第二章 数字图像处理基本概念
- 格式:ppt
- 大小:3.97 MB
- 文档页数:79
数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
第二章基本概念贾永红武汉大学第二章讲解内容1. 图像数字化概念、数字化参数对图像质量的影响、数字化器性能评价2. 图像灰度直方图的基本概念、计算、性质及其应用3.数字图像处理算法形式与数据结构4.图像图像文件格式与特征重点:图像数字化、图像灰度直方图和图像文件BMP格式难点:图像数字化、直方图应用、图像分层结构数据教学法:灵活应用示例法、启发式、提问法等目的:1. 熟悉本章基本概念和图像处理算法形式,了解图像的特征;2.重点掌握图像数字化图像灰度直方图的基本概念及应用、2.2 成象模型3-D客观场景到2-D成像平面的中心投影。
物方点空间坐标与对应的像方点坐标满足几何透视变换关系(共线条件)。
f(x,y)---理想成像面坐标点(x,y)的亮度i(x,y)---照度分量r(x,y)---反射分量,则f(x,y)=i(x,y)×r(x,y)其中:0< i(x,y)< ∞ ,0 <r(x ,y)<12.3图像数字化图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。
模拟图像数字图像正方形点阵具体来说,就是把一幅图画分割成如图2.3.1所示的一个个小区域(像元或像素),并将各小区域灰度用整数来表示,形成一幅点阵式的数字图像。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
2.3.1采样将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。
关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。
不同形状的采样孔径2.3.2量化经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。
将像素灰度转换成离散的整数值的过程叫量化。
表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
第一章导论图像是对客观存在对象的一种相似性的、生动性的描述或写真。
模拟图像空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像数字图像空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。
是图像的数字表示,像素是其最小的单位。
数字图像处理(Digital Image Processing)利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。
(计算机图像处理)数字图像处理的特点(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
数字图像处理的目的(1)提高图像的视感质量,以达到赏心悦目的目的。
(2)提取图像中所包含的某些特征或特殊信息。
(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。
数字图像处理的主要研究内容(1)图像的数字化(2)图像的增强(3)图像的恢复(4)图像的编码(5)图像的重建(6)图像的分析(7)图像分割与特征提取(8)图像隐藏(9)图像通信图像工程的三个层次(1)图像分析:图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
(2)图像理解:图像理解的重点是在图像分析的基础上,进一步研究图像中各个目标的性质和他们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
(3)图像处理:数字图像处理的应用领域1.通信:图象传输,电视电话等。
2.宇宙探测:星体图片处理。
遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的监测,气象云图。
3.生物医学:CT,X射线成象,B超,红外图象,显微图象。
4.工业生产:产品质量检测,生产过程控制,CAD,CAM。
5.军事:军事目标侦察,制导系统,警戒系统,自动火器控制,反伪装等。
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。