选修2-3 第二章2.4 二项分布
- 格式:ppt
- 大小:1.06 MB
- 文档页数:41
选修2-3 第二章 2.4一、选择题1.已知一次考试共有60名同学参加,考生的成绩X ~N (110,52),据此估计,大约应有57人的分数在下列哪个区间内( )A .(90,110]B .(95,125]C .(100,120]D .(105,115] [答案] C[解析] 由于X ~N (110,52),∴μ=110,σ=5.因此考试成绩在区间(105,115],(100,120],(95,125]上的概率分别应是0.6826,0.9544,0.9974.由于一共有60人参加考试,∴成绩位于上述三个区间的人数分别是: 60×0.6826≈41人,60×0.9544≈57人, 60×0.9974≈60人.故选C .2.某班有50名学生,一次考试后数学成绩ξ~N (110,102),若P (100≤ξ≤110)=0.34,则估计该班学生数学成绩在120分以上的人数为( )A .10B .9C .8D .7[答案] C[解析] ∵考试的成绩ξ服从正态分布N (110,102), ∴考试成绩ξ的概率分布关于ξ=110对称, ∵P (100≤ξ≤110)=0.34,∴P (ξ≥120)=P (ξ≤100)=12(1-0.34×2)=0.16,∴该班数学成绩在120分以上的人数为0.16×50=8. 故选C .3.如图是当σ取三个不同值σ1,σ2,σ3时的三种正态曲线,那么σ1,σ2,σ3的大小关系是( )A .σ1>1>σ2>σ3>0B .0<σ1<σ2<1<σ3C .σ1>σ2>σ3>0D .0<σ1<σ2=1<σ3[答案] D[解析] 由正态曲线的特点知σ越大,其最大值越小,所以σ1<σ2<σ3,又12πσ2=12π,∴σ2=1.故选D .4.某厂生产的零件外直径X ~N (8.0,0.0225),单位mm ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9mm 和7.5mm ,则可认为( )A .上、下午生产情况均为正常B .上、下午生产情况均为异常C .上午生产情况正常,下午生产情况异常D .上午生产情况异常,下午生产情况正常 [答案] C[解析] 根据3σ原则,在(8-3×0.15,8+3×0.15]即(7.55,8.45]之外时为异常.结合已知可知上午生产情况正常,下午生产情况异常.5.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为( )A .10%B .20%C .30%D .40%[答案] D[解析] 由条件知μ=90,P (ξ<60)=0.1, ∴P (ξ>120)=0.1,∴P (90≤ξ<120)=12[1-2P (ξ<60)]=12×(1-0.2)=0.4,故选D . 6.以Φ(x )表示标准正态总体在区间(-∞,x )内取值的概率,若随机变量ξ服从正态分布N (μ,σ2),则概率P (|ξ-μ|<σ)等于( )A .Φ(μ+σ)-Φ(μ-σ)B .Φ(1)-Φ(-1)C .Φ⎝⎛⎭⎫1-μσ D .2Φ(μ+σ)[答案] B[解析] 设η=|ξ-μ|σ,则P (|ξ-μ|<σ)=P (|η|<1)=P (-1<η<1)=Φ(1)-Φ(-1).故选B . 二、填空题7.正态变量的概率密度函数f (x )=12πe -(x -3)22,x ∈R 的图象关于直线________对称,f (x )的最大值为________.[答案] x =312π8.设随机变量X ~N (μ,σ2),且P (X <1)=12,P (X >2)=p ,则P (0<X <1)=________.[答案] 12-p[解析] ∵随机变量X ~N (μ,σ2),∴x =μ是图象的对称轴,∵P (X <1)=12,∴μ=1.∵P (X >2)=p ,∴P (X <0)=p ,则P (0<X <1)=12-p .9.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于________.[答案] 0.3[解析] ∵ξ~N (2,σ2),∴P (ξ≥4)=1-P (ξ<4)=0.2.∴P (0<ξ<2)=12P (0<ξ<4)=12×[1-2P (ξ≥4)]=12×[1-2×0.2]=0.3.三、解答题10.某个工厂的工人月收入服从正态分布N (500,202),该工厂共有1200名工人,试估计月收入在440元以下和560元以上的工人大约有多少?[解析] 设该工厂工人的月收入为ξ,则ξ~N (500,202),所以μ=500,σ=20, 所以月收入在区间(500-3×20,500+3×20)内取值的概率是0.9974,该区间即(440,560).因此月收入在440元以下和560元以上的工人大约有1200×(1-0.9974)=1200×0.0026≈3(人).一、选择题1.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) [答案] C[解析] 由图象可知μ1<μ2,σ1<σ2,∴P (Y ≥μ2)=12<P (Y ≥μ1),∴A 错;P (X ≤σ2)> P (X ≤σ1),∴B 错;对任意实数t ,P (X ≥t )<P (Y ≥t ),∴D 错,P (X ≤t )≥P (Y ≤t ),∴C 正确,故选C . 2.