静态工作点稳定电路.
- 格式:ppt
- 大小:3.13 MB
- 文档页数:51
差动放大电路稳定静态工作点的原理和抑制共模信号的原理一样。
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!差动放大电路稳定静态工作点的原理与抑制共模信号的方法1. 简介在电子电路中,差动放大电路是一种常见的电路拓扑结构,用于放大差分信号并抑制共模信号。
分压式静态工作点稳定电路实验报告1. 引言静态工作点是指电子元件或电路在无交流信号输入时的直流电流和电压值,是电路中的重要参数之一。
在理想情况下,我们希望静态工作点稳定,以保证电路正常工作。
本实验旨在通过分压式静态工作点稳定电路的搭建和实验验证,探究分压式电路对静态工作点的影响以及其稳定性。
2. 实验原理(1) 分压式静态工作点稳定电路:该电路由电压分压器和负载电阻组成。
其中,电压分压器由两个电阻串联而成,并与电源相连,负载电阻则与电压分压器并联连接。
(2) 分压式电路原理:将输入电源的电压通过电压分压器分配给负载电阻,调整分压器的比例可以改变电路的输出电压。
理想情况下,负载电阻的两端电压可通过分压器的输出电压和总电阻来计算。
(3) 静态工作点分析:静态工作点一般表示为电路中某一元件两端的电压或电流值。
在本实验中,将通过测量电路中负载电阻两端的电压来确定静态工作点的位置,通过调整电路参数来使得静态工作点稳定在期望值附近。
3. 实验设备(1) 直流电源,电压范围可调(2) 电阻,选择合适的电阻值以满足实验要求(3) 万用表,用于测量电路参数4. 实验步骤(1) 搭建分压式静态工作点稳定电路,如图所示。
(2) 将直流电源连接到电路中,设置合适的电压值。
(3) 用万用表测量负载电阻两端的电压,并记录下来。
(4) 在保持电源电压不变的情况下,调整电路参数(如电阻值)来改变电路的分压比例。
(5) 重复步骤(3)和(4),记录不同电路参数下的负载电阻两端电压值。
5. 实验结果与分析通过实验记录的数据,可以绘制出不同电压分压比例下负载电阻两端电压的变化曲线。
从曲线图中可以看出,当分压比例改变时,负载电阻两端电压也发生变化,说明分压式电路对静态工作点有一定的影响。
此外,我们可以观察到当分压比例较小时,负载电阻两端电压较为稳定,而当比例增大时,负载电阻两端电压变化幅度增大,说明分压式电路对静态工作点的稳定性呈现一定的影响。
静态⼯作点稳定地放⼤电路分析报告静态⼯作点稳定的放⼤电路分析⼀、课题名称静态⼯作点稳定的放⼤电路分析⼆、设计任务及要求分析静态⼯作点、失真分析、动态分析、参数扫描分析、频率响应等。
(包括原始数据、技术参数、条件、设计要求等)三、电路分析1.静态⼯作点Q的分析(1)什么是静态⼯作点Q静态⼯作点就是输⼊信号为零时,电路处于直流⼯作状态,这些直流电流、电压的数值在三极管特性曲线上表⽰为⼀个确定的点,设置静态⼯作点的⽬的就是要保证在被被放⼤的交流信号加⼊电路时,不论是正半周还是负半周都能满⾜发射结正向偏置,集电结反向偏置的三极管放⼤状态。
可以通过改变电路参数来改变静态⼯作点,这样就可以设置静态⼯作点。
若静态⼯作点设置的不合适,在对交流信号放⼤时就可能会出现饱和失真(静态⼯作点偏⾼)或截⽌失真(静态⼯作点偏低)。
如图1为阻容耦合电路图1晶体管型号BC107BP参数 .MODEL BC107BP NPN IS =1.8E-14 ISE=5.0E-14 NF =.9955 NE =1.46 BF =400 BR =35.5+IKF=.14 IKR=.03 ISC=1.72E-13 NC =1.27 NR =1.005 RB =.56 RE =.6 RC =.25 VAF=80+VAR=12.5 CJE=13E-12 TF =.64E-9 CJC=4E-12 TR =50.72E-9 VJC=.54 MJC=.33 在放⼤电路中,当有信号输⼊时,交流量与直流量共存。
