第三章习题答案 二维随机变量及其概率分布(1)
- 格式:pdf
- 大小:397.38 KB
- 文档页数:7
第三章 多维随机变量及其分布1. 在一箱子中装有12只开关, 其中2只是次品, 在其中取两次, 每次任取一只, 考虑两种试验: (1)放回抽样, (2)不放回抽样. 我们定义随机变量X , Y 如下:⎩⎨⎧=若第一次取出的是次品若第一次取出的是正品10X ,⎩⎨⎧=若第二次取出的是次品若第二次取出的是正品10Y .试分别就(1), (2)两种情况, 写出X 和Y 的联合分布律.解: (1)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有362512101210)0 ,0(=⋅===Y X P ,3651221210)1 ,0(=⋅===Y X P ,3651210122)0 ,1(=⋅===Y X P ,361122122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律(2)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有66451191210)0 ,0(=⋅===Y X P ,66101121210)1 ,0(=⋅===Y X P ,66101110122)0 ,1(=⋅===Y X P ,661111122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律2. 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以X 表示取到黑球的只数, 以Y 表示取到白球的只数, 求X , Y 的联合分布律.解: (X , Y )的可能取值为(i , j ), i =0, 1, 2, 3, j =0, 1, 2, i +j ≥2, 联合分布律为P (X =0, Y =2)=351472222=C C C ,P (X =1, Y =1)=35647221213=C C C C , P (X =1, Y =2)=35647122213=C C C C , P (X =2, Y =0)=351472222=C C C ,P (X =2, Y =1)=351247121223=C C C C ,P (X =2, Y =2)=353472223=C C C ,P (X =3, Y =0)=352471233=C CC ,P (X =3, Y =1)=352471233=C CC ,列成表格便得X 和Y 的联合分布律3. 设随机变量(X , Y )概率密度为⎩⎨⎧<<<<--=其它042 ,20)6(),(y x y x k y x f . (1)确定常数k ; (2)求P (X <1, Y <3); (3)求P (X <1.5); (4)求P (X +Y ≤4). 解: (1)因为 k dydx y x k dy dx y x f 8)6(),(1242=--==⎰⎰⎰⎰+∞∞-+∞∞-,所以81=k .(2)83)6(81)3 ,1(3210⎰⎰=--=<<dy y x dx Y X P .(3)3227)6(81) ,5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P .(4)32)6(81}4{4020=--=≤+⎰⎰-dy y x dx Y X P x .4. 将一枚硬币掷3次, 以X 表示前2次中出现H 的次数, 以Y 表示3次中出现H 的次数, 求(X , Y )的联合分布律及边缘分布律.故(X , Y )的联合分布律为(X , Y )关于X 的边缘分布律为即)21 ,2(~b X .(X , Y )关于Y 的边缘分布律为即)21 ,3(~b Y .5. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤≤≤-=其它00,10)2(8.4),(xy x x y y x f , 求边缘概率密度. 解: ⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.40x dy x y x⎩⎨⎧≤≤-=其它010)2(4.22x x x ,⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.41y dx x y y⎩⎨⎧≤≤+-=其它010)43(4.22y y y y . 6. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧<<=-其它00),(y x e y x f y , 求边缘概率密度.解:⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤>=⎰+∞-000x x dy e x y⎩⎨⎧≤>=-000x x e x . ⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤>=⎰-000y y dx e y y⎩⎨⎧≤>=-000y y ye y . 7. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤=其它01),(22y x y cx y x f . (1)试确定常数c ; (2)求边缘概率密度. 解: (1)因为l =⎰⎰⎰⎰⎰∞+∞-+-∞+∞-===c dy y c ydx cx dy dxdy y x f yy 21432),(1025210,所以421=c .(2)X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤-=⎰其它011421)(~122x ydy x x f X x X⎪⎩⎪⎨⎧≤≤--=其它011)1(82142x x x .X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤=⎰+-其它010421)(~2y ydx d y f Y y y Y⎪⎩⎪⎨⎧≤≤=其它0102725y y .8. 将某一医公司9月份和8月份收到的青霉素针剂的订货单数分别记为X 和Y , 据以往积累的资料知X 和Y 联合分布律为:(1)求边缘分布律;(2)求8月份的订单数为51时, 9月份订单数的条件人布律.解: 在表中运算得(2)因为j ijj j i i i p p y Y P y Y x X P y Y x X P ⋅=======)() ,()|(, 并且P (Y =51)=0.28=p ⋅j , 所以28628.006.0)51|51(====Y X P ,28728.007.0)51|52(====Y X P ,28528.005.0)51|53(====Y X P ,28528.005.0)51|54(====Y X P ,28528.005.0)51|55(====Y X P ,故当8月份的订单数为51时, 9月份订单数的条件分布律为9. 以X 记某一医院一天出生的婴儿的个数, Y 记男婴的个数, 记X 和Y 的联合分布律为)!(!)86.6()14.7() ,(14m n m e m Y n X P mn m -===--(m =0, 1, 2, ⋅⋅⋅, n ;n =0, 1, 2, ⋅⋅⋅ ).(1)求边缘分布律; (2)求条件分布律;(3)特别写出当X =20时, Y 的条件分布律. 解: (1)边缘分布律:∑∑=--=-=====nm mn m n m m n m e m Y n X P n X P 0140)!(!)86.6()14.7() ,()(∑=--⋅⋅⋅⋅=nm m n m m ne n C 014)86.6()14.7(!1 ∑=--⋅⋅=n m m n m mn C n e 014)86.6()14.7(! !14)86.614.7(!1414n e n e n n --⋅=+=(n =0, 1, 2, ⋅⋅⋅ ). ∑∑∞=--∞=-=====0140)!(!)86.6()14.7() ,()(n mn m n m n m e m Y n X P m Y P∑∞=---=014)!()86.6(!)14.7(n mn m m n m e m m m e e m e )14.7(!!)14.7(14.786.614--==(m =0, 1, 2, ⋅⋅⋅ ).(2)条件分布律:m mn m m e m n m e m Y P m Y n X P m Y n X P )14.7(!)!(!)86.6()14.7()() ,()|(14.714----======= )!()86.6(86.6m n e mn -⋅=--(n =m , m +1, ⋅⋅⋅ ).当m =0, 1, 2, ⋅⋅⋅ 时1414!14)!(!)86.6()14.7()() ,()|(----=======e n m n m e n X P m Y n X P n X m Y P nmn m m n m m n m n -⋅⋅-=)1486.6()1414.7()!(!! m m mn C -⋅⋅=20)49.0()51.0((m =0, 1, ⋅⋅⋅ , n ). (3)当X =20时, Y 的条件分布为m m mC X m Y P -⋅===2020)49.0()51.0()20|((m =0, 1, ⋅⋅⋅ , 20).10. 求§1例1中的条件分布律: P (Y =k |X =i )=?解: 由于)(),()|(i X P i X k Y P i X k Y P ======, 而411) ,(⋅===i i X k Y P (i =1, 2, 3, 4, k ≤i ),41)(==i X P ,所以ii X k Y P 1)|(===(i =1, 2, 3, 4, k ≤i ),即11. 在第7题中(1)求条件概率f X |Y (x |y ), 特别, 写出当21=Y 时X 的条件概率密度; (2)求条件概率密度f Y |X (y |x ), 特别, 分别写出当31=X , 21=X 时Y 的条件概率密度; (3)求条件概率P (Y ≥1/4|X =1/2), P (Y ≥3|X =1/2). 解: (1)当0<y ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他027421)(),()|(252|y x y y yx y f y x f y x f Y Y X ⎪⎩⎪⎨⎧<<-=-其他023232y x y y x ,特别, ⎪⎩⎪⎨⎧<<-==-其他02121)21(23)21|(232|x x y x f Y X ⎪⎩⎪⎨⎧<<-=其他02121232x x .