随机变量ξ服从正态分布N (40,σ2),若P (ξ≤30)=0.2,则P (30<ξ<50)=( )A .0.2B .0.4C .0.6D .0.8[答案] C[解析] 根据题意,由随机变量ξ服从正态分布N (40,σ2),P (ξ≤30)=0.2, 则可知P (30<ξ<50)=1-P (ξ≤30)-P (ξ≥50)=1-0.2×2=0.6, 故选C .二、填空题3.某厂生产的零件尺寸服从正态分布N(25,0.032),为使该厂生产的产品有95%以上的合格率,则该厂生产的零件尺寸允许值范围为________.[答案](24.94,25.06)[解析]正态总体N(25,0.032)在区间(25-2×0.03,25+2×0.03)内取值的概率在95%以上,故该厂生产的零件尺寸允许值范围为(24.94,25.06).4.设某城市居民私家车平均每辆车每月汽油费用为随机变量ξ(单位为:元),经统计得ξ~N(520,14 400),从该城市私家车中随机选取容量为10 000的样本,其中每月汽油费用在(400,640)之间的私家车估计有________辆.(附:若ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,P(μ-3σ<ξ<μ+3σ)=0.9974)[答案]6826[解析]由已知得:μ=520,σ=120,∴P(400<ξ<640)=P(520-120<ξ<520+120)=0.6826,∴每月汽油费用在(400,640)之间的私家车估计有:0.6826×10000=6826.三、解答题5.一投资者在两个投资方案中选择一个,这两个投资方案的利润X(万元)分别服从正态分布N(8,32)和N(7,12),投资者要求“利润超过5万元”的概率尽量大,那么他应该选择哪一个方案?[解析]对于第一个方案有X~N(8,32),其中μ=8,σ=3,P(X>5)=1-P(5<X≤11)2+P(5<X≤11)=1+P(5<X≤11)2=1+0.68262;对于第二个方案有X~N(7,12),其中μ=7,σ=1,P(x>5)=1+P(7-2<X≤7+2)2=1+0.95442.显然第二个方案“利润超过5万元”的概率比较大,故他应该选择第二个方案.6.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).[解析](1)P(80≤X<85)=12-P(X≤75)=0.2,P(85≤X<95)=P(X≥85)-P(X≥95)=P(X<75)-P(X≥95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024;(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P(ξ=2)=3×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是E(ξ)=3×0.4=。
伯努利家族史
在科学史上,父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利(也译作贝努力、伯努利)家族最为突出。
伯努利家族3代人中产
生了8位科学家,出类拔萃的至少有3位;而在他们一代又一代的众多子孙中,至少有一半相继成为杰出人物。
伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。
最不可思议的是这个家族中有两代人,他们中的大多数数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。
老尼古拉·伯努利(Nicolaus Bernoulli,公元1623~1708年)生于巴塞尔,受过良好教育,曾在当地政府和司法部门任高级职务。
他有3个有成就的儿子。
其中长子雅各布(Jocob,公元1654~1705年)和第三个儿子约翰(Johann,公元1667~1748年)成为著名的数学家,第二个儿子小尼古拉(Nicolaus I,公元1662~1716年)在成为彼得堡科学院数学界的一员之前,是伯尔尼的第一个法律学教授
1。
选修2—3 第2章 概率§2.4 二项分布(理科) (第1课时) 总第34教案一、【教学目标】1、理解n 次独立重复试验的模型(n 重伯努利试验)及其意义。
2、理解二项分布,并能解决一些简单的实际问题。
二、【知识要点】1、解读n 次独立重复试验2、对公式k n k kn n p p C k P --=)1()(的理解要注意哪些问题?3、如何理解二项分布?三、【实例分析】例1、求随机抛掷100次均匀硬币,正好出现50次正面的概率。
变题:“随机抛掷100次均匀硬币正好出现50次反面”的概率是多少?例2、某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立),求:(1)至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3?例3、在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是32。
(1)求油罐被引爆的概率;(2)如果引爆油罐或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率。
例4、某射手每次射击击中目标的概率是0.8,现在连续射击4次,求击中目标的次数X 的概率分布列。
四、【课堂练习】1、某种灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡使用1000h 后,至多只坏一个的概率。
