模糊数学建模方法
- 格式:ppt
- 大小:776.50 KB
- 文档页数:49
数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。
例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。
随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。
模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。
在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。
对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。
模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。
本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。
1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。
如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。
在此,总是假设问题的论域是非空的。
为了与模糊集相区别,在这里称通常的集合为普通集。
对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。
于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。
所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。
§3 股票反弹率的模糊聚类法将模糊集理论应用于聚类分析,便产生了模糊聚类法。
一、模糊聚类法介绍若矩阵A 的各元素ij a 满足10≤≤ij a ,则称A 为模糊矩阵。
设p n ij a A ⨯=)(和m p ij b B ⨯=)(为两个模糊矩阵,令m j n i b a c kj ik pk ij ,,2,1,,,2,1),(1 ==∧∨== 则称矩阵m n ij c C ⨯=)(为模糊矩阵A 与B 的乘积,记为B A C ∙=,其中∨和∧的含义为},max{b a b a =∨, },min{b a b a =∧ 显然,两个模糊矩阵的乘积仍为模糊矩阵。
设方阵A 为一个模糊矩阵,若A 满足A A A =∙,则称A 为模糊等价矩阵。
模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲象乙,乙象丙,则甲象丙”这样的关系。
设n n ij a A ⨯=)(为一个模糊等价矩阵,10≤≤λ为一个给定的数,令⎩⎨⎧=<≥=n j i a a a ij ij ij ,,2,1,,0,1)( λλλ则称矩阵n n ij a A ⨯=)()(λλ为A 的λ—截阵。
模糊聚类法和一般的聚类方法相似,先计算变量间的相似系数矩阵(或样品间的距离矩阵),将其元素压缩到0与1之间形成模糊矩阵,进一步改造成模糊等价矩阵,最后取不同的标准λ,得到不同的λ—截阵,从而可以得到不同的类。
具体步骤如下:1、计算相似系数矩阵R 或样品的距离矩阵D其中n n ij d D ⨯=)(和p p ij r R ⨯=)(的算法与第四章§4.7消费分布规律的分类中相同。
2、将R (或D )中的元素压缩到0与1之间形成模糊矩阵我们统一记为n n ij a A ⨯=)(;例如对相似系数矩阵p p ij r R ⨯=)(,可令p j i r a ij ij ,,2,1,),1(21 =+= 对于距离矩阵n n ij d D ⨯=)(,可令n j i d d a ij n j i ij ij ,,2,1,,max 11,1 =+-=≤≤ 3、建立模糊等价矩阵一般说来,上述模糊矩阵n n ij a A ⨯=)(不具有等价性,这可以通过模糊矩阵的乘积将其转化为模糊等价阵,具体方法是:计算,,,2242 A A A A A A ∙=∙=直到满足k k A A =2,这时模糊矩阵k A 便是一个模糊等价矩阵。
模糊数学方法1965年美国加利福尼亚大学控制论专家扎德(Zadeh L .A .)教授在《Information and Control 》杂志上发表了一篇开创性论文“Fuzzy Sets ”,这标志着模糊数学的诞生。
模糊数学是研究和处理模糊性现象的数学方法。
众所周知,经典数学是以精确性为特征的。
然而,与精确性相悖的模糊性并不完全是消极的、没有价值的。
甚至可以这样说,有时模糊性比精确性还要好。
例如,要你某时到某地去迎接一个“大胡子高个子长头发戴宽边黑色眼镜的中年男人”。
尽管这里只提供了一个精确信息——男人,而其他信息——大胡子、高个子、长头发、宽边黑色眼镜、中年等都是模糊概念,但是你只要将这些模糊概念经过头脑的综合分析判断,就可以接到这个人。
模糊数学在实际中的应用几乎涉及到国民经济的各个领域及部门,农业、林业、气象、环境、地质勘探、医学、经济管理等方面都有模糊数学的广泛而又成功的应用。
§1 模糊集的基本概念要想掌握模糊数学方法,必须先了解模糊集的基本概念,特别是隶属函数的建立方法。
1.1 模糊子集与隶属函数定义1 设U 是论域,称映射():[0,1]A x U →确定了一个U 上的模糊子集A ,映射()A x 称为A 的隶属函数,它表示x 对A 的隶属程度。
使()0.5A x =的点称为A 的过渡点,此点最具模糊性。
当映射()A x 只取0或1时,模糊子集A 就是经典子集,而()A x 就是它的特征函数。
可见经典子集就是模糊子集的特殊情形。
例 1 设论域123456{(140),(150),(160),(170),(180),(190)}U x x x x x x =(单位:cm )表示人的身高,那么U 上的一个模糊集“高个子”(A )的隶属函数()A x 可定义为140()190140x A x -=-,也可用Zadeh 表示法:12345600.20.40.60.81A x x x x x x =+++++, 上式仅表示U 中各元素属于模糊集A 的隶属度,不是普通分式与求和运算。