(2)当-1<x ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他01)1(821421)(),()|(2422|y x x x y x x f y x f x y f X X Y ⎪⎩⎪⎨⎧<<-=其他01)1(222y x x y ,特别, ⎪⎩⎪⎨⎧<<-==其他0191))3/1(1(2)31|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01914081y y ,⎪⎩⎪⎨⎧<<-==其他0141))2/1(1(2)21|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01411532y y .(3))21|41()21|1()21|41(=<-=<==≥X Y P X Y P X Y P1153215324141141=-=⎰⎰ydy ydy ,)21|43()21|1()21|43(=<-=<==≥X Y P X Y P X Y P157153214341=-=⎰ydy .12. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=其他010 ,||1),(x x y y x f , 求条件概率密度f Y |X (y |x ),f X |Y (x |y ). 解: f (x ,y )的边缘密度为⎪⎩⎪⎨⎧<<=⎰-其他0101)(x dy x f x x X ⎩⎨⎧<<=其他0102y x ,⎪⎩⎪⎨⎧<<-=⎰其他0111)(1||y dx x f y Y ⎩⎨⎧<<--=其他011||1y y ,所以当0<x <1时,⎪⎩⎪⎨⎧<==其他0||21)(),()|(|x y xx f y x f x y f X X Y , 当|y |<1时,⎪⎩⎪⎨⎧<-==其他0||||11)(),()|(|x y y x f y x f x y f Y Y X , 13. (1)问第1题中的随机变量X 和Y 是否相互独立?(2)问第12题中的随机变量X 和Y 是否相互独立?(需说明理由) 解: (1)有放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 独立. 不放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 不独立.(2)由于当|y |<x , 0<x <1时, f X (x )⋅f Y (y )=2x (1-|y |)≠f (x , y )=1, 故X 和Y 不独立.14. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y .(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0, 试求a 有实根的概率.解: (1)按已知X 的概率密度为⎩⎨⎧<<=其他0101)(x x f X .由于X 和Y 相互独立, 故(X , Y )的概率密度为⎪⎩⎪⎨⎧><<=⋅=-其他0,1021)()(),(2y x e y f x f y x f y Y X .(2)要使a 有实根, 必须方程a 2+2Xa +Y =0的判别式∆=X 2-Y ≥0,⎰⎰⎰---==≥-10202102)1(21)0(22dx e dy e dx Y X P x x y⎰⎰⎰∞--∞-----=-=02121022222121[211dx e dx e dx e x x x πππ 1445.0)]0()1([21=Φ-Φ-=π.15. 第1题中的随机变量X 和Y 是否相互独立. 解: 放回抽样的情况P (X =0, Y =0)=P (X =0)⋅P (Y =0)3625=P (X =0, Y =1)=P (X =0)⋅P (Y =1)365=P (X =1, Y =0)=P (X =1)⋅P (Y =0)3651210122=⋅=P (X =1, Y =1)=P (X =1)⋅P (Y =1)361122122=⋅=.在放回抽样的情况下, X 和Y 是独立的. 不放回抽样的情况:P (X =0, Y =0)66451191210=⋅=,P (X =0)651210==,P (X =0)=P (X =0, Y =0)+P (Y =0, X =1) 6511101121191210=⋅+⋅=,P (X =0)⋅P (Y =0)36256565=⨯=,P (X =0, Y =0)≠P (X =0)P (Y =0), 所以X 和Y 不独立.14. 设X , Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布. Y 的概率密度为⎪⎩⎪⎨⎧≤>=00021)(2y y e y f y Y .(1)求X 和Y 的联合密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求有实根的概率. 解: (1)X 的概率密度为⎩⎨⎧∈=其它0)1 ,0(1)(x x f X ,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y ,可见且知X , Y 相互独立, 于是(X , Y )的联合密度为⎪⎩⎪⎨⎧><<==-其它0,1021)()(),(2y x e y f x f y x f y Y X .(2)由于a 有实根, 从而判别式∆=4X 2-4Y ≥0, 即Y ≤X 2. 记}0,10|),{(2x y x y x D <<<<=, ⎰⎰=≤Ddxdy y x f X Y P ),(}{2⎰⎰⎰⎰⎰----=-==10010102022222121x xx y y dx e de dx dy e dxdx e x ⎰-⋅-=00222121ππ)5.08413.0(21)]2()1([21--=Φ-Φ-=ππ 1445.08555.013413.05066312.21=-=⨯-=.15. 进行打靶, 设弹着眯A (X , Y )的坐标X 和Y 相互独立, 且都服从N (0, 1)分布, 规定点A 落在区域D 1={(x , y )|x 2+y 2≤1}得2分; 点A 落在D 2={(x , y )|1≤x 2+y 2≤4}得1分; 点A 落在D 3={(x , y )|x 2+y 2>4}得0分, 以Z 记打靶的得分, 写出X , Y 的联合概率密度, 并求Z 的分布律.解: (1)因为X ~N (0, 1), Y ~N (0, 1), X 与Y 独立, 故(X , Y )的联合概率密度为22221),(y x e y x f +-=π(-∞<x <+∞, -∞<y <+∞).(2)Z 的可能取值为0, 1, 2.⎰⎰>++-=∈==421222221)),(()0(x x y x dxdy e D Y X A P Z P π⎰⎰≤++--=422222211x x y x dxdy e π2202022211--=-=⎰⎰e rdr e d r ππθ,⎰⎰≤+≤+-=∈==4122222221)),(()1(x x y x dxdy e D Y X A P Z P π22120212221----==⎰⎰e e rdr e d r ππθ,⎰⎰≤++-=∈==121222221)),(()2(x x y x dxdy e D Y X A P Z P π21201021212---==⎰⎰e rdr e d r ππθ,故得Z 的分布律为16. 设X 和Y 是相互独立的随机变量, 其概率密度分别为⎩⎨⎧≤>=-000)(x x e x f x X λλ, ⎩⎨⎧≤>=-000)(y y e y f y Y μμ, 其中λ>0, μ>0是常数, 引入随机变量⎩⎨⎧>≤=Y X YX Z 当当01.(1)求条件概率密度f X |Y (x |y ); (2)求Z 的分布律和分布函数. 解: (1)由X 和Y 相互独立, 故⎩⎨⎧>>=⋅=+-其他00 ,0)()(),()(y x e y f x f y x f y x Y X μλλμ.当y >0时,⎩⎨⎧≤>===-000)()(),()|(|x x e y f y f y x f y x f x X Y Y X λλ. (2)由于⎩⎨⎧>≤=Y X YX Z 当当01,且 μλλλλμμλμλ+===≤⎰⎰⎰+∞+-+∞+∞+-0)(0)()(dx e dydx eY X P x xy x ,μλμμλλ+=+-=≤-=>1)(1)(Y X P Y X P ,故Z 的分布律为Z 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=111000)(z z z z F Z μλμ. 17. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为⎩⎨⎧<≤=其他0101)(x x f X , ⎩⎨⎧>=-其他00)(y e y f y Y , 求随机变量Z =X +Y 的概率密度.解: 由于X 和Y 是相互独立的, 故⎩⎨⎧><≤=⋅=-其他00 ,10)()(),(y x e y f x f y x f y Y X , 于是Z =X +Y 的概率密度为⎰+∞∞--⋅=dx x z f x f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧>-≤≤-=⎰⎰其他01)()(10)()(100z dxx z f x f z dx x z f x f Y X x YX ⎪⎪⎩⎪⎪⎨⎧>≤≤=⎰⎰----其他011010)(0)(z dxe z dx e x z x x z ⎪⎩⎪⎨⎧>-≤≤-=--其他01)1(101z e e z e zz .18. 设某种商品一周的需要量是一个随机变量, 其概率密度为⎩⎨⎧≤>=-000)(t t te t f t , 设各周的需要量是相互独立的, 试求: (1)两周需要量的概率密度; (2)三周需要量的概率密度.解: (1)设第一周需要量为X , 它是随机变量; 设第二周需要量为Y , 它是随机变量且与X 同分布, 其分布密度为⎩⎨⎧≤>=-000)(t t te t f t . Z =X +Y 表示两周需要的商品量, 由X 和Y 的独立性可知:⎩⎨⎧>>=--其它00,0),(y x ye xe y x f y x .