2.4.3绝对值与相反数
- 格式:docx
- 大小:22.71 KB
- 文档页数:4
2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
第2章 有理数2.4 绝对值与相反数 课程标准 课标解读 1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 1、相反数和绝对值的表示方法 2、数轴的几何意义表示,在数轴上分析绝对值和相反数性质知识点01 相反数 1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.【微点拨】(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.【即学即练1】1.3-的相反数是( )A .13-B .13C .3D .3-【答案】C【分析】目标导航知识精讲依据相反数的定义求解即可.【详解】解:-3的相反数是3.故选:C.知识点02 多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .【微点拨】(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【即学即练2】2.在下列各数:13⎛⎫--⎪⎝⎭,36-,227,0,-(+3),-|-2015|中,负数的个数是()A.1个B.2个C.3个D.4个【答案】C【分析】先化简各数,再与0比较即可.【详解】解::11=033⎛⎫-->⎪⎝⎭,-(+3)=-3<0,-|-2015|=-2015<0,负数有36-,-(+3),-|-2015|,负数的个数是3.故选择:C.知识点03 绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.【微点拨】(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.【即学即练3】3.已知关于x 的方程mx |m |+1=0是一元一次方程,则m 的取值是( )A .±1B .﹣1C .1D .以上答案都不对【答案】A【分析】根据一元一次方程的定义得出m≠0且|m|=1,求出m 即可.【详解】解:∵关于x 的方程mx |m|+1=0是一元一次方程,∵m≠0且|m|=1,解得:m =±1,故选:A . 知识点04 有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩-数为0 正数与0:正数大于0负数与0:负数小于03. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【微点拨】利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.【即学即练4】4.下列四个数中,最小的数是( )A .2-B .4-C .(1)--D .0【答案】A【分析】根据有理数的大小比较及绝对值可直接进行排除选项.【详解】解:∵()44,11-=--=,∵()4102->-->>-,∵最小的数是-2;故选A .考法01 化简绝对值1、根据题设条件只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.2、借助数轴 能力拓展①零点的左边都是负数,右边都是正数.②右边点表示的数总大于左边点表示的数.③离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.3、采用零点分段讨论法①求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).②分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.③在各区段内分别考察问题.④将各区段内的情形综合起来,得到问题的答案.误区点拨 千万不要想当然地把 等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.【典例1】a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )∵0ab >; ∵c a b -<<-; ∵11a b >; ∵b b =-. A .4个B .3个C .2个D .1个 【答案】B【分析】根据有理数大小的比较可得数轴上的右边的数总大于左边的数得出b <c <0<a ,b a c >>,再分别判断各式.【详解】解:结合图形,根据数轴上的右边的数总大于左边的数,可得b <c <0<a ,b a c >>.∵∵0ab <,故错误;∵c a b -<<-,故正确; ∵11a b>,故正确; ∵b b =-,故正确;考法02 绝对值的意义一.绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