2、甲、乙、丙3人独立地破译一密码,每人译出此密码的概率均为0.25,假定随机变量X 表示译出此密码的人数。
(1)写出X 的分布列; (2)密码被译出的概率是多少?3、对患某种病的人,假定施行手术的生存率是70%,现有8个这种病人施行该种手术,设X 为8个病人中生存下来的人数。
(1)求P (X=7); (2)写出X 的概率分布。
课 后 作 业1、某批量较大的产品的次品率为10%,从中任意连续取出4件,则其中恰好含有3件次品的概率是 。
2、口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列:}{n a ⎩⎨⎧-=次摸取白球,第次摸取红球,第n n a n 11,如果n S 为数列}{n a 的前n 项和,那么37=S 的概率为 。
第二章 §4一、选择题1.设随机变量ξ服从二项分布B (6,12),则P (ξ=3)等于( )A.516 B.316 C.58 D.38[答案] A[解析] P (ξ=3)=C 36(12)3·(12)3=516. 2.一名学生通过英语听力测试的概率为13,她模拟测试3次,至少有1次通过测试的概率为( )A.49 B.2027 C.1927 D.827[答案] C[解析] 模拟测试3次相当于做了3次独立重复试验,“测试通过”即试验成功,则模拟测试3次通过测试的次数X ~B (3,13),故所求概率为1-P (X =0)=1-C 03(13)0(1-13)3=1927. 3.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( )A .(12)5B .C 25(12)5C .C 35(12)3D .C 25C 35(12)5 [答案] B[解析] 质点P 移动五次后位于点(2,3),即质点向上移动了2次,向右移动了3次,将质点移动5次视为做了5次独立重复试验,“向上移动”视为试验成功,设5次移动中向上移动的次数为X ,则X ~B (5,12),所以P (X =2)=C 25(12)2(12)3=C 25(12)5. 二、填空题4.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).[答案] 0.947 7[解析] 4人服用新药相当于做了4次独立重复试验,设服用新药的4个病人中被治愈的人数为X ,则X ~B (4,0.9),所求概率为P (X ≥3)=P (X =3)+P (X =4)=C 34×0.93×0.11+C 44×0.94×0.10=0.291 6+0.656 1=0.947 7.5.设随机变量ξ~B (2,p ),η~B (3,p ),若P (ξ≥1)=34,则P (η≥1)=________.[答案] 78[解析] 由P (ξ≥1)=1-p (ξ=0)=1-(1-p )2=34得p =12,则P (η≥1)=1-P (η=0)=1-(1-p )3=78.三、解答题6.某射手进行射击训练,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.该射手射击了5次,求:(1)其中只在第一,三,五次3次击中目标的概率; (2)其中恰有3次击中目标的概率;(3)其中恰有3次连续击中目标,而其他两次没有击中目标的概率.[分析] 本题要注意恰有k 次和指定的某k 次发生的差异,具体说(1)是相互独立事件概率模型,其公式为p k (1-p )n -k ;(2)是恰有3次发生,其公式为C k n p k (1-p )n -k;(3)也是相互独立事件概率模型,但要考虑多种情况.[解析] (1)该射手射击了5次,其中只在第一,三,五次3次击中目标,是在确定的情况下击中目标3次,也即在第二,四次没有击中目标,所以只有一种情况,又各次射击的结果互不影响,故所求概率为p =35×(1-35)×35×(1-35)×35=1083 125.(2)该射手射击了5次,其中恰有3次击中目标的概率情况不确定,根据排列组合知识,5次当中选3次,共有C 35种情况,又各次射击的结果互不影响,故所求概率为p =C 35×(35)3×(1-35)2=216625. (3)该射手射击了5次,其中恰有3次连续击中目标,而其他两次没有击中目标,应用排列组合知识,将3次连续击中目标看成一个整体,另外两次没有击中目标,产生3个空隙,所以共有C 13种情况,故所求概率为P =C 13×(35)3×(1-35)2=3243 125.一、选择题1.在4次独立重复试验中事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56 D .以上全不对[答案] A[解析] 设事件A 在1次试验中出现的概率为p .由二项分布的概率公式得1-C 04p 0(1-p )4=6581,所以(1-p )4=1681,解得p =13.2.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )A .0B .1C .2D .3[答案] C[解析] 依题意有C k 5×(12)k ×(12)5-k =C k +15×(12)k +1×(12)5-(k +1),所以C k 5=C k +15. 故有k +(k +1)=5.∴k =2.3.把10个骰子全部投出,设出现6点的骰子个数为X ,则P (X ≤2)等于( ) A .C 210(16)2×(56)8 B .C 110(16)×(59)9+(56)10 C .C 110(16)×(56)9+C 210(16)2×(56)8 D .