因为z ≥0, 所以当z <0时, f z (z )=0; 当z >0时, 由和的概率公式知 ⎰∞+∞--=dy y f y z f z f Y X Z )()()(z yzy z e z dy ye ey z ----=⋅-=⎰6)(30)(, 所以 ⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z .(2)设Z 表示前两周需要量, 其概率密度为⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z ,设ξ表示第三周需要量, 其概率密度为:⎩⎨⎧≤>=-000)(x x xe x f x ξ,Z 与ξ相互独立, η=Z +ξ表示前三周需要量, 则因为η≥0, 所以u <0, f η(u )=0. 当u >0时 ⎰∞+∞--=dy y f y u f u f )()()(ξηdy ye e y u y uy u ---⋅-=⎰0)(3)(61u e u -=1205, 所以η的概率密度为⎪⎩⎪⎨⎧≤>=-00120)(5u u e u u f u η.19. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-其他00,0)(21),()(y x e y x y x f y x .(1)问X 和Y 是否相互独立? (2)求Z =X +Y 的概率密度. 解: (1)X 的边缘密度为⎪⎩⎪⎨⎧<>+=⎰∞++-000)(21)(0)(x x dy e y x x f y x X⎪⎩⎪⎨⎧<>+=-000)1(21x x e x x ,同理Y 的边缘密度为⎪⎩⎪⎨⎧<>+=-000)1(21)(y y e y y f y Y .因为当x >0, y >0时,)()()1)(1(41)(21),()()(y f x f e y x e y x y x f Y X y x y x =++≠+=+-+-,所以X 与Y 不独立. (2)Z 的概率密度为z z x Z e z dx e x z x dx x z x f z f --+∞∞-=-+=-=⎰⎰2021)(21),()((z >0).当z <0时, f Z (z )=0, 所以⎪⎩⎪⎨⎧<>=-0021)(2z z e z z f z Z .20. 设X , Y 是相互独立的随机变量, 它们都服从正态分布N (0, σ 2), 试验证随机变量22Y X z +=具有概率密度⎪⎩⎪⎨⎧>≥=-其他0,0)(2222σσσz e z z f z Z ,称Z 服从参数为σ(σ>0)的瑞利(Rayleigh 分布.解: 因为X , Y 相互独立且均服从正态分布N (0, σ 2), 它们的概率密度分别为22221)(σσπx e x f -=, 22221)(σσπy e y f -= , σ>0,故X 和Y 的联合密度为2222221)()(),(σπσy x e y f x f y x f +-=⋅=.22Y X z +=的分布函数为⎰⎰≤+=≤+=≤=222),()()((z)22z y x Z dxdy y x f z Y X P z Z P F⎰⎰-=zd e d 022202221ρρπσθσρπ2222202211σσρρρσz z ed e---==⎰(z >0),当z ≤0时, F Z (z )=0.于是随机变量22Y X z +=的概率密度为⎪⎩⎪⎨⎧>≥==-其他00 ,0)()(2222σσσz e z dz z dF z f z Z Z .21. 设随机变量(X , Y )的概率密度为⎩⎨⎧+∞<<<<=+-其他00 ,10),()(y x be y x f y x . (1)试确定义常数b ;(2)求边缘概率密度f X (x ), f Y (y );(3)求函数U =max(X , Y )的分布函数. 解: (1)由10)(1=⎰⎰+∞+-dy be dx y x , 即1)1(1010=-=⎰⎰+∞--e b dy e dx e b y x ,得1111-=-=-e e e b .(2)⎪⎩⎪⎨⎧<<-=⎰∞++-其他0101)(0)(x dy e e e x f y x X⎪⎩⎪⎨⎧<<-=-其他0101x e e e x ,⎩⎨⎧≤>==-∞+∞-⎰000),()(y y e dx y x f x f y X . 显然X 与Y 独立.(3)⎪⎩⎪⎨⎧≥<≤--<=-1110)1(100)(x x e e e x x F x X⎩⎨⎧≤>-=-0001)(y y e x F y Y , 故U =max(X , Y )的分布函数为F U (u )=P (U ≤u )=P (max(X , Y )≤u ) =P (X ≤u , Y ≤u )=P (X ≤u )P (Y ≤u )⎪⎩⎪⎨⎧≥-<≤--<==--1110)1(100)()(2u eu e e e u u F u F uu Y X .22. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.解: 设X 1, X 2, X 3, X 4为4只电子管的寿命, 它们相互独立, 同分布, 其概率密度为:22202)160(2021)(⨯--⋅=t T et f π,⎰∞-⨯-==<18022202)160(20121)180(}180{dt t F X f X π ⎰∞--=-======1220160221du e u ut π令 8413.0)2060180(=-Φ=.设N =min{X 1, X 2, X 3, X 4}, 则P {N >180}=P {X 1>180, X 2>180, X 3>180, X 4>180} =P {X >180}4={1-p [X <180]}4 =(0.1587)4=0.00063.23. 对某种电子装置的输出测量了5次, 得到观察值X 1,X 2, X 3, X 4, X 5, 设它们是相互独立的随机变量且都服从参数σ=2的瑞种分布.(1)求Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数; (2)求P (Z >4).解: 由20题知, X i (i =1, 2, ⋅⋅⋅ , 5)的概率密度均为⎪⎩⎪⎨⎧≥=-其他004)(82x e x x f x X ,分布函数为821)(x X e x F --=(x >0).(1) Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数为 585m ax )1()]([)(2z e z F z F --== (z ≥0), 当z <0时, F max (z )=0.所以Z 的分布函数为⎩⎨⎧<≥-=-000)1()(58m ax 2z z e z F z .(2)P (Z >4)=1-P (Z ≤4)=1-F Z (4)5167.0)1(1)1(1525842=--=--=--e e .24. 设随机变量X , Y 相互独立, 且服从同一分布, 试证明 P (a <min{X , Y }≤b )=[P (X >a )]2-[P (X >b )]2 . 解: 因为X 与Y 相互独立且同分布, 故P (a <min{X , Y }≤b )=P (min{X , Y }≤b )-P (min{X , Y }≤a ) =1-P (min{X , Y }>b )-[1-P (min{X , Y }>a )] =P (min{X , Y }>a )-P (min{X , Y }>b ) =P (X >a , Y >a )-P (X >b , Y >b ) =P (X >a )P (Y >a )-P (X >b )P (Y >b ) =[P (X >a )]2-[P (Y >b )]2 .25. 设X , Y 是相互独立随机变量, 其分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ). 证明随机变量Z =X +Y 的分布律为∑=-==ik k i q k p i Z P 0)()()( (i =0, 1, 2, ⋅⋅⋅ ),证明: 因为X 与Y 独立, 且X 与Y 的分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ), 故Z =X +Y 的分布律为∑==+===ik i Y X k X P i Z P 0) ,()( ∑=-===i k k i Y k X P 0) ,( ∑=-===i k k i Y P k X P 0)()( ∑=-=i k k i q k p 0)()( (i =0, 1, 2, ⋅⋅⋅ ).26. 设X , Y 是相互独立的随机变量, X ~π(λ1), Y ~π(λ2), 证明Z =X +Y ~π(λ1+λ2).证明: 因为X , Y 分别服从参数为λ1, λ2的泊松分布, 故X , Y 的分布律分别为 1!)(1λλ-==e k k X P k (λ1>0),2!)(2λλ-==e r r Y P r (λ2>0),由25题结论知, Z =X +Y 的分布律为 ∑=-====ik k i Y P k X P i Z P 0)()()(∑=----⋅=ik ki k e k i e k 02121)!(!λλλλ∑=-+-⋅-=i k k i k k i k i i e 021)()!(!!!21λλλλ i i e )(!21)(21λλλλ+=+-(i =0, 1, 2, ⋅⋅⋅ ), 即Z =X +Y 服从参数为λ1+λ2的泊松分布.27. 设X , Y 是相互独立的随机变量, X ~b (n 1, p ), Y ~b (n 2, p ), 证明Z =X +Y ~b (n 1+n 2, p ).证明: Z 的可能取值为0, 1, 2, ⋅⋅⋅ , 2n , 因为 {Z =i }={X +Y =i }={X =0, Y =0}⋃{X =1, Y =i -1}⋃ ⋅⋅⋅ ⋃{X =i , Y =0}, 由于上述并中各事件互不相容, 且X , Y 独立, 则∑=-====ik k i Y k X P i Z P 0) ,()(∑=-===ik k i Y P k X P 0)()(∑=+-----⋅-=ik k i n ki k i n k n k k n p p C p p C 02211)1()1( ∑=--+⋅-=ik ki n k n k n n i C C p p 02121)1( in i i n n p p C -+-=2)1(21(i =0, 1, 2, ⋅⋅⋅ , n 1+n 2), 所以 Z =X +Y ~b (n 1+n 2, p ),即Z =X +Y 服从参数为2n , p 的二项分布.