1.2.1 平面的基本性质(2)
- 格式:ppt
- 大小:304.50 KB
- 文档页数:15
高中数学的必修二数学平面的基本性质知识点平面的基本性质教学目标1、知识与能力:(1)巩固平面的基本性质即四条推断出公理和三条推论.(2)能使用公理和推论进行解题.2、过程与方法:(1)体验在空间确定一个平面的过程与方法;(2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。
3、情感成见与价值观:培养学生认真观察的态度,慎密思考的习惯,提高学生审美能力和空间想象的能力。
教学重点平面的三条基本性质即三条推论.教学难点准确运用三条公理和推论解题.教学过程一、问题情境问题1:空间共点的三条直线二维能确定几个平面?空间互相对角线平行的三条直线呢?问题2:如何判断办公桌的四条腿内则的底端是否在一个平面内?二、温故知新公理1一处如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有两个一个公共设施点,那么它们还有其它公用点,这些公共点的集合是经过这个公共给定点的一条直线.公理3经过不在同一条直线上的三点,有且只有一个平面.推论1经过一条直线和这条直线外的一点,有且只有一个平面.推论2经过两条直角直线,有且只有一个平面.推论3经过两条平行平行线,有且只有一个平面.公理4(平行公理)平行于同一条直线的两条直线互相平行.把作出以上各公理及推论进行对比:三、数学运用基础训练:(1)已知:;求证:直线AD、BD、CD共面.证明:——公理3推论1——公理1同理可证,,直线AD、BD、CD共面【解题反思1】1。
逻辑要严谨2.书写要规范3.证明共面的步骤:(1)确定平面——公理3及其3个推论(2)证线“归”面(线在面内如:)——公理1(3)作出结论。
变式1、如果直线两两交汇,那么这三条直线是否共面?(口答)变式2、已知空间不共面的二点,过其中任意三点可以三维空间确定一个平面,由这四个一两个点能确知几个平面?变式3、四条线段顺次首尾连接,所得的图形一定是平面曲面图形吗?(口答)(2)已知直线满足:;求证:直线证明:——公理3推论3——公理1直线共面提高训练:已知,求证:四条直线在同一平面内.思路分析:考虑由直线a,b确定一个平面,再证明直线c,l在此平面上,但十分困难。
§1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论【学习要求】1.理解平面的基本性质与推论.2.能运用平面的基本性质及推论去解决有关问题.3.会用集合语言来描述点、直线和平面之间的关系以及图形的性质.【学法指导】通过桌面、黑板、地面等有形的实物,对平面有个感性认识,进而抽象出平面的概念及平面的基本性质及推论,感受我们所处的世界是一个三维空间,进而增强学习的兴趣,培养空间想象能力.填一填:知识要点、记下疑难点1.连接两点的线中,线段最短;过两点有一条,并且只有一条直线.2.平面基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线 .3.基本性质2:经过不在同一条直线上的三点,有且只有一个平面.或简单说成:不共线的三点确定一个平面.4.基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.5.基本性质的推论:推论1 :经过一条直线和直线外的一点,有且只有一个平面;推论2 :经过两条相交直线,有且只有一个平面;推论3 :经过两条平行直线,有且只有一个平面.6.异面直线:既不相交也不平行的直线叫做异面直线.与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线.研一研:问题探究、课堂更高效[问题情境]在《西游记》中,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,如果把孙悟空看作是一个点,他的运动成为一条线,大家说如来佛的手掌像什么?探究点一平面的基本性质问题1在初中我们学习的点与直线的基本性质有哪些?问题2生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?那么,平面的含义是什么呢?问题3实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.从经验中我们能得到什么结论呢?问题4直线和平面都可以看成点的集体,那么点、直线、平面的位置关系怎样用集合的符号表示?问题5如何用符号语言表示基本性质1?基本性质1有怎样的用途?问题6生活中经常看到用三角架支撑照相机;测量员用三角架支撑测量用的平板仪;有的自行车后轮旁只安装一只撑脚.