以上均不对 [答案] D[解析] 由题意,X ~B (10,16),∴P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=(56)10+C 110×16×(56)9+C 210×(16)2×(56)8. ∴A ,B ,C 三选项均不对.4.如果X ~B (15,14),则使P (X =k )最大的k 值是( )A .3B .4C .4或5D .3或4[答案] D[解析] P (X =k )=C k 15(34)15-k (14)k,然后把选择项代入验证. 5.(2013·河南安阳中学高二期中)若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28C .0.88×0.22D .0.82×0.28[答案] A[解析] ∵X ~B (10,0.8),∴P (X =k )=C k 100.8k (1-0.8)10-k ,∴P (X =8)=C 8100.88·0.22,故选A.二、填空题6.设每门高射炮击中飞机的概率为0.6,今有一飞机来犯,则至少需要________门高射炮射击,才能以99%的概率击中它.[答案] 6[解析] 设需要n 门高射炮才可达到目的,用A 表示“命中飞机”这一事件,由题意得,没有命中飞机的概率为1-0.6=0.4,故由对立事件的概率分式得P (A )=1-0.4n .由题意得1-0.4n ≥0.99,∴n ≥5.02.故应取6.7.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率是________.[答案]1132[解析] 依题意得所求的概率为C 46(12)6+C 56(12)6+C 66·(12)6=1132. 三、解答题8.(2014·西安市质检)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2分钟.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列.[解析] (1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为P (A )=(1-13)×(1-13)×13=427.(2)由题意,可得ξ可以取的值为0,2,4,6,8(单位:分钟),事件“ξ=2k ”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4), ∴P (ξ=2k )=C k 4(13)k (23)4-k(k =0,1,2,3,4), ∴即ξ的分布列是9.(2014·则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.[解析] 设“两位专家都同意通过”为事件A ,“只有一位专家同意通过”为事件B ,“通过复审”为事件C .(1)设“某应聘人员被录用”为事件D ,则D =A +BC , ∵P (A )=12×12=14,P (B )=2×12×(1-12)=12,P (C )=310,∴P (D )=P (A +BC )=P (A )+P (B )P (C )=25.(2)根据题意,X =0,1,2,3,4,A i 表示“应聘的4人中恰有i 人被录用”(i =0,1,2,3,4), ∵P (A 0)=C 04×(35)4=81625, P (A 1)=C 14×25×(35)3=216625, P (A 2)=C 24×(25)2×(35)2=216625, P (A 3)=C 34×(25)3×35=96625, P (A 4)=C 44×(25)4×(35)0=16625. ∴X 的分布列为10.5局内谁先赢3局就算胜出,并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率; (2)求按比赛规则甲获胜的概率.[分析] 甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12.[解析] 记事件A 为“甲打完3局才能取胜”,记事件B 为“甲打完4局才能取胜”,记事件C 为“甲打完5局才能取胜”.(1)①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜. ∴甲打完3局取胜的概率为P (A )=C 33(12)3=18. ②甲打完4局取才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负,∴甲打完4局才能取胜的概率为P (B )=C 23×(12)2×12×12=316. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负,∴甲打完5局才能取胜的概率为P (C )=C 24×(12)2×(12)2×12=316. (2)设事件D 为“按比赛规则甲获胜”,则D =A ∪B ∪C .又∵事件A 、B 、C 彼此互斥,故P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=18+316+316=12. 因此按比赛规则甲获胜的概率为12.。