初一数学助学案(学生版)课题:§2.4 绝对值与相反数一、学习目标1.借助数轴,初步理解绝对值的概念, 能求一个有理数的绝对值;3.会比较两个有理数的绝对值的大小;二、学习重点与难点1.重点:了解绝对值的含义;2.难点:会比较两个有理数的绝对值的大小;三、 学习过程复习回顾1.有理数的分类:2.数轴的三要素 。
3.分别指出数轴上点A 、B 、C 、D 所表示的数:4.在数轴上画出表示下列各数的点:-3.5,3,-0.8,2.5,0.5.在数轴上位于-3.2与1之间的点表示的整数有:___________.6. 比较下列各数的大小:-2, 2.3, 0, 121。
(用“<”连接)(一)创设情境小明的家在学校西边3km 处,小丽的家在学校东边2km 处,小芳的家在学校东边3km 处,我们能够用数轴来表示小明、小丽和小芳的家和学校的位置,以学校为原点,向东为正,小明、小丽和小芳的家分别在A 、B 、C 处。
请画出数轴思考:(1)点A 、B 、C 离原点的距离各是多少?(2)点A 、B 、C 离原点的距离与它们表示的数是正数还是负数有没相关系?(3)在数轴上分别描出下列数所对应的点,并说出它们到原点的距离:0, -2, 5,21, -3.3二、探究新知小结: 叫做这个数的绝对值。
例如:3的绝对值记为 ,读作 。
3 表示的几何意义是_______________________________练习:在数轴上写出A ,B ,C ,D ,E 各点所表示的数的绝对值。
例1. 求4、-3.5的绝对值 例2.比较-3与-6的绝对值的大小-3-2-143210F E D C B A例3.在数轴上画出表示下列各数的点,并分别求出它们的绝对值:-2, +3.5, 0, -1, 12, -0.6 例4.出租车司机小李某天下午某一时段营运,全是在东西走向的人民大道实行。
如果规定向东为正,向西为负,他在这个时段行车里程(单位:千米)如下:-2, +5, -1,+10,-3,若车耗油量为0.8升/千米,你能协助小李算出在这个时段共耗油多少升吗?四、当堂反馈1.比较|-3|, | -0.4| , |-2 |的大小,并用“<”号把他们连接起来.2.填空题: (1)|+3|= , |0|= ; |-8.3| = , |-100| = .(2)若||4x =,则____x =; 若|a |=0, 则a = ____ (3)1||2-的倒数是____.3.选择题:(1)任何一个有理数的绝对值一定( )A 、大于0B 、小于0C 、小于或等于0D 、大于或等于0(2)下列说法:①7的绝对值是7 ②-7的绝对值是7 ③绝对值等于7的数是7或-7 ④绝对值最小的有理数是0.其中准确说法有( )A 、1个B 、2个C 、3个D 、4个五 学习反思初一数学助学案(学生版)课型:新授 执笔:杨存明 审核:初一备课组 姓名 课题:§2.3 绝对值与相反数(2)学习目标:有理数的相反数概念及表示方法,有理数相反数的求法、多重符号的化简和简单计算,在相反数概念学习过程中,理解数形结合等思想方法,培养概括水平.学习重点、难点:重点:互为相反数的数在数轴上的特征难点:根据相反数的意义实行多重符号的化简学习过程:复习回顾1. 叫做这个数的绝对值。
苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册》2.4.3《绝对值与相反数》这一节主要介绍了绝对值和相反数的概念及其性质。
绝对值是数轴上表示一个数的点到原点的距离,相反数是在数轴上与原数相对的数。
这一节内容是初中数学的基础,对于学生理解实数的概念,以及后续学习代数和几何有着重要的意义。
二. 学情分析七年级的学生已经初步接触了实数的概念,对于数轴也有了一定的了解。
但是,他们对于绝对值和相反数的定义及性质可能还不是很清楚,需要通过具体例子和练习来加深理解。
同时,学生可能对于数轴上的距离和相对概念有一定的困惑,需要教师进行详细的解释和引导。
三. 说教学目标1.理解绝对值和相反数的概念,掌握它们的性质。
2.能够运用绝对值和相反数的性质解决一些实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 说教学重难点1.绝对值和相反数的定义及性质。
2.如何运用绝对值和相反数的性质解决实际问题。
五. 说教学方法与手段1.采用讲授法,教师详细讲解绝对值和相反数的定义及性质,引导学生进行思考。
2.使用举例法,通过具体例子让学生理解绝对值和相反数的概念,加深记忆。
3.利用练习法,让学生通过做练习题,巩固所学知识,提高解决问题的能力。
4.采用小组讨论法,让学生分组讨论,培养学生的合作意识和沟通能力。
六. 说教学过程1.引入:通过数轴引导学生回顾实数的概念,然后提出绝对值和相反数的定义,让学生初步了解。
2.讲解:详细讲解绝对值和相反数的定义及性质,让学生理解并能够运用。
3.举例:给出具体例子,让学生理解绝对值和相反数的概念,加深记忆。
4.练习:让学生做练习题,巩固所学知识,提高解决问题的能力。
5.讨论:让学生分组讨论,分享解题心得,培养学生的合作意识和沟通能力。
6.小结:对本节课的内容进行总结,强调绝对值和相反数的重要性。
