人教版七年级上册数学正数与负数知识点与练习题
- 格式:doc
- 大小:47.00 KB
- 文档页数:6
人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)人教版七年级数学上册:第一章:有理数1.1、正数和负数【知识点总结】1、正数和负数的概念负数:比0小的数;正数:比0大的数;0既不是正数,也不是负数。
2、注意:①当字母x表示正数时,-x是负数;当字母x表示负数时,-x是正数;当字母x表示0时,-x是0。
②正数有时也可以在前面加“+”,有时“+”可以省略不写。
3、具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有与该正数相反意义的量。
4、0表示的意义(1)0表示“没有”;(2)0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。
【新课同步练习】1、下列各数中,是负数的是()。
A、0.8B、-5C、0D、32、在-3.1,+2,5.7,0,-9,13这几个数中,正数有()。
A、1个B、2个C、3个D、4个3、如果把向左走8米记为+8,则向右走6米可记为()。
A、+2B、-2C、+6D、-64、如果+250米表示一辆汽车向东行驶了250米,那么-380米表示这辆汽车()。
A、向西行驶了380米B、向南行驶了380米C、向北行驶了380米D、向上行驶了380米5、学校新买了4个新的排球,每个排球的标准质量是250克。
这4个新排球的质量(单位:克)纪录分别是:-0.7、+0.8、+1.2、-1,其中正数表示超过标准质量的克数,负数表示不足标准质量的克数。
仅从轻重的角度看,这4个新排球最接近标准的排球质量的是()。
A、-0.7B、+0.8C、+1.2D、-16、下列说法中,正确的是()。
A、-y一定是一个负数。
B、不大于0的数一定是负数。
C、一个数如果不是正数,则一定是负数。
D、负数比0小。
7、观察下列一组数:-2,4,-6,8,-10,12,…,则第50个数是()。
A、100B、-100C、102D、-1028、某种溶液的说明书上标明,这种溶液的保存温度为(18±2)℃,那么这种溶液可以在()保存。
初中数学组卷参考答案与试题解析一.选择题(共50小题)1.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2 B.3 C.4 D.5【分析】根据相反数的定义,有理数的乘方和绝对值的性质化简,然后根据正数和负数的定义判定即可.【解答】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.【点评】本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方和绝对值的性质.2.在﹣32,(﹣3)2,﹣(﹣3),﹣|﹣3|中,负数的个数是()A.l个B.2个 C.3个 D.4个【分析】先把各数化简,再根据负数的定义,即可解答.【解答】解:﹣32=﹣9,(﹣3)2=9,﹣(﹣3)=3,﹣|﹣3|=﹣3,﹣9,﹣3是负数,共2个.故选:B.【点评】本题考查了正数和负数,解决本题的关键是先把各数化简.3.如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6步记作+6,∴向南走8步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.5.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时【分析】由统计表得出:悉尼时间比北京时间早2小时,也就是6月16日1时.纽约比北京时间要晚13个小时,也就是6月15日10时.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.【点评】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再结合题意计算.6.大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1千克,故选:A.【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目中的实际意义.7.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故选:C.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.如果收入15元记作+15元,那么支出20元记作()元.A.+5 B.+20 C.﹣5 D.﹣20【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故选D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.9.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个 B.2个 C.3个 D.4个【分析】根据负数的定义逐一判断即可.【解答】解:在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有在﹣2、﹣3、﹣1共3共个.故选:C.【点评】本题考查了负数的定义:小于0的数是负数.10.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.11.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作()A.256 B.﹣957 C.﹣256 D.445【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:公元701年用+701年表示,则公年前用负数表示;则公年前256年表示为﹣256年.故选C.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.下列各数:(﹣3)2,0,﹣(﹣)2,,(﹣1)2009,﹣22,﹣(﹣8),﹣|﹣|中,负数有()A.2个 B.3个 C.4个 D.5个【分析】负数是小于零的数,由此进行判断即可.【解答】解:(﹣3)2=9,﹣(﹣)2=﹣,(﹣1)2009=﹣1,﹣22=﹣4,﹣(﹣8)=8,﹣|﹣|=﹣,则所给数据中负数有:﹣(﹣)2、(﹣1)2009、﹣22、﹣|﹣|,共4个.故选C.