上述事实和类似经验可以归纳出平面怎样的性质?问题7如何用符号语言表示基本性质2?基本性质2有怎样的用途?问题8基本性质2中“有且只有一个”的含义是什么?问题9如图所示,直线BC外一点A和直线BC能确定一个平面吗?为什么?问题10如图所示,两条相交直线能不能确定一个平面?为什么?问题11如图所示,两条平行直线能不能确定一个平面?为什么?问题12回顾第1.1节的内容,我们已经看到各种棱柱、棱锥的每两个相交的面之间的交线都是直线段,由此你能总结出怎样的结论?问题13在画两个平面相交时,如果其中一个平面被另一个平面遮住,应该怎样处理才有立体感?探究点二空间中两直线的位置关系问题1空间中的几个点或几条直线,如果都在同一平面内,我们就说它们共面.如果两条直线共面,那么两条直线有怎样的位置关系?问题2如图,直线AB与平面α相交于点B,点A在α外,那么直线l与直线AB能不能在同一个平面内?为什么?直线l与直线AB的位置关系是怎样的?小结:我们把这类既不相交又不平行的直线叫做异面直线.例1如图中的△ABC,若AB、BC 在平面α内,判断AC 是否在平面α内?小结:要判断或证明直线在平面内,只需要直线上的两点在平面内即可.跟踪训练1求证:两两平行的三条直线如果都与另一条直线相交,那么这四条直线共面.已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a、b、c和l共面.例2如图,正方体AC1中,对角线A1C和平面BDC1交于O,AC与BD交于点M,求证:点C1、O、M共线.小结:证明点共线问题常用方法:(1)先找出两个平面,再证明这三个点都是这两个平面的公共点,根据基本性质3从而判定他们都在交线上;(2)选择两点确定一条直线,再证另一点在这条直线上.跟踪训练2空间四边形ABCD中,E、F、G、H分别是AB、AD、BC、CD上的点,已知EF和GH相交于点M,求证:点B、D、M共线.练一练:当堂检测、目标达成落实处1.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β2.空间中可以确定一个平面的条件是()A.两条直线B.一点和一直线C.一个三角形D.三个点3.“a、b为异面直线”是指:①a∩b=∅,且a b;②a⊂面α,b⊂面β,且a∩b=∅;③a⊂面α,b⊂面β,且α∩β=∅;④a⊂面α,b⊄面α;⑤不存在面α,使a⊂面α,b⊂面α成立.上述结论中,正确的是()A.①④⑤正确B.①③④正确C.仅②④正确D.仅①⑤正确课堂小结:1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线。
张喜林制1.2.1 平面的基本性质与推论教材知识检索考点知识清单1.点与直线的基本性质连接两点的线中, 最短;过两点有 ,并且只有 . 2.平面的基本性质公理1:如果一条直线上的 在一个平面内,那么这条直线上的 ,这时我们就说:直线在 或 .公理2:经过 的三点,有且只有一个 即 的三点确定 .公理3:如果不重合的两个平面有一个公共点,那么它们有 条过 的公共直线. 3.平面基本性质的推论推论1:经过一条直线和____,有且只有____推论 2:经过两条____,有且只有____ . 推论3:经过两条____,有且只有____.要点核心解读1.平面的基本性质 (1)公理l①三种语言表述文字语言:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内, 图形语言:如图1-2 -1-1. 符号语言:⇒∈∈∈∈ααB A l B l A ,,,.α⊂l②公理1的条件是“线上有两点在平面内”,结论是“线上的所有点都在平面内”,这个结论阐述两个观点,一是整条直线在平面内,二是直线上的所有点在平面内. ③作用:判定直线是否在平面内,判定点是否在平面内. (2)公理2①三种语言表述文字语言:经过不在同一条直线上的三点,有且只有一个平面.图形语言:如图1-2 -1-2.符号语言:A ,B ,C 三点不共线等有且仅有一个平面α,使.,,ααα∈∈∈C B A②公理2的条件是“过不在同一直线上的三点”,结论是“有且仅有一个平面”,要注意“不在同一条直线上”这一附加条件,舍之则结论不成立.结论中“有且仅有”即“存在且唯一”,又可称之为“确定”平面.③公理2的三个推论推论1:经过一条直线和直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.④公理2及三个推论的作用:其一是确定平面,其二可用来证明点、线共面的问题,其三是用来作为计算平面个数的依据. (3)公理3①三种语言表述文字语言:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线. 