提示:上述计算过程中用到了公式i n n ik k i n k n C C C21210+=-=⋅∑,这可由比较恒等式2121)1()1()1(n n n n x x x ++=++两边x i 的系数得到.28. 设随机变量(X , Y )的分布律为(1)求P {X =2|Y =2), P (Y =3|X =0); (2)求V =max{X , Y }的分布律; (3)求U =min{X , Y }的分布律; (4)求W =V +U 的分布律. 解: (1)由条件概率公式)2()2,2()2|2(======Y P Y X P Y X P08.005.005.005.003.001.005.0+++++=2.025.005.0==.同理 31)0|3(===X Y P .(2)变量V =max{X , Y }.显然V 是一随机变量, 其取值为V : 0, 1, 2, 3, 4, 5. P (V =0)=P (X =0, Y =0)=0,P (V =1)=P (X =1, Y =0)+P (X =1, Y =1)+P (X =0, Y =1) =0.01+0.02+0.01=0.04,P (V =2)=P (X =2, Y =0)+P (X =2, Y =1)+P (X =2, Y =2) +P (Y =2, X =0)+P (Y =2, X =1)=0.03+0.04+0.05+0.01+0.03=0.16, P (V =3)=P (X =3, Y =0)+P (X =3, Y =1) +P (X =3, Y =2)+P (X =3, Y =3)+P (Y =3, X =0)+P (Y =3, X =1)+P (Y =3, X =2), =0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28 P (V =4)=P (X =4, Y =0)+P (X =4, Y =1) +P (X =4, Y =2)+P (X =4, Y =3) =0.07+0.06+0.05+0.06=0.24, P (V =5)=P (X =5, Y =0)+ ⋅⋅⋅ +P (X =5, Y =3) =0.09+0.08+0.06+0.05=0.28. (3)显然U 的取值为0, 1, 2, 3.P (U =0)=P (X =0, Y =0)+ ⋅⋅⋅ +P (X =0, Y =3)+P (Y =0, X =1)+ ⋅⋅⋅ +P (Y =0, X =5)=0.28. 同理 P (U =1)=0.30, P (U =2)=0.25, P (U =3)=0.17. (4)W =V +U 的取值为0, 1, ⋅⋅⋅ , 8. P (W =0)=P (V =0, U =0)=0,P (W =1)=P (V =0, U =1)+P (V =1, U =0). 因为V =max{X , Y }=0又U =min{X , Y }=1 不可能上式中的P (V =0, U =1)=0,又 P (V =1, U =0)=P (X =1, Y =0)+P (X =0, Y =1)=0.2, 故 P (W =1)=P (V =0, U =1)+P (V =1, U =0)=0.2,P(W=2)=P(V+U=2)=P(V=2, U=0)+P(V=1,U=1) =P(X=2 Y=0)+P(X=0,Y=2)+P(X=1,Y=1)=0.03+0.01+0.02=0.06,P(W=3)=P(V+U=3)=P(V=3, U=0)+P(V=2,U=1) = P(X=3,Y=0)+P(X=0,Y=3)+P(X=2,Y=1)+P(X=1,Y=2)=0.05+0.01+0.04+0.03=0.13, P(W=4)=P(V=4, U=0)+P(V=3,U=1)+P(V=2,U=2) =P(X=4,Y=0)+ P(X=3,Y=1)+P(X=1,Y=3)+P(X=2,Y=2 =0.19,P(W=5)=P(V+U=5)=P(V=5, U=0)+P(V=5,U=1)+P(V=3,U=2=P(X=5 Y=0)+P(X=5,Y=1)+P(X=3,Y=2)+P(X=2,Y=3) =0.24,P(W=6)=P(V+U=6)=P(V=5, U=1)+P(V=4,U=2) +P(V=3,U=3)=P(X=5,Y=1)+P(X=4,Y=2)+P(X=3,Y=3)=0.19,P(W=7)=P(V+U=7)=P(V=5, U=2)+P(V=4,U=3) =P(V=5,U=2)+P(X=4,Y=3)=0.6+0.6=0.12, P(W=8)=P(V+U=8)=P(V=5, U=3)+P(X=5,Y=3)=0.05.。
习题3-11.而且12{0}1P X X ==. 求X 1和X 2的联合分布律.解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04P X P X =⋅==≠, 所以X 1和X 2不独立.2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律.解 从7只球中取4球只有3547=C 种取法. 在4只球中, 黑球有i 只, 红球有j 只(余下为白球4i j --只)的取法为4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4.于是有0223221{0,2}3535P X Y C C C ====,1113226{1,1}3535P X Y C C C ====,1213226{1,2}3535P X Y C C C ====,2023223{2,0}3535P X Y C C C ====,21132212{2,1}3535P X Y C C C ====,2203223{2,2}3535P X Y C C C ====,3013222{3,0}3535P X Y C C C ====, 3103222{3,1}3535P X Y C C C ====,{0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============.3. (,)(6),02,24,0,.f x y k x y x y =--<<<<⎧⎨⎩其它求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-=⎡⎤⎢⎥⎣⎦⎰⎰⎰, 所以 18k =. (2) 3121,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--⎰⎰⎰⎰1322011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰321113()d 828y y =-=⎰. (3) 1.51.5{ 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==⎰⎰⎰4 1.521d (6)d 8y x y x --=⎰⎰1.5422011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰ 421633()d 882y y =-⎰ 2732=. (4) 作直线4x y +=, 并记此直线下方区域与(,)0f x y ≠的矩形区域(0,2)(0,4)⨯的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =⎰⎰44201d (6)d 8x y x y x -=--⎰⎰ 4422011(6)d 82xy x x y -=--⎡⎤⎢⎥⎣⎦⎰ 42211[(6)(4)(4)]d 82y y y y =----⎰ 42211[2(4)(4)]d 82y y y =-+-⎰423211(4)(4)86y y =----⎡⎤⎢⎥⎣⎦23=. 图3-8 第4题积分区域4. 二维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =⎧⎨⎩≤≤≤≤其它. 试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤.解 由21114001(,)d d d (1)d 26x k kf x y xdy x kxy y x x x +∞+∞-∞-∞====-⎰⎰⎰⎰⎰,解得6=k .因而 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=⎰⎰⎰. 5. 设二维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=⎧⎨⎩≤≤≤≤其它 求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因而, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它.124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它. 6. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-⎧⎨⎩若≤若 1,1,1, 1.U Y U -=>⎧⎨⎩若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==12133=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2){22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. 而{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成, 二维随机变量(X , Y )在区域D 上服从均匀分布, 求(X , Y )关于X 的边缘概率密度在x =2处的值.解 由题设知D 的面积为22e e111d ln 2D S x x x ===⎰. 因此, (X ,Y )的密度为 1,(,),(,)20x y D f x y ∈=⎧⎪⎨⎪⎩,其它.由此可得关于X 的边缘概率密度 ()(,)d X f x f x y y +∞-∞=⎰.显然, 当x ≤1或x ≥e 2时,()0X f x =; 当21e x <<时,111()d 22x X f x y x==⎰.故(2)14X f =. 3. 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =. 