是2.375*1+(-4)*0+6*6.625=42.125。
第五章 模糊规划简介第一节 模糊极值第二节 具有弹性约束的模糊规划 第三节 具有模糊系数的模糊规划第一节 模糊极值以条件极大值为例来进行讨论。
一、有界函数的极值和模糊极值定义 1 设 R X f →:; )(x f x ,为有界函数,令)}(max )({**x f x f x M Xx f ∈==, (5.1)称M 为f 的优越集。
)(max )(**x f x f y Xx ∈==为函数的极值(最大值)。
显然)(}{*M f y =。
定义种指的是经典极值的概念。
当M x ∈我们达到了最优目标,当M x ∉时,虽然未达到最优目标,但是各点程度确有很大的差别。
为了全面反映各点的优越程度,可以设想一个模糊优越集,以它的隶属函数来表示各点的优越程度。
)(x f 达到最大值的点隶属度为1,)(x f 达到最小值的点隶属度为0,其它的点的隶属度介于区间)1,0(内。
定义2 设R X f →:为有界函数,构造模糊集如下:X x x f x f x f x f x M f ∈∀--=,)(inf )(sup )(inf )()(~, (5.2)称f M ~为函数)(x f 的无条件模糊优越集,并称)~(f M f 为函数)(x f 的无条件模糊极大值,其中R y x M y M f f x f y f ∈∀=∨=,)(~))(~()(, (5.3)当)(max )(1x f x f Xx ∈=,1)(~1=x M f ;当)(min )(2x f x f Xx ∈=,0)(~2=x M f ;当)()(21x f x f ≥,时)(~)(~21x M x M f f ≥。
因此)(~x M f 反映了在模糊意义下x 的优越程度。
))(~(y M f f 反映了在模糊意义下,y 对)(x f 的模糊极大值的隶属程度。
二、普通限制下,目标函数的极值与模糊极值定义3 设目标函数R X f →:,而X A ⊂为限制条件,令)}(max )(,{****x f x f A x x M Ax ∈=∈=, (5.4)若φ≠*M ,则称*M 为f 在A 上的优越集,称为)(max *x f y Ax ∈=为f 在A 上的条件极大值。
模糊识别作业一湖水总磷含量表杭州西湖I 武汉东湖 青海湖 巢湖 滇池总磷含量mg/L130 105 20 30 20湖水评价等级表极贫营养A贫营养B 中营养C 富营养D 极富营养 E总磷含量< 1 4 23110> 660各个湖水评价等级(由极贫营养到极富营养)其隶属函数依次如下:1 :: x< 44 :: x :: 23x_23\ -110550气&) = « 1试借助最大隶属原则,依据湖水总磷含量确定各个湖湖水的等级。
1 ...... 4 ■:■■.■X -X -13 23— x x 「4 19 110 —x 87 0 4 :: x _23 4 :: x :: 23 其他»D (X )= *x — 233 660 -x550 023 : x ^110 110 : x :: 660110 :: x 乞660x 660 19 0模糊识别作业现有茶叶等级标准样品五种:A B C D E,其中放映茶叶质量的因素论域为U,U =「条索色泽净度汤色香气滋味二假设各个等级的模糊集为:A = (0.5 0.4 0.3 0.6 0.5 0.4)B = (0.3 0.2 0.2 0.1 0.2 0.2)C= (0.2 0.2 0.2 0.1 0.1 0.2)D =(0 0.1 0.2 0.1 0.1 0.1)E=(0 0.1 0.1 0.1 0.1 0.1)现有一样品,其模糊集为:L =(0.4 0.2 0.1 0.4 0.5 0.6)试依据择近原则确定该样本属于哪一等级。
模糊聚类分析作业一下表表示的是某地区12个县从1981 —1990年的降水量,试根据以下数据, 按降水量将12个县进行分类通过数据标准化,构建模糊相似矩阵,合成模糊等价矩阵,基于模糊等价矩阵,选取适当的'值,进行模糊聚类分析,给出分类结果模糊聚类分析作业F表是2002年安徽省各地市工业企业效益指标利用C均值进行聚类分析,给出分类结果模糊综合评价作业一下表反映的是上海,北京,天津,云南的科技技术进步情况,请进行综合评价,确定这四个地区的排名。
《模糊数学》教学大纲课程编号:121082B课程类型:□通识教育必修课□通识教育选修课□专业必修课□√专业选修课□学科基础课总学时:32 讲课学时:32 实验(上机)学时:0学分:2适用对象:金融数学专业先修课程:数学分析、高等代数、概率论与数理统计毕业要求:1.掌握数学、统计及计算机的基本理论和方法2.具备国际视野,能够与同行及社会公众进行有效沟通和交流一、教学目标模糊数学是统计学院金融数学专业选修的基础课之一。
通过本课程的学习,使学生对模糊数学的原理和思想方法有一个基本的认识。
掌握应用模糊数学的原理分析和解题的基本技巧。
了解模糊数学方法在各个领域的应用,为应用模糊数学知识解决问题打下基础。
二、教学基本要求本课以课堂讲授为主。
适当补充一些模糊数学在实际中应用的实例,理论联系实际。
在各章中均可安排一些内容引导学生自学,通过布置作业和讨论题,提高学生自己解决问题与分析问题的能力。
同时,也可适当让学生自己来寻找一些实际问题,应用学过的知识来进行分析、综合、评判,以期达到更好的巩固、应用的目的。
(一) 模糊数学的基本理论和基本原理1、模糊集合是处理模糊事物的新的数学概念,是模糊数学的基础。
理解模糊集的定义、表示方法、模糊集的运算。
了解模糊算子的定义及各种模糊算子,了解模糊集的模糊度定义。
2、理解模糊集截集的定义及性质,掌握模糊数学的基本原理:分解定理(联系普通集与模糊集的桥梁)、扩张原理。
了解模糊数及模糊数的运算。
(二) 模糊数学方法及其在各领域中的应用1、理解模糊关系的概念及性质,深入理解在有限域的情况下,模糊关系可以用矩阵表示。
理解模糊关系合成的定义及性质。
理解掌握贴近度概念及最大隶属原则和择近原则。
了解模糊变换以及模糊控制。
2、对于模糊数学方法的应用。
重点掌握模糊模式识别、模糊聚类分析、模糊综合评判决策,以及了解它们在不同领域的应用举例。
每章节后的习题要求全部完成;本课程建议使用形成性和终结性考试相结合,并各占50%比例。