【点评】本题考查了正数和负数的知识,解答本题的关键是掌握负数的定义.13.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣1【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|2|=2,|﹣3|=3,|+4|=4,|﹣1|=1,∵1<2<3<4,∴从轻重的角度来看,最接近标准的是记录为﹣1.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.14.下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3| C.3﹣2D.(﹣3)2【分析】根据相反数、绝对值、乘方,进行化简,即可解答.【解答】解:A、﹣(﹣3)=3,故错误;B、﹣|﹣3|=﹣3,正确;C、,故错误;D、(﹣3)2=9,故错误;故选:B.【点评】本题考查了相反数、绝对值、乘方,解决本题的关键是熟记相反数、绝对值、乘方的法则.15.在下列选项中,具有相反意义的量是()A.收入20元与支出30元B.上升了6米和后退了7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:A、收入20元与支出30元是相反意义的量,故A正确;故选:A.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.16.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30千克B.25.51千克C.24.80千克D.24.70千克【分析】根据一种面粉的质量标识为“25±0.25千克”,可以求出合格面粉的质量的取值范围,从而可以解答本题.【解答】解:∵一种面粉的质量标识为“25±0.25千克”,∴合格面粉的质量的取值范围是:(25﹣0.25)千克~(25+0.25)千克,即合格面粉的质量的取值范围是:24.75千克~25.25千克,故选项A不合格,选项B不合格,选项C合格,选项D不合格.故选C.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.17.一袋大米的标准重量为10kg.把一袋重10.5kg的大米记为+0.5kg,则一袋重9.8kg的大米记为()A.﹣9.8kg B.+9.8kg C.﹣0.2kg D.0.2kg【分析】根据正、负数的意义列式计算即可得解.【解答】解:∵多于标准重量0.5kg的面粉记作+0.5kg,∴低于标准重量0.2kg的面粉记作﹣0.2kg.故选C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.18.如果+160元表示增加160元,那么﹣60元表示()A.增加100元B.增加60元C.减少60元D.减少220元【分析】利用相反意义量的定义判断即可.【解答】解:如果+160元表示增加160元,那么﹣60元表示减少60元,故选C【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.19.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入120元记作+120元,那么﹣100元表示()A.支出20元B.收入20元C.支出100元D.收入100元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:如果收入120元记作+120元,那么﹣100元表示支出100元,故选:C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24% B.﹣2.24% C.2.24 D.﹣2.24【分析】利用相反意义量的定义判断即可.【解答】解:2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作﹣2.24%,故选B【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.21.在下列数:﹣3,0,1,﹣中,属于负数的有()A.1个 B.2个 C.3个 D.4个【分析】根据小于0的数即为负数解答可得.【解答】解:在﹣3,0,1,﹣中,属于负数的有﹣3、﹣这2个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.22.我们规定一个物体向右运动为正,向左运动为负.如果该物体向左连续运动两次,每次运动3 米,那么下列算式中,可以表示这两次运动结果的是()A.(﹣3)2 B.(﹣3)﹣(﹣3)C.2×3 D.(﹣3)×2【分析】根据正数和负数表示相反意义的量,向右移动记为正,向左运动为负,该物体向左运动3 米得(﹣3)米,连续向左运动两次,就是再乘2,从而得出答案.【解答】解:∵向右运动为正,向左运动为负,该物体向左连续运动两次,每次运动3 米,∴这两次运动结果的是:(﹣3)×2;故选D.【点评】此题考查了正数和负数,相反意义的量用正数和负数表示,解决本题的关键是熟记正负数的意义.23.在﹣4、﹣2、0、1、3、4这六个数中,正数有()A.1个 B.2个 C.3个 D.4个【分析】根据正数的定义,可得答案.【解答】解:∵1>0,3>0,4>0,∴1,3,4是正数,故选:C.【点评】本题考查了正数和负数,利用整数的定义是解题关键.24.在﹣0.5,﹣,0,1这四个数中,负数有()个.A.1 B.2 C.3 D.4【分析】根据负数的意义,可得答案.【解答】解:∵﹣<0,﹣0.5<0,∴,﹣0.5是负数,故选:B.【点评】本题考查了正数和负数,利用负数的定义是解题关键.25.某品牌乒乓球的标准质量为2.7克,误差为±0.03克,若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差()A.0.03克B.0.06克C.2.73克D.2.67克【分析】根据题意可以求得两只乒乓球的质量最多相差多少,本题得以解决.【解答】解:∵某品牌乒乓球的标准质量为2.7克,误差为±0.03克,∴若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差:(2.7+0.03)﹣(2.7﹣0.03)=0.06(克),故选B.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.26.如果向东走3米记作+3 米,那么向西走2 米记作()A.米 B.米C.2 米D.