均值与方差及正态分布__________________________________________________________________________________ __________________________________________________________________________________ 1.理解离散型变量的数学期望与方差的概念. 2.熟练掌握离散型变量的数学期望与方差的公式. 3.熟练掌握离散型变量的数学期望与方差的性质. 4.能利用数学期望与方差解决简单的实际问题. 5.理解概率密度曲线和正态分布的概念. 1.离散型随机变量X 的数学期望一般地,若离散型随机变量X 的概率分布如下表所示,则称1122n n x p x p x p +++为离散型随机变量X 的数学期望,记为()E X ,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=则称2221122()()()n n x p x p x p μμμ-+-++-为离散型随机变量X 的方差,记为()V X ,即2;σi p ≥0,i =1,2,…,n ,121,n p p p +++=()E X μ=3.离散型随机变量X 的标准差随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=4.必备公式(1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=1122n n x p x p x p +++;V (X )=221122()()x p x p μμ-+-+2()n n x p μ+-;(2)二项分布的数学期望、方差的计算公式 当X ~B (n ,p )时,E (X )=np ;V (X )=np(1-p). 5.离散型随机变量方差的性质设ξ是离散型随机变量,则其方差具有如下性质: (1)V (k )=0(k 为常数);(2)2();V k k V ξξ= (3)();V k V ξξ+=(4)2()(,).V a b a V a b ξξ+=∈R6.概率密度曲线(1)若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.(2)正态密度曲线的函数表达式为22()2()e,,0,x P x x μσσμ--=∈>∈R R7.正态分布(1)若X 是一个随机变量,对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和X 轴上(a ,b ]上方所围成的图形的面积;我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为X ~N (2,μσ).(2)我们将正态分布N (0,1)称为标准正态分布,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.8.正态密度曲线图象的特征(1)当x <μ时,曲线上升;当x >μ时,曲线下降;当曲线向左右两边无限延伸以x 轴为渐近线. (2)正态曲线关于直线x =μ对称;(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡. (4)在正态曲线下方和x 轴上方范围内的区域面积为1. 类型一.离散型随机变量X 的数学期望例1:已知随机变量X 的概率分布表是:A.0B.-1C.13-D.12-[答案] C[解析] 由111()(1)01236E X =-⨯+⨯+⨯=1.3-练习1:某学校要从5名男生和2名女生中选出2人做上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E ξ______.(结果用最简分数表示)[答案]47[解析] ξ可取0,1,2,因此252710(0),(1)21C P P C ξξ=====11522710,21C C C =类型二.离散型随机变量的方差、标准差[解析] 因为E (X )=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,所以22()(0 2.5)0.1(1 2.5)0.15(2V X =-⨯+-⨯+-222.5)0.25(3 2.5)0.25⨯+-⨯+ 练习1:甲、乙两名射手在同一条件下进行射击,分布表如下: 射手甲:[解析] 1()100.290.680.29,E X =⨯+⨯+⨯=2222()(109)0.4(99)0.2(89)0.40.8V X =-⨯+-⨯+-⨯=,因为12()(),V X V X <所以射手甲的射击水平比较稳定.类型三.二项分布的数学期望与方差例3:已知随机变量ξ~B (n ,p ),且 2.4, 1.44,E V ξξ==则n ,p 的值为( ) A.8,0.3 B.6,0.4 C.2,0.2 D.5,0.6[答案] B[解析] 由np =2.4,np (1-p )=1.44,解得n =6,p =0.4.练习3:设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______.[解析]13,,7E nP P ξ===13721,(1)217n D nP P ξ∴=⨯==-=⨯118(1).77-=类型四.离散型随机变量方差的性质例4:一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分为100分,某生选对每道题的概率为0.8,则这名考生在这次考试中成绩的数学期望与标准差为( )A.80,8B.80,64C.70,4D.70,3 [答案] A[解析] 答对题数为,ξ成绩为4.