模糊数学建模方法
- 格式:ppt
- 大小:776.50 KB
- 文档页数:49
数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。
例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。
随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。
模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。
在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。
对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。
模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。
本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。
1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。
如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。
在此,总是假设问题的论域是非空的。
为了与模糊集相区别,在这里称通常的集合为普通集。
对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。
于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。
所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。
§3 股票反弹率的模糊聚类法将模糊集理论应用于聚类分析,便产生了模糊聚类法。
一、模糊聚类法介绍若矩阵A 的各元素ij a 满足10≤≤ij a ,则称A 为模糊矩阵。
设p n ij a A ⨯=)(和m p ij b B ⨯=)(为两个模糊矩阵,令m j n i b a c kj ik pk ij ,,2,1,,,2,1),(1 ==∧∨== 则称矩阵m n ij c C ⨯=)(为模糊矩阵A 与B 的乘积,记为B A C ∙=,其中∨和∧的含义为},max{b a b a =∨, },min{b a b a =∧ 显然,两个模糊矩阵的乘积仍为模糊矩阵。
设方阵A 为一个模糊矩阵,若A 满足A A A =∙,则称A 为模糊等价矩阵。
模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲象乙,乙象丙,则甲象丙”这样的关系。
设n n ij a A ⨯=)(为一个模糊等价矩阵,10≤≤λ为一个给定的数,令⎩⎨⎧=<≥=n j i a a a ij ij ij ,,2,1,,0,1)( λλλ则称矩阵n n ij a A ⨯=)()(λλ为A 的λ—截阵。
模糊聚类法和一般的聚类方法相似,先计算变量间的相似系数矩阵(或样品间的距离矩阵),将其元素压缩到0与1之间形成模糊矩阵,进一步改造成模糊等价矩阵,最后取不同的标准λ,得到不同的λ—截阵,从而可以得到不同的类。
具体步骤如下:1、计算相似系数矩阵R 或样品的距离矩阵D其中n n ij d D ⨯=)(和p p ij r R ⨯=)(的算法与第四章§4.7消费分布规律的分类中相同。
2、将R (或D )中的元素压缩到0与1之间形成模糊矩阵我们统一记为n n ij a A ⨯=)(;例如对相似系数矩阵p p ij r R ⨯=)(,可令p j i r a ij ij ,,2,1,),1(21 =+= 对于距离矩阵n n ij d D ⨯=)(,可令n j i d d a ij n j i ij ij ,,2,1,,max 11,1 =+-=≤≤ 3、建立模糊等价矩阵一般说来,上述模糊矩阵n n ij a A ⨯=)(不具有等价性,这可以通过模糊矩阵的乘积将其转化为模糊等价阵,具体方法是:计算,,,2242 A A A A A A ∙=∙=直到满足k k A A =2,这时模糊矩阵k A 便是一个模糊等价矩阵。
模糊数学方法1965年美国加利福尼亚大学控制论专家扎德(Zadeh L .A .)教授在《Information and Control 》杂志上发表了一篇开创性论文“Fuzzy Sets ”,这标志着模糊数学的诞生。
模糊数学是研究和处理模糊性现象的数学方法。
众所周知,经典数学是以精确性为特征的。
然而,与精确性相悖的模糊性并不完全是消极的、没有价值的。
甚至可以这样说,有时模糊性比精确性还要好。
例如,要你某时到某地去迎接一个“大胡子高个子长头发戴宽边黑色眼镜的中年男人”。
尽管这里只提供了一个精确信息——男人,而其他信息——大胡子、高个子、长头发、宽边黑色眼镜、中年等都是模糊概念,但是你只要将这些模糊概念经过头脑的综合分析判断,就可以接到这个人。
模糊数学在实际中的应用几乎涉及到国民经济的各个领域及部门,农业、林业、气象、环境、地质勘探、医学、经济管理等方面都有模糊数学的广泛而又成功的应用。
