二维随机变量及其概率分布
- 格式:ppt
- 大小:932.00 KB
- 文档页数:40
定义3-1 n个随机变量X1,X2,…,X n构成的整体X=(X1,X2,…,X n)称为一个n维随机变量或n维随机向量,X i称为X的第i(i=1,2,…,n)个分量.
定义3-2 设(x,Y)为一个二维随机变量,记
F(x,y)=P{X≤x,Y≤y},-∞<z<+∞,-∞<y<+∞,< p="" style="padding: 0px; list-style: none;">
称二元函数F(x,y)为X与y的联合分布函数或称为(X,Y)的分布函数.
(X,Y)的两个分量X与y各自的分布函数分别称为二维随机变量(X,Y)关于X与关于y的边缘分布函数,记为F X(x)与F Y(y).
边缘分布函数可由联合分布函数来确定,事实上,一元函数
几何上,若把(X,Y)看成平面上随机点的坐标,则分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为顶点、位于该点左下方的无穷矩形D内的概率.
分布函数F(x,y)具有下列性质:
(1)F(x,y)是变量x(或y)的不减函数.
(2)0≤F(x,y)≤l,
对任意固定的y,F(-∞,y)=0
对任意固定的x,F(x,-∞)=0;
F(-∞, -∞)=0,F(+∞,+∞)=1. (3)F(x,y)关于x和关于y均右连续,即F(x,y)=F(x+0,y);F(x,y)=F(x,y+0). (4)对任意固定的x1<x2,y1<y2
F(x2 ,y2)-F(x2,yl)-F(xl,y1)+F(x1+yl)≥0.。
第五章 二维随机变量第一节 二维随机变量及其分布一、二维随机变量1、定义:设),,(P S F 为一概率空间,X 、Y 均为S 上的一维随机变量,称二维向量X ),(Y X =为S 上的二维随机变量.2、X 的分布:}{B P ∈X , 2B ∈B . 其中可证:=∈}{B X F ∈∈∈},))(),((|{S e B e Y e X e .若取},|),{(2121y y y x x x y x B ≤<≤<=,那么},{}{2121y Y y x X x P B P ≤<≤<=∈X},{22y Y x X P ≤≤=},{21y Y x X P ≤≤- },{},{1112y Y x X P y Y x X P ≤≤+≤≤-.3、分布函数(1)定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,R ∈∀y x ,,规定:},{),(y Y x X P y x F ≤≤=. 称),(y x F 为),(Y X 的分布函数.显然: },{2121y Y y x X x P ≤<≤<),(),(),(),(11122122y x F y x F y x F y x F +--=.(2)性质① R ∈∀y x ,,1),(0≤≤y x F .② ),(y x F 关于y x ,均为单调不减函数.③ 0),(=-∞y F ,0),(=-∞x F ,0),(=-∞-∞F ,1),(=+∞+∞F . ④ ),(y x F 关于y x ,均为为右连续函数.⑤ R ∈<<∀2121,y y x x ,0),(),(),(),(11122122≥+--y x F y x F y x F y x F .注:①~⑤为分布函数的特征性质.反之亦然.例1掷硬币三次,X 表示出现正面的次数,|)3(|X X Y --=,求),(Y X 的分布函数),(y x F .解:(1) X 的所有可能取值为3,2,1,0,依次记为4321,,,x x x x ,Y 的所有可能取值为3,1,依次记为21,y y .列表如下X样 本 点Y0 (反反反)3 1 (正反反) (反正反) (反反正) 1 2(正正反) (正反正) (反正正)13 (正正正)3(2) 概率情况列表 81},{21===y Y x X P ,83},{12===y Y x X P , 83},{13===y Y x X P ,81},{24===y Y x X P ,其他0},{===j i y Y x X P .(3)求分布. 记}2,1 ,3,2,1|),{(===j i y x A j i ,YX1 3 0 0 8/1 1 8/3 02 8/3 0 38/1A B BA B +=, 显然φ=∈}),{(A B Y X ,那么}),{(}),{(}),{(A B Y X P BA Y X P B Y X P ∈+∈=∈∑∈===∈=By x j i j i y Y x XP BA Y X P )(,},{}),{((4)求分布函数. ∑≤≤===≤≤=yy x x j i j i y Y x XP y Y x X P y x F ,},{},{),(.