2.4 概率论——二维随机变量的独立性
- 格式:ppt
- 大小:2.33 MB
- 文档页数:58
概率论二维随机变量总结二维随机变量是指具有两个随机变量组成的随机向量,用(X, Y)表示。
概率论中研究二维随机变量的分布、期望、方差以及其它统计特性。
1. 二维随机变量的联合分布:联合分布是描述二维随机变量X 和Y的取值情况和对应的概率的函数。
可以通过联合概率密度函数或联合分布函数来表示。
2. 边缘分布:边缘分布是指某个变量的分布,不考虑另一个变量的取值情况。
对于二维随机变量(X, Y),X的边缘分布是通过对所有可能的Y求和或积分得到的函数,Y的边缘分布同理。
3. 条件分布:条件分布是指在已知一个变量的取值情况下,另一个变量的分布情况。
对于二维随机变量(X, Y),给定X的条件下Y的条件分布可以通过联合分布和边缘分布得到,形式为P(Y|X)。
4. 期望和方差:对于二维随机变量(X, Y),期望E(X)表示X的平均取值,E(Y)表示Y的平均取值,方差Var(X)表示X的取值的离散程度,Var(Y)表示Y的取值的离散程度。
5. 协方差和相关系数:协方差描述了X和Y之间的线性相关程度,可以通过公式Cov(X, Y) = E((X - E(X))(Y - E(Y)))计算得到。
相关系数表示X和Y之间的线性相关程度的强度,公式为Corr(X, Y) = Cov(X, Y) / (SD(X) * SD(Y)),其中SD(X)和SD(Y)分别表示X和Y的标准差。
6. 独立性:如果二维随机变量(X, Y)的联合分布可以拆分为X 的边缘分布和Y的边缘分布的乘积形式,即P(X, Y) = P(X) * P(Y),则称X和Y是独立的。
独立性意味着X和Y之间没有任何关联。
7. 协变和不相关性:如果协方差Cov(X, Y)为0,则X和Y是不相关的,不相关性不一定意味着独立性。
如果协方差Cov(X, Y)大于0,则X和Y是正相关的,如果Cov(X, Y)小于0,则X和Y是负相关的。
以上是二维随机变量的一些基本概念和理论,这些知识可以用于分析和解决涉及二维随机变量的问题。
概率论与数理统计教学设计不大于实数的概率,并把联合分布函数记为,即.3.联合分布函数的性质(1); (2 )是变量(固定)或(固定)的非减函数;(3) ,; (4) 是变量(固定)或(固定)的右连续函数; (5) .例题:设二维随机变量(,)X Y 的联合分布函数为(,)(arctan )(arctan )F x y A B x C y =++求:常数,,(,)A B C x y -∞<<+∞-∞<<+∞解:由分布函数(,)F x y 的性质得:lim (arctan )(arctan )()()122lim (arctan )(arctan )()(arctan )02lim (arctan )(arctan )(arctan )()02x y x y A B x C y A B C A B x C y A B C y A B x C y A B x C ππππ→+∞→+∞→-∞→-∞++=++=++=-+=++=+-=由以上三式可解得:21,,22A B C πππ===教师给予引导,提出的问题上。
y (,)F x y (,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞0(,)1F x y ≤≤(,)F x y x y y x (,)0,(,)0lim lim x y F x y F x y →-∞→-∞==(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==(,)F x y x y y x 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+1.也可用下边的概率分布表表示:分)5.二维连续型随机变量及联合概率密度(1)对于二维随机变量(X,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,则为二维连续型随机变量,为二维连续型随机变量的联合概率密度.(2)二维连续型随机变量及联合概率密度的性质①;②;③设为二维连续型随机变量,则对任意一条平面曲线,有;’④在的连续点处有;⑤设为二维连续型随机变量,则对平面上任一区域有例.求在D上服从均匀分布的随机变量(X,Y)的密度函数和分布函数,其中D为x轴、y轴及直线y=2x+1围城的三角形区域。