数学中的盈亏问题讲义
- 格式:docx
- 大小:20.51 KB
- 文档页数:2
第24讲盈亏问题(提高版)1、盈亏问题。
在等分除法的基础上发展起来的。
他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
2、解题关键。
盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
3、解题规律。
总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足,总差额= 大不足-小不足一.选择题(共4小题)1.有一段木头用一根绳子来量,绳子多出150公分,将绳子对折后量,又短了35公分。
问这段木头有多长?()A.220 B.250 C.320 D.3602.美猴王带着蟠桃回到花果山分给众猴,先分给3只老猴各6个,每只小猴4个,发现还有4只小猴分不到,于是收回重新分,3只老猴各5个,每只小猴3个,可是还剩下12个,那么花果山共有()只猴.A.24 B.25 C.26 D.283.米奇专卖店以100元的单价卖出两套不同的童装,其中一套赚20%,另一套亏本20%,那么这个童装店卖这两套服装总体核算是()A.亏本B.赚钱C.不亏也不赚D.不能确定亏本或赚钱4.搬运1000块玻璃,规定搬一块可得运费3角,但打碎一块除了得不到运费外还要赔5角,运完后,搬运工共得搬运费260元,搬运工损失了()元。
A.10 B.5 C.20 D.25二.填空题(共12小题)5.一袋糖分给一些小朋友,每人分10粒刚好分完;如果每人分16粒,则有3个小朋友分不到糖。
这袋糖共粒。
6.某公司给职工发奖金,每人发250元则缺180元,每人发200元则余220元,那么平均每人能发奖金元.7.甲、乙、丙三人一起买了8个面包,平分着吃.甲拿出5个面包的钱,乙付了3个面包的钱,丙没带钱,等吃完后核算,丙应拿出4元钱,甲应收回钱,乙应收回钱.8.某笔奖金原计划8人均分,现退出1人,其余每人多得200元,这笔奖金共元。
盈亏问题学生姓名年级学科授课教师日期时段核心内容盈亏问题课型一对一/一对N教学目标1、认识盈亏问题的基本含义2、理解并掌握盈亏问题的三种类型及方法3、进行盈亏问题的实际应用重、难点盈亏问题的三种类型方法及其实际应用课首沟通和学生交谈沟通,了解学生是否接触过盈亏问题的相关知识;列举实例,引起学生好奇心,增强学生的求知欲以及解决问题的兴趣。
知识梳理1、盈亏问题的含义:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。
2、盈亏问题的三种类型:(1)直接计算型盈亏问题①一盈一亏,可用公式:(盈亏) 两次分得之差人数或单位数②两次盈余,可用公式:(大盈—小盈) 两次分得之差人数或单位数③两次亏(不足),可用公式:(大亏—小亏) 两次分得之差人数或单位数④一次亏(不足),另一次刚好分完,可用公式:亏÷两次分得之差人数或单位数⑤一次盈余,另一次刚好分完,可用公式:盈÷两次分得之差人数或单位数(2)条件转换型盈亏问题这类型的盈亏问题不能直接运用公式计算,首先需要将一定的条件转化,使之成为直接计算型的盈亏问题,再运用公式计算。
(3)关系互换型盈亏问题这种题型中会出现两种物品,一般两者之间还存在数量关系,如和差关系、倍数关系等,我们应该先利用数量关系将已知条件转化为一种物品的盈亏关系,再根据基本盈亏问题的解法计算。
导学一:直接计算型盈亏问题知识点讲解 1:一盈一亏计算公式:(盈亏) 两次分得之差人数或单位数例 1. 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?我爱展示1.王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?2.卓越学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?知识点讲解 2:两次盈余计算公式:(盈—盈) 两次分得之差人数或单位数例 1. 明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?我爱展示1.有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2.老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?知识点讲解 3:两次亏(不足)计算公式:(亏—亏) 两次分得之差人数或单位数例 1. 卓越学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?我爱展示1. 幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?知识点讲解 4:一次亏(不足),另一次刚好分完计算公式:亏÷两次分得之差人数或单位数例 1. 卓越学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?我爱展示1. 卓越学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,卓越学校一共有多少个班?买来多少个足球?知识点讲解 5:一次盈余,另一次刚好分完计算公式:盈÷两次分得之差人数或单位数例 1. 一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?我爱展示1. 猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?导学二:条件转换型盈亏问题知识点讲解 1:这类型的盈亏问题不能直接运用公式计算,首先需要将一定的条件转化,使之成为直接计算型的盈亏问题,再运用公式计算。
盈亏问题小朋友分铅笔,每人分3支,则多6支,每人分5支则少8支。
有多少小朋友,有多少铅笔?任务:分东西,分什么:铅笔【总量】分给谁:小朋友【份数】多,余,盈是多余的意思少,亏是不足的意思。
在分物品或者安排其他工作时,经常会遇到多余或者不足的情况。
遇到这类题目,我们可以根据多余以及不足的数量找出解题的线索。
这类应用题通常叫做盈亏问题。
解答盈亏问题的关键是弄清盈、亏与两次分配差的关系。
盈亏问题的数量关系是:(1)“一盈一亏”:(盈+亏)÷两次分配差=份数【标准盈亏】“两盈”:(大盈-小盈)÷两次分配差=份数“两亏”:(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量1、标准盈亏问题(一盈一亏)例1、小朋友分糖果,每人3粒剩2粒,每人5粒少6粒,则共有糖果_________粒?思路点拨:列出已知条件:两个不变量两种分配方案先列对比图:每人3粒,多2粒;每人5粒,少6粒。