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥<≤<≤≥≥<≤<≤<≤≥<≤<<<<=.3 ,3 1, ,3 ,32 ,8/7 ;31 ,3 ,8/6 ;3 ,21 ,8/4 ;31 ,21 ,8/3 ;3 ,10 ,8/1;3 ,1 1 0 0,),(y x y x y x y x y x y x y x y x y x F 或或二、边缘分布1、),(Y X 关于X 的边缘分布: ),(lim }{)(y x F x X P x F y X +∞→=≤=.证明:取}{},{},{x X Y x X n Y x X A n ≤=+∞<≤→≤≤=不减,由①②知),(lim y x F y +∞→存在,故)(}{)lim ()(lim ),(lim ),(lim x F x X P A P A P n x F y x F X n n n n n y =≤====∞→∞→∞→+∞→.2、),(Y X 关于Y 的边缘分布: ),(lim }{)(y x F y Y P y F x Y +∞→=≤=. (略)三、随机变量相互独立、定义:设),(y x F 为),(Y X 的分布函数,X 、Y 的分布函数分别为 )(x F X 、)(y F Y ,若R ∈∀y x ,,恒有=),(y x F )(x F X )(y F Y , 则称X 与Y 相互独立.2、X 与Y 相互独立⇔R ∈<<∀2121,y y x x ,恒有}{}{},{21212121y Y y P x X x P y Y y x X x P ≤<≤<=≤<≤<.证明:“⇐” R ∈∀y x ,,由于},{},{y Y x X y Y n x X n ≤≤→≤<-≤<-, }{}{x X x X n ≤→≤<-, }{}{y Y y Y n ≤→≤<-均不减,则},{),(y Y x X P y x F ≤≤=},{lim y Y n x X n P n ≤<-≤<-=∞→}]{}{[lim y Y n P x X n P n ≤<-≤<-=∞→}]{lim }{lim y Y n P x X n P n n ≤<-≤<-=∞→∞→)()(}{}{y F x F y Y P x X P Y X =≤≤=.“⇒”R ∈<<∀2121,y y x x ,有 },{2121y y x x P ≤<≤<ηξ ),(),(),(),(11122122y x F y x F y x F y x F +--=)()()()()()()()(11122122y F x F y F x F y F x F y F x F Y X Y X Y X Y X +--= )]()()][()([1212y F y F x F x F Y Y X X --= }{}{2121y y P x x P ≤<≤<=ξξ.3、X 与Y 相互独立⇔R ⊂∀21,B B ,恒有}{}{},{2121B Y P B X P B Y B X P ∈∈=∈∈.第二节 二维离散型随机变量一、二维离散型随机变量 1、定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,若),(Y X 的取值为有限个或可数个(至多可数),称),(Y X 为S 上的二维离散型随机变量. 显然:),(Y X 为S 上的二维离散型随机变量⇔X 与Y 均为S 上的一维离散型随机变量.2、概率分布:设),(Y X 所有可能取的值为),(j i y x ,令 },{j i ij y Y x X P p ===,称其为二维随机变量),(Y X 的概率分布(分布率)。
1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。
2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。
3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。
4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。
5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。
6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。
以Y表示中途下车的人数。
(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。
7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。
(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。
为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。
12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。
13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。
概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。