故 2,01,()0,其它.X x x f x <<=⎧⎨⎩当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它(2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0<z <2时, (){2Z F z P X Y =-≤2}(,)d d x y zz f x y x y -=⎰⎰≤2x12202-2d 1d d 1d zxz x zx y x y =⋅+⋅⎰⎰⎰⎰24z z =-.故 1,02,()20,.()其它Z z zz f z F z -<<'==⎧⎪⎨⎪⎩(3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. 4. 设G 是由直线y =x , y =3,x =1所围成的三角形区域, 二维随机变量(,)X Y 在G 上服从二维均匀分布.求:(1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度. 解 (1)由于三角形区域G 的面积等于2, 所以(,)X Y 的概率密度为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=⎰⎰.其中0G S 为G 0的面积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=⎰. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-⎰. 当1<x 或3>x 时, 0)(=x f X .因此 ⎪⎩⎪⎨⎧∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独立, 且分布律分别为下表:求二维随机变量(,)X Y 的分布律.解 由于X 与Y 相互独立, 所以有}{}{},{j i j i y Y P x X P y Y x X P =⋅====,6,5,2,0;0,21,1=--=j i .因此可得二维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独立? 解由于边缘分布满足23111,1i j i j p p ⋅⋅====∑∑, 又X , Y 相互独立的等价条件为 p ij = p i . p .j (i =1,2; j =1,2,3).故可得方程组 21,3111().939αβα++==⋅+⎧⎪⎪⎨⎪⎪⎩解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i . p .j 成立.因此当29α=,19β=时, X 与Y 相互独立..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=⎧<<>⎨⎩其它(1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独立? 解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-⎰⎰⎰⎰⎰⎰,得 111eb -=-.(2) ()(,)d X f x f x y y ∞-∞=⎰1e ,01,1e 0,xx --<<=-⎧⎪⎨⎪⎩其它.()(,)d Y f y f x y x ∞-∞=⎰e ,0,0,y y ->=⎧⎨⎩其它.(3) 由于(,)()()X Y f x y f x f y =⋅,所以X 与Y 相互独立.4. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()2Y yy f y y ->=⎧⎪⎨⎪⎩,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的二次方程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=⎧⎨⎩其它, 21e ,0,()20,.yY y f y ->=⎧⎪⎨⎪⎩其它 因X 和Y 相互独立, 故(X , Y )的联合概率密度为21e ,01,0(,)()()20,.yX Y x y f x y f x f y -<<>==⎧⎪⎨⎪⎩其它 (2) 方程有实根的充要条件是判别式大于等于零. 即244X Y ∆=-≥20X ⇔≥Y .因此事件{方程有实根}2{X =≥}Y .下面计算2{P X ≥}Y (参见图3-3).2{P X ≥}Y 2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-⎰⎰⎰⎰⎰2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈⎰.图3-3 第6题积分区域 习题3-41. 设二维随机变量(X ,Y )的概率分布为YX0 1若随机事件{X =0}与{X +Y =1}相互独立, 求常数a , b .解 首先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+⨯. 解得0.4,0.1a b ==.2. 设两个相互独立的随机变量X ,Y 的分布律分别为求随机变量Z = X + Y 的分布律. 解 随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=⨯=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===⨯+⨯=,28.04.07.0}4,3{}7{=⨯=====Y X P Z P ,或写为3. 随机变量X 与Y 相互独立, 且均服从区间[0,3]上的均匀分布, 求{}max{,}1P X Y ≤.解 由题意知, X 与Y 的概率密度均为1,03,()30x f x =⎧⎪⎨⎪⎩≤≤,其它.又由独立性, 有P {max{X +Y }≤1}=P {X ≤1,Y ≤1}= P {X ≤1} P {Y ≤1}.而 P {X ≤1}= P {Y ≤1}11011()d d 33f x x x -∞===⎰⎰, 故 P {max{X +Y }≤1}=111339⨯=.4. 设X 和Y 是两个相互独立的随机变量, 且X 服从正态分布N (μ, σ2), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解 已知X 和Y 的概率密度分别为22()2()e2x X f x μσπσ--=, ),(+∞-∞∈x ; ⎪⎩⎪⎨⎧-∉-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独立, 所以22()21()()()d e d 22z y aZ X Y a f z f z y f y y y a μσπσ---+∞-∞-=-=⎰⎰=1[()()]2z μa z μa ΦΦa σσ-+---. 10. 设随机变量X 和Y 的联合分布是正方形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解 由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =⎧⎪⎨⎪⎩≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有 当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==⎰⎰≤≤21[42(2)]412u =-⨯- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=⎧⎪⎨⎪⎩其它..总习题三1. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解 首先2,01,()0,.(,)其它X x x f x f x y dy +∞-∞<<==⎧⎨⎩⎰1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-<⎧⎪⎨⎪⎩⎰图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=⎧⎪⎨⎪⎩取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=⎧⎪⎨⎪⎩取其它值.当10<<x 时, |1,||,(|)20,Y X y x f y x x y <=⎧⎪⎨⎪⎩取其它值.2. 设随机变量X 与Y 相互独立, 下表列出二维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填入表中空白处 .解 首先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有11121111{,}{}{,}6824P X x Y y P Y y P X x Y y ====-===-=.在此基础上利用X 和Y 的独立性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利用X 和Y 的独立性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======.于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利用X 和Y 的独立性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======⨯=; 2323311{,}{}{}434P X x Y y P X x P Y y ======⨯=;1313111{,}{}{}4312P X x Y y P X x P Y y ======⨯=.因此得到下表3. (34)e (,)0,.,0,0,x y k f x y x y -+=⎧>>⎨⎩其它 (1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独立? 解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===⎰⎰⎰⎰,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=⎰⎰.当x <0或y <0时,有 0),(=y x F ; 当0,0x y ≥≥时, 34340(,)12e d e d (1e )(1e )x yuv x y F x y u v ----==--⎰⎰.