凸规划和模糊线性规划模型在组合投资中的应用_杨梅
- 格式:pdf
- 大小:1.38 MB
- 文档页数:5
投资组合优化的数学模型一、引言投资组合优化是金融领域的一个重要问题,其目的是通过合理地分配不同资产的权重,使得投资组合的收益最大化或风险最小化。
在实际投资中,很多投资者都会采用投资组合优化方法进行资产配置,以期达到最优化的投资效果。
本文将对投资组合优化的数学模型进行分析和探讨。
二、投资组合优化模型投资组合优化模型可以分为两类:均值-方差模型和风险价值模型。
下面将分别进行介绍。
1.均值-方差模型均值-方差模型是目前最为广泛使用的投资组合优化模型。
其核心思想是通过计算投资组合的期望收益和风险来优化资产配置。
具体来说,该模型首先计算出每种资产的预期收益率和标准差,然后在给定预期收益率的条件下,通过调整各资产的权重,使得投资组合的方差最小化。
均值-方差模型的数学表达式如下:$$\begin{aligned} \min \frac{1}{2}w^{T}\Sigma w \\ s.t.\:w^{T}r= \mu,\: w^{T}\mathbb{1}=1, \:w_i \geq 0 \end{aligned}$$其中,$w$为资产权重向量,$\Sigma$为资产之间的协方差矩阵,$r$为资产的预期收益率向量,$\mu$为投资组合的预期收益率,$\mathbb{1}$为全1向量。
该模型通过最小化风险的方式,来达到最大化收益的目的。
但是,由于均值-方差模型假设资产收益率服从正态分布,并且只考虑了资产的一阶统计量,忽略资产之间的非线性关系,因此在实际应用中有着一定的局限性。
2.风险价值模型风险价值模型是一种相对新的投资组合优化模型,与均值-方差模型相比,其考虑的是投资组合的非对称风险。
与传统的风险度量方法不同,风险价值模型采用了风险价值(Value-at-Risk,VaR)作为风险度量。
VaR是指在一定置信水平下,某资产或投资组合的最大可能损失,即在置信水平为$\alpha$的条件下,VaR表示的是在未来一段时间里资产或投资组合可能出现的最大损失。
基于前景理论和三角模糊MULTIMOORA的多阶段决策方法代文锋;仲秋雁;齐春泽【摘要】For the triangular fuzzy multi-attribute decision making problem,in which period weights and attribute weights are completely unknown,a new decisiong making method based on the prospect theory and MULTIMOO-RA was presented.Firstly,the triangular fuzzy prospect decision matrices in different periods are built and the period weight optimization model was established on the basis of the time degree and differences of prospect values of alternatives in different periods.According to the maximise deviation, attribute weights were deter-mined.Then, a novel extension form of MULTIMOORA was proposed based on the triangular fuzzy number. Alternatives are ranked and selected by the triangular fuzzy MULTIMOORA and the dominance theory.Finally, the feasibility and validity of the proposed method are verified with an example.%针对时间权重与属性权重完全未知的三角模糊多属性决策问题,基于前景理论和MULTIMOORA提出一种新的决策方法.首先,建立备选方案在不同时段的三角模糊前景决策矩阵,根据时间度及不同时段内备选方案前景值的差异构建时间权重优化模型,并运用最大偏差法的基本思想获得属性权重.其次,基于三角模糊数提出一种新的MULTIMOORA扩展形式,并结合占优理论对备选方案进行比选.最后,通过实例证明了所提方法是可行的,也是有效的.【期刊名称】《运筹与管理》【年(卷),期】2018(027)003【总页数】8页(P74-81)【关键词】前景理论;三角模糊数;MLTIMOORA;占优理论【作者】代文锋;仲秋雁;齐春泽【作者单位】大连理工大学管理与经济学部,辽宁大连116024;兰州财经大学信息工程学院,甘肃兰州730020;大连理工大学管理与经济学部,辽宁大连116024;兰州财经大学信息工程学院,甘肃兰州730020【正文语种】中文【中图分类】C9340 引言多属性决策是指决策者在现有决策信息的基础上,采用特定的方法对具有多个属性的备选方案进行比较与选择的过程。