15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。
为(X,Y)的密度函数,Z=X+2Y,求的密度函数。
二维随机变量与联合概率分布随机变量是概率论中的重要概念,它描述了随机试验的结果。
而在某些情况下,我们需要考虑两个或者多个随机变量之间的关联关系,这就引出了二维随机变量的概念。
本文将介绍二维随机变量以及联合概率分布的相关知识。
一、二维随机变量的定义在概率论中,二维随机变量由两个随机变量组成,通常用大写字母(如X、Y)表示。
二维随机变量可以表示为(X,Y)。
二、联合概率分布的定义联合概率分布是二维随机变量(X,Y)所对应的概率分布。
对于任意的(x,y),联合概率分布可以表示为P(X=x,Y=y),其中P表示概率。
三、联合概率密度函数如果二维随机变量的取值是连续的,那么联合概率分布可以用联合概率密度函数来描述。
记为f(x,y),则对于任意的(x,y),联合概率密度函数满足以下条件:1. f(x,y)大于或等于0;2. 在整个定义域上的积分等于1,即∬f(x,y)dxdy=1;3. 对于任意的事件A,有P((X,Y)∈A)=∬Af(x,y)dxdy。
四、边缘概率分布边缘概率分布是指在二维随机变量的联合分布中,只考虑某一个随机变量的概率分布。
对于离散型二维随机变量,边缘概率分布可以通过联合概率分布进行计算。
对于连续型二维随机变量,边缘概率分布可以通过联合概率密度函数积分得到。
五、条件概率分布条件概率分布是指在给定一个随机变量的取值时,另一个随机变量的概率分布。
对于二维随机变量(X,Y),在给定X=x的条件下,Y的条件概率为P(Y=y|X=x),表示Y取值为y的条件下,X取值为x的概率。
六、独立性如果二维随机变量X和Y的联合概率分布等于边缘概率分布之积,即P(X=x,Y=y)=P(X=x)P(Y=y),那么称X和Y是相互独立的。
七、联合分布函数与边缘分布函数联合分布函数是指二维随机变量(X,Y)的分布函数,记为F(x,y)=P(X≤x,Y≤y)。
边缘分布函数是指在联合分布函数中,只考虑某一随机变量的取值的分布函数。
二维连续型随机变量分布函数及概率的计算
二维连续型随机变量是指具有两个维度的随机变量,其取值可以是一个平面上的任意一个点。
与一维连续型随机变量类似,二维连续型随机变量也有分布函数和概率密度函数。
对于任意的实数x和y,定义二维随机变量(X,Y)的分布函数为:
F(x,y) = P(X≤x, Y≤y)
P表示概率,F(x,y)表示(X,Y)取值在区域(-∞,x] × (-∞,y]中的概率。
D表示平面上的任意一个区域,∬表示对D进行二重积分。
如果f(x,y)满足以下两个条件,即可称为(X,Y)的概率密度函数:
1. 非负性:f(x,y)≥0,对于任意的实数x和y成立。
2. 归一性:∬R f(x,y)dxdy = 1,其中R表示整个平面。
三、概率的计算
根据概率密度函数可以计算二维随机变量的概率。
对于任意的区域D,有:
如果要计算二维随机变量(X,Y)在区域D内的概率,可以通过计算概率密度函数在该区域上的积分来得到。
具体计算方法是将概率密度函数带入积分式中,并对x和y分别进行积分。
总结:二维连续型随机变量的分布函数是一个二维平面上的函数,可以用来描述随机变量在某个区域内取值的概率。
而概率密度函数则是用来计算二维随机变量在某个区域内的概率的函数。
在计算概率时,可以通过对概率密度函数进行积分来得到。
二维随机变量及其概率分布复习资料内容摘要一、二维随机变量设随机试验的样本空间为Ω,X 和Y 是定义在Ω上的两个随机变量(X ,Y )为二维随机变量或二维随机向量。
1. 联合分布函数设(X ,Y )是二维随机变量,y x ,是任意实数,函数F (x ,y )=P{X ≤x ,Y ≤y}称为(X ,Y )的分布函数,或称随机变量X 与Y 的联合分布函数. 2. 联合分布函数的性质(1) 0≤F (x ,y )≤1;(2) F(x ,- ∞)= F(-∞,y)= F(-∞,- ∞)=0F(+∞,+ ∞)=1;(3) F(x ,y)对x 和y 分别是不减的.即对于固定的y ,若x 1<x 2,则F (x 1,y )(),y x F 2≤;对于固定的x ,若y 1<y 2,则F(x ,y 1)≤F(x ,y 2);(4) F (x ,y )关于x 右连续,关于y 右连续,即 F (x +0,y )=F (x ,y ),F (x ,y+0)=F (x ,y )。