图形语言:如图1-2 -1-3.符号语言:.l P l P ∈=⇒∈且βαβα②公理3的条件是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”.③作用:其一是判定两个平面是否相交,其二是判定点在直线上,可用来证明多点共线或多线共点问题2.平面基本性质的理解及应用 平面基本性质的三条公理及推论,是我们学习和研究立体几何问题的重要基础,根据平面的基本性质,常将空间图形转化为平面图形解决,这是解答立体几何问题的重要思想方法.(1)公理1是判定直线是否在平面内的依据,运用公理1可判定直线是否在某一平面内.(2)公理2以及推论是确定平面的依据,确定一个平面,包括两层意思:①存在一个平面;②只有一个平面.公理2及其三个推论是四个等价命题.(3)公理3是确定两个平面相交于一条直线的依据,运用公理3可判定多点共线或点在线上.(4)证明空间三点共线的问题.通常证明这些点都在两个平面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三点既在第一个平面内又在第二个平面内,当然必在两个平面的交线上.(5)证明空间三线共点的问题可把其中一条作为分别过其余两条的两个平面的交线,然后存证另两条直线的交点在此直线上.(6)证明空间几点共面的问题,可先取三点(不共线的三点)确定一个平面,再证其他各点都在这个平面内.(7)证明空间几条直线共面的问题,可先取两条(相交或平行)直线确定一个平面,再证其余直线在这个平面内,或者从这些直线中取任意两条确定若干个平面,再一一确定这些平面重合.典例分类剖析考点1 判断命题的正误 命题规律判断对给出的公理及推论的理解或不同表述是否正确. [例1] (1)下列命题中不正确的是( ).A.若一条直线上有一点在平面外,则直线上有无穷多个点在平面外B .若,,,ABC B A ∈∈∈αα则α∈C C .若,,,,B b l A a lb a ==⊂⊂ αα则α⊂lD .若一条直线上有两点在已知平面外,则直线上的所有点都在平面外(2)直线⊂a 平面α,直线⊂b 平面b N a M ∈∈,,α且,l M ∈,l N ∈则( ).α⊂l A . α⊂/l B . M l C =α. N l D =α . [试解] .(做后再看答案,发挥母题功能)[解析] (1)根据公理l ,直线在平面内的条件是直线上有两个点在平面内即可,因此选D .,,,,,,)2(ααα∈∴⊂⊂∈∈N M b a b N a M 而M .N 确定直线L .根据公理1可知,α⊂l 故选A .[答案](1)D(2)A母题迁移 1.下列命题:(1)空间不同的3点确定一个平面; (2)有3个公共点的两个平面必重合;(3)空间两两相交的三条直线确定一个平面; (4)三角形是平面图形;(5)平行四边形、梯形、四边形都是平面图形; (6)垂直于同一直线的两直线平行;(7)-条直线和两平行线中的一条相交,也必和另一条相交; (8)两组对边相等的四边形是平行四边形, 其中正确的命题是 . 考点2 平面个数的确定 命题规律由给定的条件,借助公理确定平面的个数. [例2] (1)不共面的四点可以确定几个平面?(2)三条直线两两平行但不共面,它们可以确定几个平面? (3)共点的三条直线可以确定几个平面? (4)空间三点可以确定几个平面?[答案] (1)不共面的四点可以确定四个平面.(2)三条直线两两平行但不共面,它们可以确定三个平面. (3)共点的三条直线可以确定一个或三个平面.(4)若空间三点不共线,由公理2,则可以确定一个平面;若空间三点共线,则过三点的平面有无数多个,但这三点都不能确定其中的任何一个平面,此时有0个平面.故空间三点可以确定一个或0个平面. [点拨] (1)判定平面的个数问题关键是要紧紧地抓住已知条件,做到不重不漏.平面的个数问题主要是根据已知条件和公理2及其三个推论来判定.(2)题中“确定”即“有且只有”.“有”是说平面存在,“只有”是说平面的唯一性.(3)解此类问题要注意理解“确定”的含义,否则(4)中就会错答为“可确定一个或无数个平面”. 母题迁移 2.四条直线两两平行,任意三条不共面,过其中的任意两条作一个平面,共可以作平面____个.考点3 线共点问题命题规律 证明满足某些条件的几条直线交于一点.[例3] 如图1-2 -1-5所示,空间四边形ABCD 中,E 、F 、G 分别在AB 、BC 、CD 上,且满足===GD CG FB CF EB AE :,1:2::,1:3过E 、F 、G 的平面交AD 于H(1)求AH :HD ;(2)求证:EH 、FC 、BD 三线共点.