几类投资组合优化模型及其算法几类投资组合优化模型及其算法投资组合优化模型是金融领域中常用的一种数学模型,它通过对资产进行适当的配置,以期获得最大的收益或最小的风险。
在实际应用中,根据不同的投资目标和约束条件,可以使用不同类型的投资组合优化模型及相应的算法。
一、均值-方差模型及算法均值-方差模型是最经典的投资组合优化模型之一,它基于资产的期望收益和风险(方差或标准差)之间的权衡。
常用的算法有:马科维茨(Markowitz)模型和现代投资组合理论。
马科维茨模型利用资产的历史数据估计收益率和协方差矩阵,通过最小化风险(方差)的方式来寻找最优化的投资组合。
算法流程为:(1)计算资产的期望收益和协方差矩阵;(2)设定目标函数和约束条件,如最大化收益、最小化风险、达到特定风险水平等;(3)通过数学规划方法,如二次规划或线性规划求解最优的权重分配。
现代投资组合理论进一步发展了马科维茨模型,引入了资本市场线和风险资本边界等概念。
它将投资组合的有效边界与资本市场线相结合,可以通过调整风险与收益的平衡点,实现不同风险偏好下的最优组合。
算法流程与马科维茨模型类似,但增加了一些额外的计算步骤。
二、风险平价模型及算法风险平价模型是近年来研究的热点之一,它基于资产之间的风险关系,通过将各资产的风险贡献平均化,来实现风险平衡。
常用的算法有:风险平价模型及最小方差模型。
风险平价模型的核心思想是将整个投资组合中,每个资产的风险贡献度(总风险对该资产的贡献程度)设置为相等,从而实现整体投资组合风险的均衡。
算法流程为:(1)计算各资产的风险贡献度;(2)设定目标函数和约束条件,如最小化风险、满足收益要求等;(3)通过优化算法,如线性规划、非线性规划等,求解最优的权重分配。
最小方差模型在风险平价模型的基础上,进一步最小化整个投资组合的方差。
算法流程与风险平价模型类似,但在目标函数的设定上多了一项方差的计算。
三、条件-Value at Risk模型及算法条件-Value at Risk模型是一种集成了条件-Value at Risk方法的投资组合优化模型,它引入了一定的风险约束条件,如最大损失限制,来保护投资者不承受过大的风险。
凸优化问题的解法与应用凸优化问题是指满足下列条件的优化问题:目标函数是凸函数,约束条件是凸集合。
凸优化问题是最优化问题中的一类比较特殊的问题,也是应用非常广泛的一类问题。
凸优化问题在工业、金融、电力、交通、通信等各个领域都有着广泛的应用。
本文将介绍凸优化问题的基本概念、解法和应用。
一、凸优化问题的基本概念1. 凸函数凸函数是指函数的图形总是位于函数上方的函数,即满足下列不等式:$$f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha) f(x_2),\quad x_1, x_2 \in \mathbb{R}, 0 \le \alpha \le 1$$凸函数有很多种性质,如单调性、上凸性、下凸性、严格凸性等,这些性质都与函数的图形有关。
凸函数的图形总是呈现出向上凸起的形状。
2. 凸集合凸集合是指集合内任意两点间的线段都被整个集合所包含的集合。
凸集合有很多常见的例子,如球、多面体、凸多边形、圆等。
凸集合的特点在于其内部任意两点之间都可以通过一条线段相连。
3. 凸组合凸组合是指将若干个向量按照一定比例相加后所得到的向量。
具体地,对于$n$个向量$x_1, x_2, \cdots, x_n$,它们的凸组合定义为:$$\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n, \quad\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1, \quad \alpha_i \ge 0 $$凸组合可以看做是加权平均的一种特殊形式。
在凸优化问题中,凸组合常常被用来表示优化变量之间的关系。
二、凸优化问题的解法凸优化问题可以用很多方法来求解,其中比较常用的有梯度下降算法、最小二乘法、线性规划、二次规划、半定规划等。
1. 梯度下降算法梯度下降算法是一种基于梯度信息的优化算法。
03凸优化理论与应用_凸优化凸优化理论与应用是数学领域的一个重要分支,是一种优化问题的求解方法,它在工程、经济学、物理学、统计学等领域具有广泛的应用。
凸优化问题是指目标函数是凸函数(convex function)且约束条件是凸集(convex set)的优化问题。
凸函数是一种特殊的函数,它的任意两个点之间的线段在函数图像上方。
凸集是一种特殊的集合,对于集合中的任意两个点,连接这两个点的线段的端点也在集合中。