(5) 对于任意的点(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,有 F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)≥0. 3.二维离散型随机变量如果二维随机变量(X ,Y)所有可能取的数对为有限个或可数个,则称(X ,Y )为二维离散型随机变量.并且称P{X=i , Y=y j }=ij p ,i ,j=1,2…为(X,Y)的分布律,或称做X与Y的联合分布律. 分布律也可用表格列出:分布律满足下列3条性质:4.二维连续型随机变量设(X,Y)的分布函数为F(x,y),如果存在非负函数f(x,y),使得对任意实数x,y都有则称(X,Y)为二维连续型随机变量,函数f(x,y)称做(X,Y)的概率密度,或X,Y的联合概率密度.f(x,y)具有下列性质:(1)f(x,y)≥0,(2)⎰+∞∞-⎰+∞∞- f(x,y)d x dy=1(3)若f(x,y)在点(x,y)连续,则有(4)设D为x Oy平面上的区域,则f(x,y)d x dyP{(x,y)∈D}=⎰⎰D二、边缘分布1.边缘分布函数设F(X,Y)是X与Y的联合分布函数,则FX(x)=P{X≤x,Y<+∞}=F(x,+∞)F Y(y)=P{ X<+∞,Y≤y } =F(+∞)分别称为(X,Y)关于X与Y的边缘分布律。
1第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1<x 2,y 1<y 2P{x 1<X ≤x 2,y 1<Y ≤y 2}=F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j )(i ,j =1,2,…)称(X,Y)为二维离散型随机变量.并称P{X=x i ,Y=y j }=p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性0≤p i j ≤1.(2)归一性∑∑=i jij p 1.3.(X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy iji j p 三.二维连续型随机变量及其联合概率密度1.定义如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.22.性质(1)非负性f (x,y)≥0.(2)归一性1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1.(X,Y)关于X 的边缘分布函数F X (x)=P{X ≤x ,Y<∞}=F (x ,∞).(X,Y)关于Y 的边缘分布函数F Y (y)=P{X<∞,Y ≤y}=F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律P{X=x i }=∑∞=1j ij p =p i ·(i =1,2,…)归一性11=∑∞=∙i i p .关于Y 的边缘分布律P{Y=y j }=∑∞=1i ij p =p ·j (j =1,2,…)归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),(归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=xd y x f ⎰∞∞-),(归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有F(x,y)=F X (x)F Y (y),则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j =p i ··p ·j (i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jji j j i p p y Y P y Y x X P ∙=====3P{X=x i |Y=y j }为在Y=y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.,}{},{∙=====i ji i j i p p x X P y Y x X P。
第三讲 二维随机变量的概率分布考纲要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、二维随机变量的概率分布问题1 何谓二维随机变量的联合分布函数?何谓二维随机变量的边缘分布函数? 答 1.二维随机变量),(Y X 的联合分布函数{}(,),F x y P X x Y y =≤≤,即),(Y X 的取值落在无穷矩形域(,](,]x y -∞⨯-∞内的概率.二维随机变量的联合分布函数具有如下性质: ⑴0(,)1F x y ≤≤;⑵(,)(,)(,)0F F y F x -∞-∞=-∞=-∞=,(,)1F +∞+∞=; ⑶(,)F x y 关于x (关于y )单调不减; ⑷(,)F x y 关于x (关于y )右连续. 2.二维随机变量),(Y X 关于X 的边缘分布函数{}{}(),(,)lim (,)X y F x P X x P X x Y F x F x y →+∞=≤=≤<+∞=+∞=.二维随机变量),(Y X 关于Y 的边缘分布函数{}{}(),(,)lim (,)Y x F y P Y y P X Y y F y F x y →+∞=≤=<+∞≤=+∞=.问题2 何谓二维离散型随机变量联合分布、边缘分布和条件分布? 