[答案] (1) ,//,2AC EF FBCFEB AE ∴== //EF ∴平面ACD .而⊂EF 平面EFCR ,平面 EFGH平面,GH ACD =.3.//,//,//==∴∴∴GDCGHD AH GH AC AC nEF GH EF,//)2(GH EF 且,41,31==AC GH AC EF ∴=/∴,GH EF 四边形EFGH 为梯形.令,P FG EH= 则⊂∈∈EH FG P EH P 又,,平面ABD ,⊂FG 平面BCD ,平面 ABD 平面,BD BCD =BD FG EH BD P 、、∴∈∴⋅三线共点.[点拨] 证明线共点的问题实质上是证明点在线上的问题,其基本理论是把直线看作两平面的交线,点看作是两平面的公共点,由公理3得证.母题迁移 3.三个平面两两相交得到三条交线,如果其中有两条相交于一点,那么第三条也经过这个点.考点4 点共线问题命题规律 证明满足某些条件的几个点在一条直线上.[例4] 正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于点O ,AC 、BD 交于点M ,求证:点M O C 、、1共线.[解析] 要证若干点共线的问题,只需证这些点同在两个相交平面内即可.[答案] 如图1-2-1-6所示,C C A A C C A A 1111//、⇒确定平面,1C A的交线上与平面在平面平面直线平面平面平面D BC C A O D BC D BC C A O C A 111111111⇒⎪⎪⎭⎪⎪⎬⎫∈⇒=∈⇒⎭⎬⎫∈⊂O O C A O C A C A ,D BC C A 111111M C O M C C A D BC O ∈⇒⎭⎬⎫=平面平面的交线上与平面在平面即M C O 、、1三点共线.[点拨] 证明点共线的问题,一般转化为证明这些点是某两个平面的公共点.这样就可根据公理3证明这些点都在这两个平面的公共直线上, 母题迁移 4.已知△ABC 在平面α外,直线,P AB =α 直线,R AC =α 直线,Q BC =α 如图1 -2-1 -7.求证:P 、Q 、R 三点共线. 考点5点、线共面问置命题规律证明满足某些条件的若干个点或直线在题同一平面内.[例5] 如图1-2 -1-8所示,M 、N 、P 、Q 分别是正方体////D C B A ABCD -中棱///CC D C BC AB 、、、的中点.求证:M 、N 、P 、Q 四点共面.[解析] 要证这四点共面,方法较多,但注意到本题中点P 、Q 、N 、M 的特殊性及对正方体的理解和认识,可证直线PQ 和MN 相交或M P// NQ.[答案] 证法一:如图l-2-1-8所示,连接MN 并延长交DC 的延长线于O ,则≅∆MBN ,OCN ∆.BM CO =∴连接PQ 并延长交DC 的延长线于,/O 则,//CQ O Q PC ∆≅∆/////,,.O O CO CO PC MB PC CO 、又∴=∴==∴ 重合,∴ PQ 、MN 相交且确定一个平面,故M 、N 、P 、Q 四点共面.证法二:∴,///PC MB 四边形P MBC /为平行四边形.⋅∴∴NQ MP BC NQ BC MP //,//.////∴ MP 与NQ 确定一个平面, 故M 、N 、P 、Q 四点共面.[点拨] 一般地,证明若干个点共面,可证明这些点所在的直线相交,或先证明其中的三点共面,再证明其他的点也在这个平面内,这往往就要用到有关的定理或推论, 母题迁移 5.求证:两两相交且不共点的四条直线共面.学业水平测试1.下列叙述中正确的是( ).A .因为,,αα∈∈Q P 所以α∈PQB .因为,,βα∈∈Q P 所以PQ =βαC .因为,,,ABD AB C AB ∈∈⊂α所以α∈CD D .因为,,βα⊂⊂AB AB 所以)()(βαβα∈-∈∏B A2.下列命题中是真命题的是( ). A .空间不同的三点确定一个平面B .有三个内角是直角的空间四边形是矩形C .三条直线中任意两条均相交,则这三条直线确定一个平面D .顺次连接空间四边形各边的中点所得的四边形其对角线必共面3.在空间,若四点中的任意三点不共线,则此四点不共面.此结论( ). A .正确 B .不正确 C .无法判断 D .缺少条件 4.已知点A ,直线a ,平面α;,αα∉⇒⊂/∈A a a A ①;,αα∈⇒∈∈A a a A ②⊂∉a a A ,③;αα∉⇒A .,αα⊂⇒⊂∈A a a A ④以上命题正确的个数为 .5.下列命题:①空间3点确定一个平面;②有3个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形,其中正确的命题是 . 6.有空间不同的五个点.