这属于“一盈一亏”问题。
由题意可知,小朋友的人数和糖果的粒数是不变的。
比较两种分配方案,结果相差2+6=8(粒),这是因为两种分配方案每人所分糖果相差5-3=2(粒)。
所以,小朋友的人数是8÷2=4(人),再求出糖果一共有多少粒。
(盈+亏)÷两次分配差=份数【标准盈亏】拓展:1)兔妈妈给兔子们分胡萝卜。
如果每只兔子分3个,则多17个,如果每只兔子分5个,还少13个。
问:有多少兔子?有多少胡萝卜?2)幼儿园老师给小朋友分果冻,如果每人分7个,则多15个果冻,如果每人分5个,则少3个果冻。
问:幼儿园有多少小朋友?有多少果冻?3)一些同学去划船,如果每条船坐4人,则有3个人没有位置。
如果每条船坐5人,则多出3个位置;一共有多少条船?一共有多少个同学?4)绿化队一次植树。
如果每人栽15棵树,则还剩下27棵没有人栽;如果每人栽18棵,就少3棵树苗。
奥数-盈亏问题(讲义)一、教学目标:1. 了解盈亏的概念,学会用盈亏法解决实际问题。
2. 能够运用盈亏法分析解决一些生活中的实际问题。
3. 培养学生的思维能力和解决实际问题的能力,提高学生对数学的兴趣和学习积极性。
二、教学内容:小学数学,奥数-盈亏问题三、教学重难点:1. 盈亏的概念和运用。
2. 如何应用盈亏法解决实际问题。
3. 思维的启发和能力的培养。
四、教学方法:教师讲授,学生合作探究、合作讨论。
五、教学过程:1. 导入环节问:看看下面的物品,哪个物品是亏本,哪个是盈利?根据学生的回答,引导学生认识盈亏的概念。
2. 提高认识引导学生根据实际生活中的事例,深化对盈亏概念的理解,培养学生动手解决问题的能力。
例如:有个商贩每天卖馒头,每个馒头的成本是1元钱,他每个馒头卖1.2元钱,他每天卖200个馒头,问他一天能赚多少钱?(1)学生思考解决这个问题需要什么技能?(2)请学生分组合作讨论如何解决这个问题。
(3)引导学生讨论如何用盈亏法解决这个问题。
(4)请学生发言,分别给出自己的解答。
(5)引导学生比较各组发言的不同之处。
引导学生认识盈亏法,明确什么情况属于盈亏问题。
3. 实战演练为了加深学生对盈亏法的理解,让学生尝试自己解决盈亏问题。
例如:王老板开了一家餐馆,每天损失200元,他决定将客人数量提高20%以弥补损失,他现在每天的营业额是多少?请学生自己分组合作,(1)先思考一下解决问题需要什么技能?(2)练习用盈亏法解决问题。
让各组学生上来讲解自己的方法和答案,让其他学生去评价。
4. 归纳总结用盈亏法解决含有盈亏问题的实际问题具体步骤:先求盈亏,再加上原来的成本/价值。
五、教学反思:本节课通过让学生合作探究、小组讨论,培养了学生的思维和解决问题的能力,在玩之中学,学会实际运用盈亏法分析解决生活中实际问题,使学生获得了感受和思考的机会,不仅掌握了盈亏法,还提高了学生解决实际问题的能力和兴趣。
在学习盈亏法时,应该注重启发学生的思维和创新能力。
盈亏问题
把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。
已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。
盈亏问题的基本解法是:份数=(盈+亏)÷两次分配数的差,物品数可由其中一种分法的份和盈亏数求出。
解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。
例1、幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。
幼儿园有几个班?这批玩具有多少个?
【举一反三】小明带了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元。
苹果每千克多少元?小明带了多少钱?
【举一反三】妈妈买来一些苹果分给全家人,如果每人分6个,则多了12个;如果每人分7个,则多了6个。
全家有几人?妈妈共买回多少个苹果?
例3、在桥上用绳子测桥离水面的高度。
若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米。
问:桥有多高?绳子有多长?
【举一反三】用一根绳子测量桥高,将绳子对折,则桥上余5米,如将绳子三折,离水面2米。
桥高多少米?绳子多少米?
例4、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。
请问,共有多少名少先队员?共挖了多少树坑?
【举一反三】小红家买来一篮桔子,分给全家人。
如果其中二人每人分4只,其余每人分2只,那么多出4只;如果一人分6只,其余每人分4只,那么缺12只。
问:小红家买来多少只桔子?小红家共有几人?
例5、赵老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校。
王老师家到学校的路程是多少米?
【举一反三】4.小明从家到学校,如果每分钟走40米,则要迟到2分钟;如果每分钟走50米,则早到4分钟。
小明家到学校有多远?
例6、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角.问小明带了多少钱?
【举一反三】小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?
作业设计
1.学校给新生分配宿舍,如果每间住8人,则少2间房;如果每间住10人,则多出2间房。
共有几间房?新生有多少人?
2.同学们去划船,如果每条船坐5人,则少2条船;如果每船坐7人,则多出2条船。
共有几条船?有多少个同学?
3.少先队员植树,如果每人种5棵,则剩下13棵;若每人种7棵,则差21棵。
参加植树的少先队员有多少人?这批树有多少棵?
4.幼儿园将一筐苹果分给小朋友。
如果分给大班的小朋友,每人5个余10个;如果分给小班的小朋友,每人8个缺2个。
已知大班比小班多3个小朋友。
这一筐苹果有多少个?
5. 中关村三小少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?
6.六(1)班学生去公园划船,如果每条船坐4人,则少一条船;如果每条船坐6人,则多出4条船。
公园里有多少条船?六(1)班有多少学生?
7. 有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。
树周长是多少米?绳子长多少米?。