即 34(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧--≥≥=⎨⎩其它(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--. (4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞⎧>⎪==⎨⎪⎩⎰⎰所以 33e ,0,()0,其它.x X x f x -⎧>=⎨⎩类似地, 有44e ,0,()0,其它.y Y y f y -⎧>=⎨⎩显然2),(),()(),(R y x y f x f y x f Y X ∈∀⋅=, 故X 与Y 相互独立. 4.解 已知的分布律为注意到41260}1{}1{=++====Y P X P , 而0}1,1{===Y X P ,可见P {X =1, Y =1}≠P {X =1}P {Y =1}. 因此X 与Y 不相互独立.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P , }1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P3112161121=++=, 316161}2,3{}3,2{}5{=+===+====Y X P Y X P Z P . 即Z X Y =+(3) V =21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 21}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P . 即min{,}U X Y =的分布律为(5) W U V =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,}2,2{}3,1{}4{==+====V U P V U P W P31}2,2{}1,3{}3,1{===+==+===y X P Y X P Y X P ,31}2,3{}3,2{}3,2{}5{===+=======Y X P Y X P V U P W P .5. 2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它. (1) 求P {X >2Y }; (2) 求Z = X +Y 的概率密度f Z (z ).解 (1) 1120227{2}(,)d d d (2)d 24yx yP X Y f x y x y y x y x >>==--=⎰⎰⎰⎰. (2) 方法一: 先求Z 的分布函数:()()(,)d d Z x y zF z P X Y Z f x y x y +=+=⎰⎰≤≤.当z <0时, F Z (z )<0; 当0≤z <1时, 1()(,)d d d (2)d zz yZ D F z f x y x y y x y x -==--⎰⎰⎰⎰= z 2-13z 3; 当1≤z <2时, 2111()1(,)d d 1d (2)d Z z z yD F z f x y x y y x y x --=-=---⎰⎰⎰⎰= 1-13(2-z )3; 当z ≥2时, F Z (z ) = 1.故Z = X +Y 的概率密度为222,01,()()(2),12,0,Z Z z z z f z F z z z ⎧-<<⎪'==-<⎨⎪⎩≤其它.方法二: 利用公式()(,)d :Z f z f x z x x +∞-∞=-⎰2(),01,01,(,)0,x z x x z x f x z x ---<<<-<⎧-=⎨⎩其它 2,01,1,0,.z x x z x -<<<<+⎧=⎨⎩其它当z ≤0或z ≥2时, f Z (z ) = 0; 当0<z <1时, 0()(2)d (2);zZ f z z x z z =-=-⎰当1≤z <2时, 121()(2)d (2).Zz f z z x z -=-=-⎰故Z = X +Y 的概率密度为222,01,()(2),12,0,.Z z z z f z z z ⎧-<<⎪=-<⎨⎪⎩≤其它.6. 设随机变量(X , Y )得密度为21,01,02,(,)30,.其它x xy x y x y ϕ⎧+⎪=⎨⎪⎩≤≤≤≤试求: (1) (X , Y )的分布函数; (2) (X , Y )的两个边缘分布密度; (3) (X , Y )的两个条件密度; (4) 概率P {X +Y >1}, P {Y >X }及P {Y <12|X <12}.解 (1) 当x<0或y <0时, φ(x , y ) = 0, 所以 F (x , y ) = 0.当0≤x <1, 0≤y <2时, φ(x , y ) = x 2+13xy ,所以 201(,)(,)d d [()d ]d 3x yx yF x y u v u v u uv v u -∞-∞==+⎰⎰⎰⎰ϕ32211312x y x y =+. 当0≤x <1, 2≤y 时,2(,)(,)d d [(,)d ]d [(,)d ]d xyx y x F x y u v u v u v v u u v v u -∞-∞===⎰⎰⎰⎰⎰⎰ϕϕϕ22001[()d ]d 3xu uv v u =+⎰⎰21(21)3x x =+. 当1≤x , 0≤y <2时,1(,)(,)d d [(,)d ]d xyyF x y u v u v u v v u -∞-∞==⎰⎰⎰⎰ϕϕ12001[()d ]d 3yu uv v u =+⎰⎰1(4)12y y =+. 当1≤x , 2≤y 时,122001(,)[()d ]d 13F x y u uv v u =+=⎰⎰.综上所述, 分布函数为220,00,1(),01,02,341(,)(21),01,2,31(4),1,02,121,1, 2.x y y x y x x y F x y x x x y y y x y x y <<⎧⎪⎪+<<⎪⎪⎪=+≥⎨⎪⎪+≥⎪⎪≥≥⎪⎩或≤≤≤≤≤< (2) 当0≤x ≤1时,22202()(,)d ()d 2,33X xy x x y y x y x x ϕϕ+∞-∞==+=+⎰⎰故 222,01,()30,.其它≤≤X x x x x ϕ⎧+⎪=⎨⎪⎩当0≤y ≤2时,12011()(,)d ()d ,336Y xy y x y x x x y ϕϕ+∞-∞==+=+⎰⎰ 故 11,02,()360,.其它≤≤Y y y y ϕ⎧+⎪=⎨⎪⎩(3) 当0≤y ≤2时, X 关于Y = y 的条件概率密度为2(,)62(|).()2Y x y x xy x y y yϕϕϕ+==+当0≤x ≤1时, Y 关于X = x 的条件概率密度为(,)3(|).()62X x y x yy x y x ϕϕϕ+==+(4) 参见图3-10.图3-10 第9题积分区域 图3-11 第9题积分区域1{1}(,)d d x y P X Y x y x y ϕ+>+>=⎰⎰12201165d ()d .372xx x xy y -=+=⎰⎰ 同理, 参见图3-11.{}(,)d d y xP Y X x y x y ϕ>>=⎰⎰122117d ()d .324xx x xy y =+=⎰⎰ 1111{,}(,)112222{|}1122{}()22X P X Y F P Y X P X F <<<<==<211(,)221201()534.32()d |X y x y x x xϕ+==⎰。
概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(一)一、填空题:1、设二维随机变量(,)X Y 的联合密度函数为2,01,01(,)0,A xy x y f x y ⎧<<<<=⎨⎩其他,则常数A =6 。
2、设二维随机变量(,)X Y 的联合分布函数为arctan arctan ,0,0(,)0,A x y x y F x y ⋅>>⎧=⎨⎩其他,则常数A =24π。
二、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验: (1)放回抽样;(2)不放回抽样。
我们定义随机变量X ,Y 如下:1X ⎧=⎨⎩若第一次出的是正品若第一次出的是次品 , 01Y ⎧=⎨⎩若第二次出的是正品若第二次出的是次品试分别就(1),(2)两种情况,写出X 和Y 的联合分布律。
(1)放回抽样(2)不放回抽样2.设二维离散型随机变量的联合分布见表:试求(1)13{,04}22P X Y <<<<, (2){12,34}P X Y ≤≤≤≤(1)1/4(2)5/163.设随机变量(,)X Y 的联合分布律如表:求:(1)a 值; (2)(,)X Y 的联合分布函数(,)F x y (3)(,)X Y 关于X ,Y 的边缘分布函数()X F x 和()Y F y (1)a=1/3(2)0x <1y<-1112,1045(,)2,10121120212,0⎧⎪⎪≤<-≤<⎪⎪⎪=≥-≤<⎨⎪⎪≤<≥⎪⎪≥≥⎪⎩x y F x y x y x y x y 或,(3)010115()12()10.2121210XY x y F x x F y y x y <<-⎧⎧⎪⎪⎪⎪=≤<=-≤<⎨⎨⎪⎪≥≥⎪⎪⎩⎩;4.设随机变量(,)X Y 的概率密度为(6)0<x <2,2<y<4(,)0k x y f x y --⎧=⎨⎩其他,求:(1)常数k ; (2)求{1,3}P X Y <<; (3){ 1.5}P X <; (4){4}P X Y +≤(1)24021(6)1;8k x y d y d x k --=⇒=⎰⎰(2)130213(1,3)(6);88PX Y x y d y d x <<=--=⎰⎰(3) 1.5402127( 1.5)( 1.5,24)(6);832P X P X Yx y d y d x <=<<<=--=⎰⎰(4)(4)P X Y +≤240212(6).83x x y d y d x -=--=⎰⎰概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(二)一、选择题:1、设随机变量X 与Y 独立,且221122(,),(,)X N Y N μσμσ ,则Z X Y =-仍服从正态分布,且有 [ D ] (A )221212(,)Z N μμσσ++ (B) 221212(,)Z N μμσσ+- (C) 221212(,)Z N μμσσ-- (D) 221212(,)Z N μμσσ-+ 2、若(,)X Y 服从二维均匀分布,则 [ B ] (A )随机变量,X Y 都服从均匀分布 (B )随机变量,X Y 不一定服从均匀分布 (C )随机变量,X Y 一定不服从均匀分布 (D )随机变量X Y +服从均匀分布 二、填空题:1、设二维随机变量(,)X Y 的密度函数为2,01,02(,)30,.xy x x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他, 则(1)P X Y +≥=6572。