将输⼊信号为零,即直流电流源单独作⽤时晶体管的基极电流I B,集电极电流I C,b-e之间电压U BE,管压降U CE称为放⼤电路的静态⼯作点Q,常将四个物理量记作I BQ,I CQ,U BEQ,U CEQ。
在近似估算中常认为U BEQ为已知量,对于硅管U BEQ=0.7V,锗管U BEQ=0.2V。
为了稳定Q点,通常使参数的选取满⾜I1>>I BQ因此B点电位U BQ=Rb1/(Rb1+Rb2)·Vcc静态⼯作点的估算U BQ= Rb1/(Rb1+Rb2)·VccI EQ=(U BQ-U BEQ)/ReU CEQ=V CC-I CQ(Rc+Re)(2)为什么要设置合适的静态⼯作点对于放⼤电路最基本的要求,⼀是不失真,⼆是能够放⼤。
典型静态工作点稳定电路
典型的静态工作点稳定电路是指在电子电路中用来确保输出稳定在特定电压或电流水平的一种电路。
这种电路通常是通过负反馈来实现的,负反馈是一种控制电路输出的技术,它可以使电路的输出稳定在一个预期的值附近。
在典型的静态工作点稳定电路中,常见的包括基准电压源、稳压器和放大器等组件。
基准电压源用于提供一个稳定的参考电压,稳压器则可以将输入电压调节为稳定的输出电压,放大器则可以用来放大信号并通过负反馈来调节输出。
在设计这种电路时,需要考虑到电路的稳定性、温度漂移、负载变化等因素。
此外,还需要考虑功耗、成本和可靠性等方面的问题。
选择合适的元件和设计合理的电路拓扑结构对于实现稳定的静态工作点至关重要。
另外,还有一些特定的稳压器电路,比如基准电压源、电流源和电压源等,它们都可以用来实现静态工作点的稳定。
这些电路在各种电子设备中都有广泛的应用,比如在电源供应器、放大器、传感器等电路中都可以看到它们的身影。
总的来说,典型的静态工作点稳定电路是电子电路中非常重要的一部分,它可以确保电路的输出稳定性,提高电路的可靠性和性能。
在实际应用中,设计工程师需要根据具体的需求和条件选择合适的稳定电路,并且进行合理的设计和优化。
课程论文题目:晶体管静态工作点的稳定电路作者:铁虎所在学院:信息科学与工程学院专业年级:通信08-2班指导教师:李新刚职称:讲师2010年 1 月 6 日晶体管的静态工作点稳定电路摘要: Multisim10.0是一种专门用于电子线路仿真与设计的EDA工具软件,本文给出了使用该软件对模拟电路中的单管共射放大电路进行仿真的设计方法,采用多种分析手段对电路性能进行动态测试,通过反馈数据改进电路以达到设计要求,最后总结了电子设计中使用EDA技术的优点。
使用Multisim10.0对电路进行分析,可以使复杂的计算变得非常简便、直观,便于学生在建模仿真过程中更加深刻的理解和掌握所学知识。
关键词:电路结构、静态、动态、分析、稳定放大电路1 前言电子线路是一门实践性很强的课程,实验在电子线路的教学中占有非常重要的地位。
传统的实验都是在真实的实验室中完成的,随着现代教育技术的发展和仿真软件的问世,使得实验可以在虚拟实验室中完成。
真实实验和仿真实验相结合,能使实验达到最佳的教学效果。
通过实验学生能更好地掌握理论知识,同时锻炼学生的动手能力。
放大电路的多项重要指标均与静态工作点的设置密切相关。
如果静态工作点不稳定,则放大电路的性能指标也将发生变动。
因此,如何使静态工作点保持稳定,是一个十分重要的问题。
Multisim10.0是National Instruments Electronics workbench Group 公司 2007年推出的以Windows 为系统平台的仿真工具,适用于板级的模拟数字电路的设计工作,是非常有用的 EDA设计套件,可以帮助用户完成电路设计主要工作。
Multisim10.0包含了电路原理的图形输入,模拟电路仿真,数字电路仿真,混合模式电路仿真,高频电路仿真,PCB布局等功能,并支持VHDL、Verilog 语言的电路仿真与设计,以及与其他软件间的接口。
另外 Multisim10.0MCU 模块增加了微控制器的协同仿真功能,用于完成整个系统的模拟验证。