ξ先分析ξξ⋅~B (25,0.8),所以E ξ=25×0.8=20,所以(4)480,E E V ξξξ===25×0.8×0.2=4,所以(4)V ξ=2464,V ξ=8.==练习4:已知ξ的分布列如下表,设23,ηξ=+则E η=()A.3B.4C.-1D.1 [答案]A[解析]11111012363Eξ=-⨯+⨯+⨯=-,17(23)232333E E Eηξξ=+=+=-⨯+=类型五.数学期望与方差的计算与应用例5:一个人每天开车上班,从他家到上班的地方有6个交通岗,假设他在各交通岗遇到红灯的事件互相独立,并且概率都是1.3假定他只在遇到红灯或到达上班地点时才停止前进.(1)设ξ为这个人的首次停止前经过的路口数.求ξ的分布表;(2)设η为这个人的途中遇到红灯的次数,求η的期望和方差;(3)求这个人首次停止前已经过两个交通岗的概率.[解析](1)ξ的取值为0,1,2,3,4,5,6,所以ξ的分布表如下:(2)由题意知:1~(6,),3Bη则162,(13E V npηη=⨯==114)6(1).333p-=⨯⨯-=(3)由(1)知4 (2).27 Pξ==练习5:有一名运动员投篮的命中率为0.6,现在他进行投篮训练,若没有投进则继续投篮,若投进则停止,但最多投篮5次,求他投篮次数的数学期望.[解析]若该运动员投篮1次,则P(ξ=1)=0.6;若投篮2次,则说明他第1次没有投进,而第2次投进,P(ξ=2)=0.4×0.6=0.24;若投篮3次,则说明他前2次没有投进,而第3次投进,P(ξ=3)=0.42×0.6;若投篮4次,则说明他前3次没有投进,而第4次投进,P(ξ=4)=0.43×0.6;若投篮5次,则说明他前4次没有投进,而第5次投进与否均可,所以概率为P(ξ=5)=0.44×1.所以ξ的概率分布为:所以,投篮次数的数学期望为Eξ=1×0.6+2×0.24+3×0.096+4×0.0384+5×0.0256=1.6496.类型六.正态密度曲线的特征例6:下面给出了关于正态曲线的四个叙述:①曲线在x轴上方且与x轴不相交;②当x>μ时,曲线下降;当x<μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x=μ对称,且当x=μ时,位于最高点.其中正确的是()A.1个B.2个C.3个D.4个[答案]C[解析] ①、②、④都正确,③不正确,应该是当μ一定时,σ越小,总体分布越集中,σ越大,总体分布越分散.练习6:若2(1)2(),x f x x R --=∈,则下列判断正确的是( )A .f (x )有最大值,也有最小值B .f (x )有最大值,无最小值C .f (x )无最大值,有最小值D .f (x )无最大值,也无最小值 [答案] B[解析] 这个函数就是正态分布N (1,1)的概率密度函数. 类型七.正态分布例7:已知正态总体的数据落在区间(-3,-1)内的概率和落在(3,5)内的概率相等,那么这个正态总体的数学期望为________.[答案] 1[解析] 区间(-3,-1)与(3,5)的长度相等,这说明正态曲线在两个区间上对称,易知两区间关于x =1对称,所以正态分布的数学期望是1.练习7:设随机变量ξ服从标准正态分布N (0,1),已知(1.96)0.025Φ-=,那么(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.975[答案] C[解析] 由( 1.96)1(1.96)0.025Φ-=-Φ=,得(1.96)0.975Φ=,(|| 1.96)(1.96)( 1.96)0.9750.025P ξ<=Φ-Φ-=-=0.951.若某篮球运动员投篮命中率P =0.6,则其两次投篮命中次数η的数学期望为( ) A .0.6B .1.2C .1.3D .0.8[答案] B2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==( )A .0 B.12C.13D.23[答案] C3.已知连续型随机变量ξ的概率密度函数f (x )=()()01,1(14),504,x x x <-⎧⎪⎪-≤≤⎨⎪⎪>⎩则P (ξ=3)的值为( )A.15B .0C .3D .不确定[答案] B4.如果随机变量ξ服从(,0)N μ,而且()P C ξ≤=()P C ξ>=P ,那么P 等于( )A.0B.0.5C.1D.不确定[答案]B5.若从1,2,4,6,9这5个数字之中任取2个,则这2个数之积的数学期望是()A.8B.17.3C.9D.9.5[答案]B6.两封信随机投入A,B,C三个空邮箱,则A邮箱的信件数ξ的教学期望Eξ=______.[答案]2 37.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.[答案](1)因为抽取比例为311,102,510555=⨯=⨯+由115=得,应在甲组抽取2人,在乙组抽取1人.(2)从甲组抽取的工人中恰有1名女工人的概率11462108.15C CPC⋅==(3)ξ的可能取值为0,1,2,3分布列如下表:数学期望282810123 1.6.757575Eξ=⨯+⨯+⨯=8.设篮球队A与B进行比赛,每场比赛均有一球队获胜,若一球队胜4场,则比赛结束,假定A,B两队在每场比赛中获胜的概率都是12,试求需要比赛场数ξ的分布列及数学期望.[答案]依题意知,比赛场数ξ的取值为4,5,6,7.从而随机变量ξ的分布列为:∴随机变量专的数学期望为125593 4567.88161616 Eξ=⨯+⨯+⨯+⨯=_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.