(1)若有某四点共面,则这五点最多可确定多少个平面?(2)若任意四点都在同一平面内,则这五点共能确定多少个平面?并证明你的结论,高考能力测试(测试时间:45分钟测试满分:100分) 一、选择题(6分x 7 = 42分)1.空间四点A 、B 、C 、D 共面而不共线,那么四点中( ). A .必有三点共线 B .必有三点不共线 C .至少有三点共线 D .不可能有三点共线 2.如图1-2-1-11所示,平面,l =βα 点、A ,α∈B 点β∈C 且,,R l AB l C =∉ 设过A 、B 、C 三点的平面为γ,则γβ是( ).A .直线ACB .直线BC C .直线CRD .以上均不正确3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( ). A.5部分 B.6部分 C.7部分 D.8部分 4.在空间内,可以确定一个平面的条件是( ).A .两两相交的三条直线B .三条直线,其中的一条与另外两条直线分别相交C .三个点D .三条直线,它们两两相交,但不交于同一点5.如图1-2 -1-12所示,正方体-ABCD 1111D C B A 中,P 、Q 、R 分别是11C B AD AB 、、的中点.那么,正方体过P 、Q 、R 的截面图形是( ).A .三角形B .四边形C .五边形D .六边形6.不共面的四个定点到平面α的距离都相等,这样的平面a 共有( ). A .3个 B .4个 C .6个 D .7个7.三条直线两两相交,由这三条直线所确定的平面个数是( ). A .1 B .2 C .3 D .1或3二、填空题(5分x4 =20分)8.如果一条直线与一个平面有一个公共点,则这条直线可能有 个点在这个平面内. 9.有下面几个命题:①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;②两组对边分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④四边形有三条边在同一个平面内,则第四条边也在这个平面内;⑤点A 在平面α外,点A 和平面a 内的任何一条直线都不共面. 其中正确命题的序号是 .(把你认为正确的序号都填上) 10.如图1-2 -1 -13所示,正方体-ABCD 1111D C B A 中,E 、F 分别为1CC 和1AA 的中点,画出平面F BED 1与平面ABCD 的交线的作法为11.如图1-2 -1-14所示,E 、F 分别是正方体的面11A ADD 和面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的投影可能是 (要求:把图1-2 -1 -15中可能的图的序号都填上)三、解答题(共38分)12.(8分)如图1-2-1-16所示,在正方体1111D C B A ABCD -中,E 为AB 的中点,F 为1AA 的中点.求证:DA F D CE 、、1A 三线交于一点.13.(10分)如图1-2-1 -17所示,在棱长为1的正方体1111D C B A ABCD -中,M 为AB 的中点,N 为1BB的中点,D 为平面11B BCC 的中心.(1)过O 作一直线与AN 交于P ,与CM 交于Q (只写作法,不必证明);(2)求PQ 的长.14.(10分)如图1-2-1-18所示,正方体1111D C B A ABCD -中,E 、F 分别是1111.B C C D 的中点。
1.2.1 平面的基本性质与推论自主学习学习目标1.掌握平面的基本性质和三个推论,会用三种语言表述性质与推论.2.了解异面直线的概念,能用符号语言描述点、直线、平面之间的相互位置关系.自学导引1.平面的基本性质(1)基本性质1:如果一条直线上的______点在一个平面内,那么这条直线上的________点都在这个平面内,这时我们说直线在平面内或________________.(2)基本性质2:经过________________________的三点,有且只有一个平面.也可简单说成,______________的三点确定一个平面.(3)基本性质3:如果不重合的两个平面有________公共点,那么它们有且只有________过这个点的公共直线.如果两个平面有一条公共直线,则称这两个平面________.这条公共直线叫做两个平面的________.2.平面基本性质的推论(1)推论1 经过________________________有且只有一个平面.(2)推论2 经过________________有且只有一个平面.(3)推论3 经过________________有且只有一个平面.3.