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
01 1/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数. 解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=0}=2×1012×11=1066, P{X=1,Y=1}=2×112×11=166,解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70, P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)d xdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X}; (5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2.解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy =∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10 (-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)--1-2-2241-1-1/2-221-于是(1)max{X,Y} -112pi 1/102/107/10习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。
第三章习题3-1二维向量及分布一. 单项选择题1. 已知二维随机变量(X ,Y )的联合分布函数F(x, y)= P{X≤x,Y≤y},则事件{X>1,Y>0}的概率是(A)F(1, 0)(B)1-F(1, +∞)-F(+∞,0)+F (1, 0)(C)F(1, +∞)-F(1, 0)(D)1-F(1, 0)2. 下列说法不正确的是(A)分布函数F(x, y)是变量x和y的不减函数(B)0< F(x, y)<1(C)P{x1<X2<x2, y1<Y<y2}≥0 (D)f(x, y)≥03. 下列二元函数中,可作为连续型随机变量的联合概率密度为(A)(B);(C)(D)二.填空题1. 因为二元函数不满足,所以不是某一个二维随机变量的联合分布函数。
2. 用(X ,Y)的联合分布函数F(x, y)表示下述概率:(1)P{a≤X≤b, Y <c} ;(2)P{a≤X, Y≥b} 。
3. 设随机变量X与Y相互独立,且均匀服从正态分布N(0,1),则概率P{XY ≥0}=。
4. 设随机变量(X ,Y)的概率密度为则概率P{ X<0.5,y<0.6}= 。
三. 计算题1. 在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑放回抽样试验现定义随机变量如下:0 若第一次取出的是正品 0 若第二次取出的是正品X= ,Y=1 若第一次取出的是次品 1 若第二次取出的是次品试就此情况,写出和的联合分布律2. 上题中若作不放回抽样,写出和的联合分布律3. 设随机变量的概率密度为(1)确定常数k(2)求P{X<1, Y<3}(3)求P{X<1.5}(4)求P{X+ Y≤4}四.证明题1. 二元函数不是一个分布函数。
参考答案一. (1)B(2)B(3)B二. 1. P{x1<X2<x2,y1<Y<y2}= F(x2, y2)-F(x2, y1)-F(x1, y2)+ F(x1, y1),2. (1)F(b, c)-F(a, c)(2) 1-F(+∞, b)-F(a, +∞)+ F(a,b)3. 0.54. 0.3三. 1.010 25/36 5/36 15/36 1/362.0 1 0 45/6610/66 110/661/663. (1)k = 1/8(2)3/8, (3)27/32, (4)2/3 四.3.2-边缘分布与条件分布一、单项选择题:1. 如果二维随机变量(X , Y )分布律为P {X =x i ,Y =y j }=p i j ,X 的分布律为,X x1x2x31/3 1/5a则a =(A ) (B ) (C )(D )不能确定2. 设X ~N (1,0.5),Y ~ N (0,0.5), 且相互独立。
第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。
考虑两种试验:(1)放回抽样,(2)不放回抽样。
我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样情况由于每次取物是独立的。
由独立性定义知。
P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。
解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。
1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。
2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。
3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。
4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。
5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。
6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。
以Y表示中途下车的人数。
(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。
7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。
(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。
为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。
12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。
13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。
概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。
15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。
为(X,Y)的密度函数,Z=X+2Y,求的密度函数。
概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(一)一、填空题:1、设二维随机变量(,)X Y 的联合密度函数为2,01,01(,)0,Axy x y f x y ⎧<<<<=⎨⎩其他,则常数A = 6 。
2、设二维随机变量(,)X Y 的联合分布函数为arctan arctan ,0,0(,)0,A x y x y F x y ⋅>>⎧=⎨⎩其他,则常数A =24π。
二、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验: (1)放回抽样;(2)不放回抽样。
我们定义随机变量X ,Y 如下:01X ⎧=⎨⎩若第一次出的是正品若第一次出的是次品 , 01Y ⎧=⎨⎩若第二次出的是正品若第二次出的是次品 试分别就(1),(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样 (2)不放回抽样2.设二维离散型随机变量的联合分布见表:试求(1)13{,04}22P X Y <<<<,(2){12,34}P X Y ≤≤≤≤解:(1)13{,04}22P X Y <<<< 111213(,)(,)(,)P X Y P X Y P X Y ===+==+== 14=(2){12,34}P X Y ≤≤≤≤13142324(,)(,)(,)(,)P X Y P X Y P X Y P X Y ===+==+==+== 11516416=+=3.设随机变量(,)X Y 的联合分布律如表:求:(1)a 值; (2)(,)X Y 的联合分布函数(,)F x y (3)(,)X Y 关于X ,Y 的边缘分布函数()X F x 和()Y F y 解:(1) 由归一性1111446iji jp a =+++=∑∑ 解得 13a =(2)(,)X Y 的联合分布函数为00111210452101211202120,(,),,,x y x y F x y x y x y x y <<-⎧⎪⎪≤<-≤<⎪⎪⎪=≥-≤<⎨⎪⎪≤<≥⎪⎪≥≥⎪⎩或(3)(,)X Y 关于X ,Y 的边缘分布函数为:01112212()X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩ 01510121()y y F y y y <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩4.设随机变量(,)X Y 的概率密度为(6)0<x<2,2<y<4(,)0k x y f x y --⎧=⎨⎩其他,求:(1)常数k ; (2)求{1,3}P X Y <<; (3){ 1.5}P X <; (4){4}P X Y +≤ 解:(1)由归一性 242266281(,)()()F dx k x y dy k x dx k -∞+∞=--=-==⎰⎰⎰所以 1k =(2) {1,3}P X Y <<131020117368828()()dx x y dy x dx =--=-=⎰⎰⎰ (3){ 1.5}P X <1541502011276628832..()()dx x y dy x dx =--=-=⎰⎰⎰(4){4}P X Y +≤4168()x y x y dxdy +≤=--⎰⎰ 2402168()x dx x y dy -=--⎰⎰ 220112816()x x dx =-+⎰23=概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(二)一、选择题:1、设随机变量X 与Y 独立,且221122(,),(,)XN Y N μσμσ,则Z X Y =-仍服从正态分布,且有 [ D ] (A )221212(,)Z N μμσσ++ (B) 221212(,)Z N μμσσ+- (C) 221212(,)ZN μμσσ-- (D) 221212(,)ZN μμσσ-+2、若(,)X Y 服从二维均匀分布,则 [ B ] (A )随机变量,X Y 都服从均匀分布 (B )随机变量,X Y 不一定服从均匀分布 (C )随机变量,X Y 一定不服从均匀分布 (D )随机变量X Y +服从均匀分布 二、填空题:1、设二维随机变量(,)X Y 的密度函数为2,01,02(,)30,.xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他, 则(1)P X Y +≥=3136。