答 ⑴联合分布设二维离散随机变量(,)X Y 的所有可能值为(,),,1,2,i j x y i j = ,则称{},(,1,2,)i j ij P X x Y y p i j ====为二维离散随机变量(,)X Y 的联合分布律,其中01ij p ≤≤,111ij i j p ∞∞===∑∑.⑵边缘分布称{}1(1,2,)i ij i j P X x p p i ∞⋅=====∑,{}1(1,2,)j ij j i P Y y p p j ∞⋅=====∑分别为(,)X Y 关于X 和关于Y 的边缘分布律. 利用联合概率分布表计算如下: ⑶条件分布称{}(1,2,)ij i j j p P X x Y y i p ⋅==== 为在j Y y =的条件下随机变量X 的条件分布;称{}(1,2,)ijj i i p P Y y X x j p ⋅==== 为在i X x =的条件下随机变量Y 的条件分布. 例1.设某班车起点站上客人数X 服从参数为λ的泊松分布,每位乘客在中途下车的概率为p 且中途下车与否相互独立. 以Y 表示在中途下车的人数,求⑴在发车时有n 个乘客的条件下,中途有m 个人下车的概率; ⑵二维随机变量),(Y X 的概率分布(01-1). 解 ⑴{}(1)m m n m n P Y m X n C p p -===-; ⑵二维随机变量),(Y X 的概率分布为{}{}{},P X n Y m P X n P Y m X n ======(1)(0,1,2,0,1,,)!nm m n mn e C p p n m n n λλ--=-==2.设随机变量X 和Y 相互独立,下表列出了二维随机变量),(Y X 的联合概率分布及关于X 和关于Y 的边缘概率分布的部分数值,将其余数值填入表中的空白处.解 由联合分布与边缘分布的关系,得111116824p =-=;由独立性,得11112464p ⋅=÷=;由概率分布的性质,得213144p ⋅=-=;其余数值可类似求出.故3.设随机变量11~(1,2)1/41/21/4i X i -⎛⎫=⎪⎝⎭且满足{}1201P X X ==,则{}12P X X == . 【0】问题3 何谓二维连续型随机变量的联合密度?它具有哪些性质? 答 若存在非负函数(,)f x y ,使得随机变量(,)X Y 的分布函数 (,)(,)x y F x y f x y dxdy -∞-∞=⎰⎰,则称(,)X Y 为二维连续随机变量,并称(,)f x y 为(,)X Y 的联合概率密度或者联合密度函数.联合概率密度具有如下性质: ⑴(,)0f x y ≥;⑵(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;⑶(,)(,)x y F x y f x y dxdy -∞-∞=⎰⎰连续;⑷若(,)f x y 在点(,)x y 连续,则(,)(,)xyF x y f x y ''=; ⑸{}(,)(,)DP X Y D f x y dxdy ∈=⎰⎰.例1.设二维随机变量),(Y X 的概率密度2(),(,)0,x y ce f x y -+⎧=⎨⎩.,0,0else y x +∞<<+∞<<则常数=c ;),(Y X 落在区域{(,)1}D x y x y =+≤内的概率为 .【提示:由2()(,)41x y f x y dxdy dx edy +∞+∞+∞+∞-+-∞-∞==⎰⎰⎰⎰推出=c 4;{}112()2(,)413xx y P X Y D dx edy e--+-∈==-⎰⎰.】问题4 如何求二维随机变量的边缘密度?答 设(,)X Y 的概率密度为(,)f x y ,则可按如下公式计算边缘密度: 关于X 的边缘密度()(,)X f x f x y dy +∞-∞=⎰; 关于Y 的边缘密度()(,)Y f y f x y dx +∞-∞=⎰.例 设二维随机变量),(Y X 的概率密度26,,(,)0,x y x f x y else⎧≤≤=⎨⎩ 则),(Y X 关于X 的边缘概率密度=)(x f X ,关于Y 的边缘概率密度=)(y f Y .解 画出概率密度(,)f x y 的非零区域. 由图看出,X 的取值范围[0,1], 当01x ≤≤时,22()(,)66()x X xf x f x y dy dy x x +∞-∞===-⎰⎰,关于X 的边缘概率密度26(),01,()0,.X x x x f x else ⎧-≤≤=⎨⎩类似可求出关于Y的边缘概率密度),01,()0,.Y y y f y else ⎧≤≤⎪=⎨⎪⎩问题5 如何求二维随机变量的条件密度?答 设(,)X Y 的概率密度为(,)f x y ,关于,X Y 的边缘密度分别为(),()X Y f x f y ,则可按如下公式计算条件概率密度:在Y y =的条件下,X 的条件概率密度(,)()()X Y Y f x y f x y f y =;在X x =的条件下,Y 的条件概率密度(,)()()Y X X f x y f y x f x =.问题6 如何判断随机变量的独立性? 