如果两名士兵在一次射击比赛中,士兵甲得1分,2分,3分的概率分别为0.4,0.1,0.5;士兵乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名士兵得胜希望较大的是()A.甲B.乙C.甲与乙相同D.无法确定[答案]B2.同时抛掷2枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上的,ξ=0表示结果中没有正面向上的,则E ξ=( )A .0.6B .0.75C .0.85D .0.95[答案] B3.如果ξ是离散型随机变量,32,ηξ=+那么( ) A.32,9E E D D ηξηξ=+= B.3,32E E D D ηξηξ==+ C.32,94E E D E ηξηξ=+=+ D.34,32E E D D ηξηξ=+=+[答案] A4.某地有A ,B ,C ,D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的,对于C ,因为难以断定他是受A 还是受B 感染,于是假定他受A 和受B 感染的概率都是12,同样也假定D 受A ,B 和C 感染的概率都是13,在这种假定之下,B ,C ,D 中直接受A 感染的人数X 就是一个随机变量,X 的均值(即数学期望)=( )A.125B.116C.87D.23[答案] B5.设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [答案] 1821;76.在某次测量中,测量结果ξ服从正态分布N (1,2σ)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为______.[答案] 0.87. 随机变量X 的取值为0,1,2.若P (X =0)=15,E (X )=1,则D (X )=________.[答案]258. 某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C 课程且乙同学未选中C 课程的概率;(2)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望. [答案] (1)设事件A 为“甲同学选中C 课程”,事件B 为“乙同学选中C 课程”.则1223C 2()C 3P A ==,2435C 3()C 5P B ==.因为事件A 与B 相互独立,所以甲同学选中C 课程且乙同学未选中C 课程的概率为(2)设事件C 为“丙同学选中C 课程”.则2435C 3()C 5P C ==.X 的可能取值为:0,1,2,3.X 为分布列为:能力提升1.如果~(5,0.1)B ξ,那么P (ξ≤2)=( ) A .0.0729 B .0.00856C .0.91854D .0.99144[答案] D2.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400[答案] B3.1盒产品中有9件正品和3件废品,若每次取1件产品,取出后不再放回,则在取得正品前已取出的废品数ξ的数学期望E ξ=______.[答案] 0.34.某射击选手每次射击击中目标的概率为0.8,现在他连续向一个目标射击,直到第一次击中目标为止,则射击次数ξ这一随机变量的数学期望为______.[答案]545.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,若卡片上数字ξ是随机变量,则ξ的数学期望为______.[答案]12n + 6. 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.[答案] (1)1315(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=13×25=215,P (X =100)=13×35=315,P (X =120)=23×25=415,P (X =220)=23×35=615.故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×61521001401515===. 7. 某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.[答案] (1)107; (2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,∴1(3,)5X B ,于是00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()P X C ===,3303141(3)()()125P X C ===,故X 的分布列为 X 的数学期望为()355E X =⨯=.8. 某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. [答案] (1)设“选出的3名同学来自互不相同的学院”为事件A ,则120337373104960C C C C P AC .所以,选出的3名同学来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2, 3.346310k kC C P x kC 0,1,2,3k .所以,随机变量X 的分布列是随机变量X 的数学期望12362103050E X.。