共面和异面直线如果两直线共面,那么它们________或者________,否则称它们为______________.对点讲练知识点一多线共面例1已知直线a∥b,直线l与a、b都相交,求证:过a、b、l有且只有一个平面.点评证明多线共面的一种方法是先由推论3确定一个平面,再利用基本性质1依次证明其余各线也在这个平面内.另一种方法是先由一部分线确定一个平面,由另一部分线确定另一个平面,再让这两个面重合.变式训练1 两两相交且不过同一个点的三条直线必在同一平面内.知识点二证明多点共线问题例2已知△ABC在平面α外,AB∩α=P,AC∩α=R,BC∩α=Q,如图所示.求证:P、Q、R三点共线.点评证明多点共线的方法是利用基本性质3,只需说明这些点都是两个平面的公共点,则必在这两个面的交线上.本题也可先确定点P、R在同一条直线上,Q也在这条直线上,这也是证明共点、共线、共面问题的常用方法.变式训练2如图所示,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R.求证:P,Q,R三点共线.知识点三证明线共点问题例3在四面体ABCD中,E,G分别为BC,AB的中点,F在CD 上,H在AD上,且有DF∶FC=DH∶HA=2∶3,求证:EF,GH,BD交于一点.点评证明若干条线共点,一般可先证其中两条相交于一点,再证其他线也过该点即可,本题在解答中应用了两个相交平面的公共点必然在它们的交线上这一结论.变式训练3如图所示,在正方体ABCD—A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE、D1F、DA三线交于一点.1.三个基本性质的作用:基本性质1——判定直线在平面内的依据;基本性质2——判定点共面、线共面的依据;基本性质3——判定点共线、线共点的依据.2.注意事项(1)应用基本性质2时,要注意条件“三个不共线的点”.事实上,共线的三点是不能确定一个平面的.(2)在立体几何中,符号“∈”与的用法与读法不要混淆.(3)解决立体几何问题时注意数学符号、文字语言、图形语言间的相互转化.课时作业一、选择题1.下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 m,宽是20 m;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为( )A.1 B.2 C.3 D.42.点A在直线l上,而直线l在平面α内,用符号表示为( ) A.A∈l,l∈αB.A∈l,αC.,l∈αD.,α3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是( )A.A∈a,A∈β,B∈a,B∈ββB.M∈α,M∈β,N∈α,N∈βα∩β=MNC.A∈α,A∈βα∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线α、β重合5.平面α∩平面β=l,点A∈α,B∈α,C∈β,且,AB∩l=R,过A、B、C三点确定平面γ,则β∩γ等于( ) A.直线AC B.直线BCC.直线CR D.以上都不对二、填空题6.下列命题中,正确的是________.(填序号)①若两个平面有一个公共点,则它们有无数个公共点;②若已知四个点不共面,则其中任意三点不共线;③若点A既在平面α内,又在平面β内,则α与β相交于直线l,且A在l上;④两条直线不能确定一个平面.7.读图①②,用符号语言表示下列图形中元素的位置关系.(1)图①可以用符号语言表示为_______________________________________________________ _________________;(2)图②可以用符号语言表示为_______________________________________________________ _________________.8.如图所示,ABCD—A1B1C1D1是长方体,O是B1D1的中点,直线A1C 交平面AB1D1于点M,则下列结论错误的是________(填序号).①A、M、O三点共线;②A、M、O、A1四点共面;③A、O、C、M四点共面;④B、B1、O、M四点共面.三、解答题9.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC 所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且α,β.求证:AB ,CD ,l 共点(相交于一点).【答案解析】 自学导引1.(1)两 所有 平面经过直线 (2)不在同一条直线上 不共线 (3)一个 一条 相交 交线2.