七. 说板书设计板书设计如下:绝对值与相反数1.绝对值:数轴上表示一个数的点到原点的距离。
《2.4绝对值与相反数(2)》作业一、选择题1、下列各数中,相反数等于5的数是 ( )A .-5B .5C .-D . 2、-(-2)的相反数是 ( )A .2B .C .-D .-2 3、下列叙述不正确的是 ( )A .正数的相反数是负数,负数的相反数是正数B .-个正数和一个负数互为相反数C .互为相反数的两个数有可能相等D .数轴上与原点距离相等且位于原点两侧的两个点所表示的数一定互为相反数4、如果a >b ,那么-a 与-b 的大小关系是 ( )A .-a >-bB .-a <-bC .-a =-bD .无法比较5、下列各对数中,互为相反数的有 ( )①(-1)与+1;②+(+1)与-1;③-(-2)与+(-2);④-(-)与+(+); ⑤-(+2)与-(-2);A .2对B .3对C .4对D .5对二、填空题1、-(-π)的相反数是_______.2、化简(1)-(+2)=_______;(2)+(-)=_______;(3)-[-(-3)]=_______.3、(1)若a =-13,则-a =________;(2)若-a =5.4,则a =_______.4、已知a 与b 互为相反数,b 与c 互为相反数,且c =-10,则a =_______.5、在数轴上,若点A 和点B 分别表示互为相反数的两个数(点A 在点B 的左侧),并且这两点间的距离是12,则两点所表示的数分别是_______,_______.三、解答题必做题1、写出下列各数的相反数.+2,-3,0,-(-1),-3,-(+4)2、化简下列各数:(1)+(-2) (2)-(-) (3)-[-(+3)](4)-[-(-2)] (5)-[+(-1.8)] (6)-[+(-|-3|)]151512121212151252选做题3、数轴上,点A表示的数为a,当点A在数轴上向右平移了5个单位后是点B,点A与点B表示的数恰好互为相反数,那么数a是几?4、已知有理数a、-2、b在数轴上的位置如图所示,请将a、-2、b的相反数在数轴上表示出来,并将这6个数用“<”连接起来.《2.4绝对值与相反数(2)》参考答案一、选择题1.A2.D3.B4.B5.C二、填空题1、-π2、(1)-2 (2)-15 (3)-33、(1)13 (2)-5.44、-1015、-6,6三、解答题必做题1、 2的相反数是-2; -3的相反数是3; 0的相反数是0; -(-1)的相反数是-1; -312的相反数是312; -(+4)的相反数是4.2、(1)-2;(2)52;(3)3;(4)-2;(5)1.8;(6)3. 选做题3、由题意,得 a <0,点B 表示的数大于0.5÷2=2.5,所以点A 表示的数a =-2.5.4、。
相反数与绝对值教案第一章:相反数的定义与性质1.1 教学目标了解相反数的定义掌握相反数的性质学会求一个数的相反数1.2 教学内容相反数的定义:一个数a的相反数是一个数-b,使得a + (-b) = 0。
相反数的性质:1) 每个数都有唯一的相反数。
2) 一个数的相反数的相反数等于它本身。
3) 任何数与它的相反数相加等于零。
1.3 教学活动通过实例讲解相反数的定义和性质。
让学生通过练习题来加深对相反数概念的理解。
教师提问,学生回答,共同总结相反数的性质。
1.4 练习题1. -5的相反数是什么?2. 证明:任何数a加上它的相反数-a等于零。
第二章:绝对值的定义与性质2.1 教学目标理解绝对值的定义掌握绝对值的性质学会求一个数的绝对值2.2 教学内容绝对值的定义:一个数a的绝对值是数轴上表示a的点到原点的距离。
绝对值的性质:1) 任何数的绝对值都是非负数。
2) 非零数的绝对值等于它的相反数的绝对值。
3) 零的绝对值是零。
2.3 教学活动通过数轴解释绝对值的定义和性质。
让学生通过练习题来加深对绝对值概念的理解。
教师提问,学生回答,共同总结绝对值的性质。
2.4 练习题1. -3的绝对值是多少?2. 证明:对于任意实数a,|a| = |-a|。
第三章:相反数与绝对值的关系3.1 教学目标理解相反数与绝对值之间的关系学会利用相反数和绝对值解方程3.2 教学内容相反数与绝对值的关系:一个数的相反数的绝对值等于它本身的绝对值。
3.3 教学活动通过实例讲解相反数与绝对值的关系。
让学生通过练习题来加深对相反数与绝对值关系的理解。
教师提问,学生回答,共同总结相反数与绝对值的关系。
3.4 练习题1. 如果一个数的绝对值是4,这个数的相反数是什么?2. 解方程:|x 2| = |x + 2|。
第四章:相反数与绝对值的应用4.1 教学目标掌握相反数和绝对值的基本运算学会解决实际问题中涉及相反数和绝对值的问题4.2 教学内容相反数和绝对值在实际问题中的应用,如距离问题、温度问题等。