§1 模糊集的基本概念要想掌握模糊数学方法,必须先了解模糊集的基本概念,特别是隶属函数的建立方法。
1.1 模糊子集与隶属函数定义1 设U 是论域,称映射():[0,1]A x U →确定了一个U 上的模糊子集A ,映射()A x 称为A 的隶属函数,它表示x 对A 的隶属程度。
使()0.5A x =的点称为A 的过渡点,此点最具模糊性。
当映射()A x 只取0或1时,模糊子集A 就是经典子集,而()A x 就是它的特征函数。
可见经典子集就是模糊子集的特殊情形。
例 1 设论域123456{(140),(150),(160),(170),(180),(190)}U x x x x x x =(单位:cm )表示人的身高,那么U 上的一个模糊集“高个子”(A )的隶属函数()A x 可定义为140()190140x A x -=-,也可用Zadeh 表示法:12345600.20.40.60.81A x x x x x x =+++++, 上式仅表示U 中各元素属于模糊集A 的隶属度,不是普通分式与求和运算。
-257- 第二十二章 模糊数学模型模糊数学是研究和处理模糊性现象的数学,是在美国控制论专家A. Zadeh 教授于1965年提出的模糊集合(Fuzzy Set )基础上发展起来的一门新兴的数学分支。
这门学科经过多年的发展。
它在现实世界中的应用越来越广泛。
§1 模糊数学基本知识1.1 集合与特征函数集合是现代数学的重要概念。
一般地说,具有某种属性的事物的全体或确定对象的汇总称为一个集合。
不含任何元素的集合称为空集,记为Φ。
由所研究的所有事物构成的集合称为全集,记为Ω。
若集合Ω⊆A ,则将集合},|{Ω∈∉x A x x 且称为集合A 的补集,记为c A 。
集合及其性质可用所谓特征函数来描述。
定义 1 设Ω为全集,A 为Ω的子集,则集合A 的特征函数指的是Ω到集合}1,0{=V 的一个映射A μV A →Ω:μ)(x x A μ→其中对应规则A μ满足⎩⎨⎧∉∈=Ax A x A 01μ 集合的特征函数具有以下性质:)}(),(max{)(x x x B A B A μμμ= ,记作)()(x x B A μμ∨)}(),(min{)(x x x B A B A μμμ= ,记作)()(x x B A μμ∧)(1)(x x A A cμμ-= 1.2 模糊集合1.2.1 模糊集合的概念对于普通集合A 及其余集c A ,任何元素A x ∈或cA x ∈,二者必居其一,且仅居其一;用特征函数来表示就是0)(=x A μ或1)(=x A μ有且仅有一个成立。
然而,客观-258-世界中存在着大量的模糊概念,如“高个子”,“老年人”,这些概念无法用普通集合表示,因为这些概念与其对立面之间无法划出一条明确的分界线。
为了研究和处理这类模糊概念(或现象),就需要把普通集合引申到模糊集合,用特征函数来描述就是将集合的特征函数的值域由}1,0{两个数扩展到闭区间]1,0[,这就是建立模糊集合的基本思想。
下面我们把所讨论对象的全体称为论域。
第八章 模糊数学方法建模1965年,美国自动控制学家L.A.Zadch 首先提出了用“模糊集合”描述模糊事物的数学模型。
它的理论和方法从上个世纪七十年代开始受到重视并得到迅速发展,特别是愈来愈广泛地应用于解决生产实际问题。
模糊数学的理论和方法解决了许多经典数学和统计数学难以解决的问题,这里,我们通过几个例子介绍模糊综合评判、模糊模式识别、模糊聚类、模糊控制等最常用方法的应用。
而相应的理论和算法这里不作详细介绍,请参阅有关的书籍。
§1 模糊综合评判及其应用一、模糊综合评判在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。
如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。
但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。
所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。
综合评判最简单的方法有两种方式:一种是总分法,设评判对象有m 个因素,我们对每一个因素给出一个评分i s ,计算出评判对象取得的分数总和∑==mi isS 1按S 的大小给评判对象排出名次。
例如体育比赛中五项全能的评判,就是采用这种方法。
另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令i a 表示对第i 个因素的权重,并规定∑==mi ia11,于是用∑==mi ii sa S 1按S 的大小给评判对象排出名次。
以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评判是难以用一个简单的数值表示的,这时就应该采用模糊综合评判。
由于在很多问题上,我们对事物的评价常常带有模糊性,因此,应用模糊数学的方法进行综合评判将会取得更好的实际效果。
模糊综合评判的数学模型可分为一级模型和多级模型两类,这里仅介绍一级模型。
应用一级模型进行综合评判,一般可归纳为以下几个步骤:(1)建立评判对象的因素集},,,{21n u u u U =。