(1)一条直线和直线外一点 (2)两条相交直线 (3)两条平行直线3.平行 相交 异面直线 对点讲练例1 证明 方法一⎭⎪⎬⎪⎫直线过a ,b 有且只有一个平面,设为αl∩a=l∩b=⎭⎪⎬⎪⎫α,B∈α A∈l,B∈l α,b ,l 共面.方法二 ∵a∥b, ∴a,b 确定一个平面α.a∩l=A ,直线a ,l 确定一个平面β. 又∵B∈α,B∈β,α,β,∴平面α与β重合.故直线a,b,l共面.变式训练1已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证明方法一(同一法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l 2α,∴B∈α.同理可证C∈α.又∵B∈l 3,C∈l3,∴l3α.∴直线l1、l2、l3在同一平面内.方法二(重合法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l 2,l2α,∴A∈α.∵A∈l 2,l2β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.例2证明方法一∵AB∩α=P,∴P∈AB,P∈平面α.又平面ABC ,∴P∈平面ABC.由基本性质3可知:点P 在平面ABC 与平面α的交线上, 同理可证Q 、R 也在平面ABC 与平面α的交线上. ∴P、Q 、R 三点共线. 方法二 ∵AP∩AR=A ,∴直线AP 与直线AR 确定平面APR.又∵AB∩α=P ,AC∩α=R ,∴平面APR∩平面α=PR. ∵B∈面APR ,C∈面APR ,面APR.∵Q∈BC,∴Q∈面APR ,又Q∈α,∴Q∈PR, ∴P、Q 、R 三点共线.变式训练2 证明 ∵AB∩α=P ,CD∩α=P , ∴AB∩CD=P.∴AB,CD 可确定一个平面,设为β. ∵A∈AB,C∈CD,B∈AB,D∈CD, ∴A∈β,C∈β,B∈β,D∈β. ∴Aβ,β,平面α,β相交.∵AB∩α=P ,AC∩α=Q ,BD∩α=R , ∴P,Q ,R 三点是平面α与平面β的公共点.∴P,Q ,R 都在α与β的交线上,故P ,Q ,R 三点共线. 例3 证明 因为E 、G 分别为BC 、AB 的中点, 所以GE∥AC.又因为DF∶FC=DH∶HA=2∶3,所以FH∥AC 且HF =25AC ,从而FH∥GE.故E ,F ,H ,G 四点共面.所以四边形EFHG 是一个梯形,GH 和EF 交于一点O. 因为O 在平面ABD 内,又在平面BCD 内, 所以O 在这两个平面的交线上.而这两个平面的交线是BD ,且交线只有这一条,所以点O 在直线BD 上.这就证明了GH 和EF 的交点也在BD 上,所以EF ,GH ,BD 交于一点.变式训练3证明 连接EF ,D 1C ,A 1B. ∵E 为AB 的中点, F 为AA 1的中点, ∴EF 12A 1B.又∵A 1B∥D 1C ,∴EF∥D 1C ,∴E,F ,D 1,C 四点共面,且EF =12D 1C ,∴D 1F 与CE 相交于点P. 又D 1平面A 1D 1DA ,平面ABCD.∴P为平面A1D1DA与平面ABCD的公共点.又平面A1D1DA∩平面ABCD=DA,根据基本性质3,可得P∈DA,即CE、D1F、DA相交于一点.课时作业1.A [由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确,故选A.]2.B 3.D4.C [∵A∈α,A∈β,∴A∈α∩β.由基本性质可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.]5.C [∵AB∩l=R,∴R∈l,R∈AB.又α∩β=l,β,∴R∈β,R∈γ,又C∈β,C∈γ,∴β∩γ=CR.]6.①②③7.(1)α∩β=l,α,β,l∩n=P,m∥l(2)α∩β=l,m∩α=A,m∩β=B8.④解析连接AO,AO是平面AB1D1和平面BB1D1D的交线,∵M∈A1C,A1面AA1C1C,∴M∈面AA1C1C,又M∈面AB1D1∴M∈AO,即A、M、O三点共线,因此①②③均正确.只有④不正确.9.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.10.证明∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰,∴AB,CD必定相交于一点,设AB∩CD=M.又α,β,∴M∈α,且M∈β,∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.。