绝对值与相反数 第1课时教学目标1.理解有理数的绝对值的意义,会求已知数的绝对值;2. 理解有理数的相反数的概念,会求已知数的相反数;3.渗透数形结合等思想方法,培养学生的概括能力.教学重难点【教学重点】绝对值和相反数概念的理解应用、观察分析问题和语言表达能力的培养. 【教学难点】应用绝对值的知识解决问题能力的形成.课前准备课件.教学过程情境创设导入小明的家在学校西边3km 处,小丽的家在学校东边2km 处,我们可以用数轴来表示小明、小丽两家和学校的位置分别在A.B 两处. 学生思考:1.A.B 两点离原点的距离各是多少?2.A.B 两点离原点的距离与它们表示的数是正数还是负数有没有关系?3.在数轴上分别描出下列数所对应的点,并指出它们到-2 -1 21 0A-3 B自学指导:阅读书本第23页.完成下面的尝试练习尝试练习:如图,你能说出数轴上A.B.C.D.E各点所表示的数的绝对值问题串:(1)点A表示的数是多少?(2)它到原点的距离是多少?(3)点A表示的数的绝对值是多少?以此类推…特别注意:0的绝对值│0│=?总结:从上面的问题中你能找到求一个数的绝对值的方法吗?(1)先画出数轴,在数轴上找出需要的点;(2)观察这个点与原点的距离,这个距离就是我们要求的绝对值.例1、求4、-3.5的绝对值.解:在数轴上分别画出表示4、-3.5的点A.点BA 点与原点的距离是4, 所以4的绝对值是4, | 4|= 4B 与原点的距离是 3.5, -3.5的绝对值是 3.5, | -3.5|=3.5活动一:请一位同学随便报一个数,并说出它的绝对值,然后点名叫另一位同学说出它的意义.例2、比较-3与-6的绝对值的大小解:在数轴上分别画出表示-3、-6的点A.点B因为∣-3 ∣=3, ∣ -6∣=6,并且3<6,所以∣-3∣ <∣ -6∣,即-3的绝对值小于-6的绝对值. 例3 求3,-4.5,0的相反数.表示一个数的相反数,在这个数前面添一个“-”号,就可以表示这个数的相反数了,比如-5的相反数可以表示为-(-5).(投影教材第23页的“议一议”)大家独立思考第161243-3 65-1-2 -4 -5 -6 3AB。
※实验初中高效课堂目标:学生“动”起来,课堂“活”起来,效果“好”起来※
1
|-4 | -7
的相反数是
4
(3) |0|=
课题:绝对值与相反数(三)
主备:李慧 课型:新授 审核人:七年级数学组 姓名
【学习目标】
(1) 理解有理数的绝对值与该数的关系,把握绝对值的代数意义;
(2) 会利用绝对值比较 2个负数的大小,理解其中的转化思想 [比较负数 ■»
比较正数。
]
【重点难点】 有理数的绝对值相反数概念及表示方法,有理数的大小比
较。
【课前预习】
1. 在数轴上画出表示 3> -
2.5、0及它们相反数的点。
并回答问题。
(1) 一个正数的相反数是什么数?
(2) —个负数的相反数是什么数?
(3) 有没有这样的数,它的相反数是它本身?
2. 填空
班级
(1) |2.3 |= (2) |-5|= _,| - |=—
4
,-5的相反数是 ,|6 |=
|-10.5 |= ,-10.5的相反数是
O
【课堂助学】 」、活动一
根据课前预习第二题的结果回答:一个数的绝对值与这个数本身、或与它 的相反数之间有什么关系
> 0)
< 0)
练一练
1
-5
二
二、活动二
1.思考:在两个正数中,绝对值大的那个数一定大吗?两个负数呢?
-5 -3
2. 探讨:同号两数的大小与这两个数的绝对值的大小有什么关系?
结论:
3. 关于数的大小比较,我们可以用哪些方法?
(a 用符号表示:|a|=
(a=0)
(a
+7
镇江市实验初级中学 2015—2016年度第一学期七年级数学助学案
⑴-[—什 2)]=
(2) — [― (— 2007 )]=
二、例题讲解:
例1、求下列各数的绝对值
+6, -3,
兀,0,
2
--,4.3, -8
3
例2、(1)比较一9.5与一 1.75 的大小。
⑵比较--3与一(一2.9 )的大小。
【课堂检测】
1.三个数—3、— 4、0依次从小到大排列的顺序是
A 、0< — 4< —
B 、一 3<— 4< 0
C 、0< — 4< — 2.下面四个结论中,
3
D
正确的是 、一4<— 3< 0
A 、 一 2 = 0
C 、一 2<
3.比较大小:
(1) -12.3
(3) |-8| _
-12 -8
-(-2.75 ) -|-0.4| —
-(-2.67) ;
____ (-0.4 ).
4. 化简:
镇江市实验初级中学 2015—2016年度第一学期七年级数学助学案
4( — 27)卜
5. 数a 、b 、c 在数轴上的位置如图所示.
(2)化简:l a =
【课后作业】
1 .比较下列每组数的大小,用 >、=或 < 填空
2 .有理数a 、b 在数轴上如图,用 >、=或 < 填空
(1)a —b , (2) |a|—|b| ,(3)
(5) |b|—b
★ 4.已知a 、b 、c 在数轴上的位置如图所示,试求 |a|+|c-3|+|b| 的值.
-3 -2 -1 0
教师 评价
家长
签字
后记:
(1)比较大小:b a c
-a
-c =
(1)-3. .-0.5 ; (2)+(-0.5).
+卜0.5| (3)-8.
(4)-5
-3
⑸-|-2.7|,
-(-3.32)
-a ____ -b, (4)|a|___a ,
3. 的相反数等于它本身,
的绝对值等于它本身.。