凸优化问题是在满足凸性条件下,寻找使目标函数最大化或最小化的变量值。
凸优化问题具有以下重要性质:1.局部最优解是全局最优解:对于凸优化问题,只需要找到一个局部最优解,就可以确定它就是全局最优解,无需再进行进一步的。
2.解的存在性:凸优化问题在一些条件下保证存在解,这对于实际问题的求解非常重要。
3.解的唯一性:对于凸优化问题,只能存在一个最优解,不会出现多个最优解的情况。
4.算法的可行性:凸优化问题可以通过多种有效的算法求解,这些算法具有较高的收敛速度和稳定性。
凸优化问题可以分为无约束问题和有约束问题两类。
无约束问题是指目标函数只有一个变量,没有约束条件;有约束问题是指在目标函数的最优化问题的基础上增加约束条件。
在凸优化理论中,有一些重要的概念和定理,如凸集、凸函数、凸锥、支撑超平面、KKT条件等。
这些概念和定理为凸优化问题的求解提供了理论基础和方法。
凸优化问题在实际应用中具有广泛的应用,例如:1.金融领域:用于投资组合优化、资产定价问题等。
2.电力领域:用于电网调度、能源管理等。
3.交通领域:用于交通流优化、交通路线规划等。
4.通信领域:用于信号处理、无线通信系统设计等。
5.机器学习领域:用于模型训练、参数优化等。
6.图像处理领域:用于图像恢复、图像分割等。
总之,凸优化问题在不同领域的应用非常广泛,它的理论基础和求解方法为解决复杂的优化问题提供了有效的工具和思路。
随着科学技术的不断发展,凸优化理论与应用领域将会不断扩展和深化,为实际问题的求解提供更多的可能性和机会。
最优化方法及其在实际生活中的应用研究最优化方法是指在一定的条件下,通过改变某些变量的值使某一目标函数达到最大或最小的一种数学方法。
最优化方法的应用非常广泛,涉及到经济、科学、工程等各个领域,如实现企业利润最大化、找到最佳的投资方案、最优化工程设计等。
在本文中,我们将介绍最优化方法的几种类型及其在实际生活中的应用研究。
一、线性规划线性规划是指以线性目标函数和线性约束条件为基础的最优化方法。
它通过线性代数和数学规划理论等方法来求解最优解。
线性规划在实际中的应用非常广泛,如在企业管理中用于决策分析,如生产计划、物流运输等,以及在金融领域中用于资产配置、投融资决策等。
二、整数规划整数规划是一种将线性规划中变量限制为整数的方法。
它可以模拟现实问题中的离散决策和数量限制,如在生产、物流配送等领域中用于解决仓库调度、货运路线优化等问题,也广泛应用于供应链管理、生产调度等领域。
非线性规划是指目标函数和约束条件中存在非线性关系的最优化方法。
它包括凸规划、非凸规划等不同类型。
在实际中,非线性规划被广泛应用于诸如化学反应、生产过程优化等领域。
四、启发式算法启发式算法是指用于求解复杂优化问题的近似算法。
他们无法保证优化结果的最优性,但它们能够在合理的时间内得到接近最优的结果。
在实际中,启发式算法被广泛应用于人工智能、图像识别、机器学习等领域。
五、模拟退火算法模拟退火算法是一种利用物理学中退火过程的思想来寻求最优解的算法。
它在实际中被广泛用于计算机科学、统计学、物理学、生物学、化学等领域。
综上所述,最优化方法在实际中被广泛应用于各个领域。
通过对现实问题的建模和求解,它们能够帮助我们做出更加明智、更加有效的决策,并最大程度地提高生产效率和经济效益。
模糊规划的理论方法及应用模糊规划是一种将模糊数学方法应用于决策问题的数学工具。
相比于传统的决策方法,模糊规划考虑到了决策者在面对不确定性和模糊性时的主观认知和感知能力,并利用模糊集合理论来解决这些问题。
本文将介绍模糊规划的理论方法及其在实际应用中的例子。
一、模糊规划的基本概念与原理1. 模糊集合理论模糊集合理论是模糊规划的理论基础,它是Lotfi Zadeh于1965年提出的。
在传统的集合论中,一个元素只能属于集合A或者不属于集合A,而在模糊集合论中,每个元素都有属于集合A的程度或者隶属度。
通过定义隶属函数来刻画元素对一个集合的隶属程度,该函数的取值范围通常是[0,1]。
2. 模糊规划的基本步骤模糊规划的基本步骤包括问题定义、模糊关系构建、决策矩阵建立、权重确定、模糊规则制定、规则评价、推理运算及解的评价等。
其中,模糊关系的建立和模糊规则的制定是模糊规划的核心。
通过对问题的抽象和建模,将模糊的问题转化为可计算和可处理的数学模型,从而能够得出合理的决策结果。
二、模糊规划的实际应用1. 市场营销决策在市场营销中,决策者往往需要面对很多模糊的信息,例如消费者的购买意愿、市场竞争环境等。
模糊规划可以帮助决策者进行市场细分、产品定价、促销策略等决策,从而提高市场的竞争力。
比如,通过模糊规划的方法,可以根据消费者的购买意愿和价格敏感度,确定合适的产品定价,并通过促销策略来满足不同消费者群体的需求。
2. 资源调度问题在资源调度问题中,决策者需要考虑多个因素,例如人力资源、物资配送等。
这些因素往往存在模糊性和随机性,传统的数学模型很难对其进行准确建模和求解。
