PF QF
PF QF 0 即( p, y1) ( p, y2 ) 0
p2 y1 y2 0
即y1 y2 p2
易得:x1x2
p2 4
Py A
O •F
x
Q
B
12/15
例5、正三角形的一个顶点位于坐标原点,另外 两个顶点在抛物线y2 2 px(p 0)上,求这个 正三角形的边长.
K.
OF
x
--抛物线标准方程
2/15
2、抛物线标准方程:
标准方程 y2 2 px( p 0) y2 2 px( p 0) x2 2 py( p 0) x2 2 py( p 0)
y
图形
F
o
x
. .
y F ox
焦点 准线
F ( p ,0) 2
x p 2
F ( p ,0) 2
x p 2
y
(0,0)
p 2
x0
p x1 x2
(0,0)
p 2
x0
p (x1 x2 )
(0,0)
p 2
y0
p y1 y2
(0,0)
p 2
y0
p ( y1 y2 )
8/15
三、例题选讲:
例1. 顶点在坐标原点,对称轴是坐标轴,而且过点
M(2, 2 2 )抛物线有几条,求它标准方程.
当焦点在x[或y]轴上,开口方向不定时, 设为y2=mx(m ≠0) [或x2=my (m≠0)],可 防止讨论!
1.抛物线只位于半个坐标平面内,即使它能够无 限延伸,但它没有渐近线; 2.抛物线只有一条对称轴,没有对称中心;
3.抛物线只有一个顶点、一个焦点、一条准线; 4.抛物线离心率是确定e=1; 5.抛物线标准方程中p对抛物线开口影响.