答 判断随机变量的独立性的方法有:⑴随机变量X 与Y 相互独立(,)()()X Y F x y F x F y ⇔=; ⑵离散型随机变量X 与Y 相互独立,,ij i j i j p p p ⋅⋅⇔∀=; ⑶连续随机变量X 与Y 相互独立(,)()()X Y f x y f x f y ⇔=.问题7 何谓二维均匀分布?答 若二维随机变量(,)X Y 的概率密度1,(,),(,)0,(,),x y D f x y x y D σ⎧∈⎪=⎨⎪∉⎩其中σ为D 的面积,则称(,)X Y 服从区域D 上的均匀分布.问题8 何谓二维正态分布?它具有哪些性质? 答 若二维随机变量(,)X Y 的概率密度221122211221(,)[()2()()()]2(1)x x y y f x y μμμμρρσσσσ⎧⎫----=--+⎨⎬-⎩⎭则称(,)X Y 服从二维正态分布,记作221212(,)~(,,,,)X Y N μμσσρ.二维正态分布221212(,,,,)N μμσσρ具有如下性质:⑴关于X 和Y 的边缘分布分别为211(,)N μσ,222(,)N μσ;⑵条件分布均为正态分布;⑶X 和Y 的非零线性组合aX bY +服从正态分布; ⑷X 和Y 相互独立的充要条件是相关系数0ρ=.例 设两个相互独立的随机变量X 和Y 分别服从正态分布)1,0(N 和)1,1(N ,则( ).(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}0{=≤-Y X P【提示 独立的正态变量的线性函数仍为正态变量;B 】二、二维随机变量函数的分布问题9 如何求二维随机变量函数的概率分布?答 设(,)g x y 在随机变量(,)X Y 的一切可能值有定义,则称(,)Z g X Y =为随机变量(,)X Y 的函数.求离散型随机变量函数的分布,关键是:弄清(,)Z g X Y =取哪些值,并求出对应的概率;求连续型随机变量函数的分布,关键是:弄清(,)Z g X Y =的取值范围,并求出分布函数.求两个独立随机变量X 与Y 的和Z X Y =+的概率密度,可用如下的卷积公式 ()()()Z X Y f z f x f z x dx +∞-∞=-⎰.例1.设ηξ,是两个相互独立且服从同分布的随机变量,如果ξ的分布律为3,2,1,31}{===i i P ξ,求),max(ηξ=X 与),min(ηξ=Y 的分布律.解 ),m a x (ηξ=X 的取值为1,2,3{}{}{}{}111,1119P X P P P ξηξη========;{}{}{}{}321,11,22,29P X P P P ξηξηξη====+==+===;{}{}{}531129P X P X P X ==-=-==,故),max(ηξ=X 分布律为:类似可求出),min(ηξ=Y 分布律为:2.设1X 和2X 独立,)2,1(1}2{,}1{=-====i p X P p X P i i ,令1,0,X ⎧=⎨⎩为偶数若为奇数若2121X X X X ++ 则2X 的概率分布为 .3.设二维随机变量),(Y X 在矩形}10,20),{(≤≤≤≤=y x y x D 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度)(s f S .(99-1)解 ),(Y X 的概率密度1,(,)(,)20,(,)x y Df x y x y D ⎧∈⎪=⎨⎪∉⎩X 的取值范围为[0,2],Y 的取值范围为[0,1],S XY =的取值范围为[0,2].S XY =的分布函数{}()S F s P S s =≤,当0s ≤时,{}()0S F s P S s =≤=,当2s ≥时,{}()1S F s P S s =≤=, 当02s <<时,{}{}{}()11S F s P S s P S s P XY s =≤=->=->211(,)1(1ln 2ln )22s sxxy ss f x y dxdy dx dy s >==-=+-⎰⎰⎰⎰,故S 的概率密度1(ln 2ln ),02,()20,.S s s f s else ⎧-<<⎪=⎨⎪⎩4.设随机变量X 和Y 相互独立, 2~(,)X N μσ, ~(,)Y U ππ-.试求Y X Z +=的密度函数(用)(x Φ表示).(92-1)解 X 和Y 相互独立,2~(,)X N μσ,~(,)Y U ππ-,则),(Y X 的密度函数=),(y x f 1(),()()20,.X X Y f x y f x f y else πππ⎧-<<⎪=⎨⎪⎩,Y X Z +=的分布函数{}{}()(,)Z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰11()()22z y X z y dy f x dx dy ππππμΦππσ---∞---==⎰⎰⎰(令z y t μσ--=)1()()()22z z z z t dt t dt πμπμσσπμπμσσσΦσΦππ--+-+---=-=⎰⎰,Y X Z +=的密度函数1()()[]2Z Z z z f z F z πμπμπσσ+---⎛⎫⎛⎫'==Φ-Φ ⎪ ⎪⎝⎭⎝⎭.。