而模糊规划可以通过考虑不确定性因素,使决策结果更加稳健和鲁棒。
比如,在人力资源调度中,通过模糊规划可以考虑员工的技能水平、工作经验等因素,使得调度结果更加符合实际情况。
3. 供应链管理问题供应链管理中涉及到多个环节和参与方,存在着各种不确定性和模糊性。
模糊规划可以帮助决策者在不确定的环境下进行供应链规划、库存管理、物流优化等决策,从而提高供应链的运作效率和灵活性。
第四章 非线性规划教学重点:凸规划及其性质,无约束最优化问题的最优性条件及最速下降法,约束最优化问题的最优性条件及简约梯度法。
教学难点:约束最优化问题的最优性条件。
教学课时:24学时主要教学环节的组织:在详细讲解各种算法的基础上,结合例题,给学生以具体的认识,再通过大量习题加以巩固,也可以应用软件包解决一些问题。
第一节 基本概念教学重点:非线性规划问题的引入,非线性方法概述。
教学难点:无。
教学课时:2学时主要教学环节的组织:通过具体问题引入非线性规划模型,在具体讲述非线性规划方法的求解难题。
1、非线性规划问题举例例1 曲线最优拟合问题已知某物体的温度ϕ 与时间t 之间有如下形式的经验函数关系:312c t c c t e φ=++ (*)其中1c ,2c ,3c 是待定参数。
现通过测试获得n 组ϕ与t 之间的实验数据),(i i t ϕ,i=1,2,…,n 。
试确定参数1c ,2c ,3c ,使理论曲线(*)尽可能地与n 个测试点),(i i t ϕ拟合。
∑=++-n 1i 221)]([ min 3i t c i i e t c c ϕ例 2 构件容积问题通过分析我们可以得到如下的规划模型:⎪⎪⎩⎪⎪⎨⎧≥≥=++++=0,0 2 ..)3/1( max 212121222211221x x S x x x x a x x t s x x a V ππππ基本概念设n T n R x x x ∈=),...,(1,R R q j x h p i x g x f n j i :,...,1),(;,...,1),();(==,如下的数学模型称为数学规划(Mathematical Programming, MP):⎪⎩⎪⎨⎧===≤q j x h p i x g t s x f j i ,...,1,0)( ,...,1,0)( ..)( min约束集或可行域X x ∈∀ MP 的可行解或可行点MP 中目标函数和约束函数中至少有一个不是x 的线性函数,称(MP)为非线性规划令 T p x g x g x g ))(),...,(()(1=T p x h x h x h ))(),...,(()(1=,其中,q n p n R R h R R g :,:,那么(MP )可简记为⎪⎩⎪⎨⎧≤≤ 0)( 0 ..)( min x h g(x)t s x f 或者 )(min x f X x ∈ 当p=0,q=0时,称为无约束非线性规划或者无约束最优化问题。
凸优化理论与应用凸优化是一种数学理论和方法,用于寻找凸函数的全局最小值或极小值。
凸优化理论和方法广泛应用于工程设计、经济学、金融学、计算机科学等多个领域,其重要性不言而喻。
凸优化首先要明确凸函数的概念。
凸函数在区间上的定义是:对于区间上的任意两个点x1和x2以及任意一个介于0和1之间的值t,都有f(tx1+(1-t)x2) <= tf(x1)+(1-t)f(x2)。
简单来说,凸函数的图像在任意两个点之间的部分都在这两个点的上方或相切,不会出现下凹的情况。
这个定义可以推广到多元函数。
凸优化问题的数学模型可以写成如下形式:minimize f(x)subject to g_i(x) <= 0, i = 1,2,...,mh_i(x)=0,i=1,2,...,p其中f(x)是凸目标函数,g_i(x)是凸不等式约束,h_i(x)是凸等式约束。
凸优化问题的目标是找到使得目标函数最小化的变量x,同时满足约束条件。
凸优化理论和方法有多种求解算法,包括梯度下降、牛顿法、内点法等。
其中,梯度下降是一种迭代算法,通过计算目标函数的梯度来更新变量的值,使得目标函数逐渐收敛到最小值。
牛顿法则是通过计算目标函数的二阶导数来进行迭代,收敛速度更快。
内点法是一种求解线性规划问题的方法,在凸优化中也有广泛的应用。
凸优化的应用非常广泛,以下列举几个典型的应用领域。
1.机器学习和模式识别:凸优化在机器学习和模式识别中有重要的应用,例如支持向量机和逻辑回归。
这些算法的优化问题可以通过凸优化来求解,从而得到具有较高准确率的分类器。
2.信号处理:凸优化在信号处理中有广泛的应用,例如滤波、压缩和频谱估计等。
通过凸优化可以得到更高效的信号处理算法,提高信号处理的准确性和速度。
3.优化调度问题:在工业生产、交通运输和电力系统等领域,凸优化可以用来优化调度问题,通过合理安排资源和调度任务,提高效率和经济性。
4.金融风险管理:凸优化在金融风险管理中有广泛的应用,例如投资组合优化和风险控制。