习题3T1.而且戶{尤/=0} = 1・求&和及的联合分布律.解由P{X}X2 =0} = 1知P{X x X2 H 0} = 0.因此K和基的联合分布必形11Pi—— 122⑵注意到P{/ = 0, %. =()} =(),而戶{尤=()}・P{A\ = ()} = - ^ 0,所以X 和星 4不独立.2.-盒子中有3只黑球、2只红球和2只白球,在其中任取4只球.以X 表示取到黑球 的只数,以丫表示取到红球的只数.求/和丫的联合分布律.解 从7只球中取4球只有=35种取法.在4只球中,黑球有Z 只,红 球有丿只(余下为白球4 一,一 j 只)的取法为C ;C 扌 CjT, i = 0,1,2,3,丿=0,1,2,, + 丿 W 4.于是有C°c 2c 2 1P{X = 0y Y = 2}= 3 2 2 = — t P{X = l,Y = l}: 35 35p{x = i,y = 2} = CCG == 2,y =o}: 35 35F{X = 2,Y = 1}= WG =!£ p{x = 2,y = 2}: 35 35P{X = 3,Y = 0} =宝O, P{X = 3,Y = l]c\c\c\6-35 ■35' 广2 x^r() _ 3 「 35-35'gc ; 3 35 ~35' 厂 3「l 「0 c 3c 2c 2 2/(兀』)=^(6 -X- y),0<x<2,2< y <4,0,其它.求:⑴ 常数A ;(2) P{%<l,y<3};(3) P{%<1.5);(4) P{X + Y^4}.35 35 35 35 P{x = o,y = O } = P {X = O ,Y = I } = P {X = I ,Y = 0} = p{x = 3,y = 2} = o.xp(/f — x— 9)1 00 w p v T UH MX )V U Hm VX5:(D)」IOO IP r.—A 、—9) L r E JIC I m JI 一 r Ixp(\ Ix 19)1000=y v K=p「v i p x p (\H )/・=丄d v x sr Q )Z 20 i l A、—9)「T x p(亠— x— 9)亠T v 一・ I n(亠 — 寸)I 寸)1 Ie 〒 i i r r LZ二8 •s'尸(4—寸)T+(亠—寸)el 」Z二8ip 〔 M —寸)7 — (4 — 寸)(4— 9)1」r-—x (\ — 9)」l 00p(o w c r x )s7H (寸 w x + x s:M E l oo —en 剧 M G — 寸v/亠 V07V X V W O S-•£>黑*«匣(寸o x (z o ) w 凶论畏g O N E H )、m 逐凶心H-镒泗去皂床•寸H\ + X ®M 址(寸)4.二维随机变量(X, Y )的概率密度为/(X 』)=试确定并求P [(X,Y )E G},G:x2WyWx,0WxWl.解 由 1 = J j f (x, y)dxdy = drj , kxydy = — j 0 -^(1 - x 4)dx = — t o s 2 o 6解得k = 6. F{ (X, Y) w G} = J ; dr J : 6xydy = 3j\(x 25・设二维随机变量(X 丫)概率密度为求关于X 和丫边缘概率密度.解(儿Y )的概率密度/(x j )在区域G:OWxWl,OWyWx 外取零值•因而,图3-8第4题积分区域kxy,十0,其它.因而f(x 9y) =4.8 尹(2-x), 0, oWxWi, 0£尹£兀,其它.0<x< 1,其它.2.4(2-兀)x[ 0,0<x< 1,其它.=L •心'J'4.8j<2-x)dr,0,0<y<l,其它.2.4X3-4y + y), 0,Ovyvl,其它.4®(2 — x)4几试求:(i)x和丫的联合概率分布;(2)P{X + Y ^1}.解(1)见本章第三节三(4).(2)P{X + y Wl} = \-P{X + Y>\} = \-P{X = \,Y = \} =1-- = -.4 4解⑴由于P{X = 2} = 0.3 + 0 +0.1+ 0.2 = 0.6 以在条件x=2下Y的条件分布律为P{Y = 1\X = 2]P{^ = 2,y = l} 0.3 _£2或写成P[Y = 4\X = 2} =P{X = 2}'"0.6_P{X = 2,Y = 2} 0P{X = 2}_0.6P{X = 2,y = 3) 0.1P{X = 2}~0.6P{X = 2,r = 4} 0.20,丄61P{X = 2}0.6 3Y = k 1 2 3 4P{Y = k\X = 2}121613 若UW —1,右(7 > —1,若UW1,若u>\・习题3-21.设(X 丫)的分布律为下丫的条件分布律;(2) P{X22|yW2}.在条件於2P{Y = 2\X = 2}P{Y = 3\X = 2]到p (r ^2} = P{r = i}+P{y = 2} = o.i+o.3+o+o+o.2 = o.6.P[X^2,Y^2} = P[X = 2,Y = }} + P[X = 2J Y = 2}+ P{X = 3,Y = l} + P{X = 3y Y = 2} =0.3+ 0 + 0 +0.2 = 0.5 ・2.设平面区域D 由曲线_y =丄及直线y = 0,x = l,x = e 2所围成,二维随机变量3, X)X在区域Q 上服从均匀分布,求(X X)关于X 的边缘概率密度在x=2处的值・解 由题设知D 的面积为丄dx = lnx|" =2.—,(x, y)e D y 因此(XX)的密度为 /(x, y) = <2 0,其它.+8f(x.y)dy ・显然,当XW1或兀头2时,厶,(兀)= 0;当1 vjcvM 时,厶d) = F A (2)= ~-3.设二维随机变戢(X, K)的概率密度为1, 0 < x < 1,0 < j/ < 2x,0,其它.求:⑴区”的边缘概率密度f x MJr (y^(2)F{YW2 2解(1)当0vxvin 寸,f x (x) = f (x,y)dy = £ dy = 2x ; 当 xWO 时或x$l 时,/Y (X )= 0.2x, 0 v x v 1, 0, 其它.f(x 9y)dx= (ydx = l-^- 22f因此P{X^2\Y^2} =W2}P{Y W2}05 _5 0£~61 1—dy =—・故 ° 2「 2x fx M =当Ov 严2时,厶(刃=当y WO 吋或y $2时,/;(y) = O.y 亠I — —, 0 < v < 2,故fy (y) = 20, 其它.(2)当 zWO 时,巧(z) = o ; 当 z$2 时,巧(Z )= l;当()VV2 时,F 7(Z ) = P{2X-Y^Z }= JJ /(x, y)d.xdyz胡 dxfl.dy + 關仁 1.®2Z" =Z ----- ・4,1 — 9 0 < z < 2,厶⑵=FXz) =2 0, 其它.4.设G 是由直线尸X,尸3, x=\所围成的三角形区域,二维随机变fi(X,y )在Gt 服从二维均匀分布.求:(1)(X7)的联合概率密度;(2) P{Y-X^\}; (3)关于X 的边缘概率密度.解 ⑴由于三角形区域G 的面积等于2,所以(X,Y)的概率密度为⑵记区域D = {(x,y)\y-x^\]与G 的交集为G (),则其中S G °为Go 的面积.±4Z !I JJg}扌丄0,(x.y)电 G.⑶X 的边缘概率密度f x (X )=r +8J —oof(x, y)dy •所以,当X .1,3]时,几(x) =「:⑪J (3 - X).J x 2 2当x v 1 或x > 3 时,/丫(x) = 0. 因此./\ W = < 2(1_%),XE卩⑶’0, 其它.习题3-3设与柑互独立,且分布律分别为下表:求二维随机变最(儿的分布律.解由于X与丫相互独立,所以冇P{X = Xi,Y = y.} = P{X = x i}-P{Y = yj},i == 0,2,5,6.J因此可得二维随机变量Y)的联合分布律Pir A- 〃•丿(匸 12 丿二123)・2—G + # =匕故可得方程组31 1 z 1 _ = _•(□ + _)・19 3921解得 ex = —, 0 =—.9 92 1经检验,当CX = —, P =—吋,对于所有的匸1,2; 7=1,2,3均有Pij= Pi ,p.j bX.i2 1 a = _,p =—时.x 与y 相互独立••993.设随机变量Y 的概率密度为 \be (x+y \(1)试确定常数b ・9 118匚因此当0 < x < 1, j/ > 0,其它.问Q,0为何值时X 与Y 相互独立?/=](2) 求边缘概率密度f x (x)y f Y (y). (3) 问X 与Y 是否相互独立?解⑴由1 = j J f(x,y)dxdy = j ^e _<v+r>dydx e~'dye -'dr = b(l -e _,),l-e _, e~v,0<x<l, 宁 1-e" 0, e _y , _y>0,0, 其它.⑶ 由于f(x,y) = f x (x)* f Y (y) f 所以x 与Y 相互独立.设X 和Y 是两个相互独立的随机变量,X 在(0, 1)上服从均匀分布,Y 的概率密度为r了 /、 丄e 2, y >0,0,求X 和Y 的联合概率密度.设关于a 的二次方程为a 2 +2Xa + Y = 0t 试求。