﹣2 米【分析】根据负数的意义和应用,可得:如果向东走3 米记作+3 米,那么向西走2 米记作﹣2米.【解答】解:如果向东走3 米记作+3 米,那么向西走2 米记作﹣2米.故选:D.【点评】此题主要考查了用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.27.中国人很早开始使用负数,中国古代数学著作《九章算术》的”方程“一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么﹣600元表示()A.收入600元B.支出600元C.收入400元D.支出400元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:由题意得:如果收入1000元记作+1000元,那么﹣600元表示支出600元.故选:B.【点评】本题主要考查了正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.28.如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作()A.﹣2m B.﹣1m C.1m D.2m【分析】根据水位升高2m时水位变化记作+2m,从而可以表示出水位下降2m 时水位变化记作什么,本题得以解决.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降2m时水位变化记作﹣2m,故选A.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.29.中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果盈利100元记作+100,则﹣80元表示()A.亏损20元B.盈利20元C.亏损80元D.盈利80元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:如果盈利100元记作+100,则﹣80元表示亏损80元,故选:C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.30.体重增加了﹣2㎏,表示()A.体重增加了2㎏ B.体重减少了2㎏C.体重减少了﹣2㎏D.体重不变【分析】把标准体重记作0千克,增加记作“+”,下降记作“﹣”.【解答】解:体重增加了﹣2千克表示体重减少了2千克.故选:B.【点评】本题是考查正、负数的意义及其应用,属于基础知识.31.某储蓄所办理的5件业务是:取出865元,取出500元,存入1230元,取出300元,取出265元,这时存款总计增加了多少元()A.﹣700 B.﹣250 C.350 D.900【分析】根据正数和负数表示相反意义的量,存入记为正,可得取出的表示方法,根据有理数的加法,可得答案.【解答】解:取出865元,取出500元,存入1230元,取出300元,取出265元,分别记为﹣865元,﹣500元,1230元,﹣300元,﹣265元,﹣865+(﹣500)+1230+(﹣300)+(﹣265)=﹣700(元),故选:A.【点评】本题考查了正数和负数,利用了有理数的加法.32.飞机上升﹣1500米,实际上就是()A.上升1500米B.下降1500米C.下降﹣1500米D.无法确定【分析】根据正负数的意义,上升负数即为下降解答.【解答】解:飞机上升﹣1500米,实际上就是下降1500米.故选B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.33.若火箭发射点火前5s记作﹣5s,则火箭发射点火后10s应记作()A.﹣10s B.5s C.+5s D.+10s【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵火箭发射点火前5s记作﹣5s,∴火箭发射点火后10s应记作+10s.故选D.明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.34.已知四个数中:(﹣1)2013,|﹣2|,﹣(﹣1.5),﹣32,其中负数的个数有()A.1个 B.2个 C.3个 D.4个【分析】利用“负数的奇数次幂是负数”,“绝对值大于等于0”既可作答.注意最后﹣32=﹣9.【解答】解:(﹣1)2013=﹣1;|﹣2|=2;﹣(﹣1.5)=1.5;﹣32=﹣3【点评】此题主要考查基本的正负数运算,会判断正数和负数,属于基础题.35.某次数学测试的成绩,以70分为基准,老师公布成绩为:小丽+28分,小明0分,小亮﹣12分,则小亮的实际分数是()A.98分B.70分C.58分D.88分【分析】根据正数和负数的意义列式计算即可得解.【解答】解:小亮的实际分数是70﹣12=58.故选C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.36.有一种记分方法:以80为准,88分记为+8分,某同学得分为73分,则应记为()A.+73分B.﹣73分C.+7分D.﹣7分【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵以80分为基准,88分记为+8分,∴得73分记为﹣7分;故选D.明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.37.如果m是一个有理数,那么下面结论中正确的是()A.﹣m一定是负数 B.|m|一定是正数C.﹣|m|一定是负数D.|m|不是负数【分析】根据正数大于0,负数小于零,可得答案.【解答】解:A、﹣m是非正数,故A错误;B、|m|是非负数,故B错误;C、﹣|m|是非正数,故C错误;D、|m|是非负数,故D正确;故选:D.【点评】本题考查了正数和负数,利用了正数和负数的意义.38.如图所示,如果把张明前面第二个同学李利记作+2,那么﹣1表示张明周围的()同学.A.甲B.丙C.乙D.丁【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵李利在张明前第二个同学记作+2,∴张明后第一个同学记为﹣1,故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.39.在下列各数﹣(+3)、﹣22、、﹣、﹣(﹣1)2、﹣|﹣4|中,负数有()A.2个 B.3 个C.4个 D.5个【分析】根据相反数的定义,有理数的乘方,以及绝对值的性质分别化简,再根据正数和负数定义进行判断即可得解.【解答】解:﹣(+3)=﹣3是负数,﹣22=﹣4是负数,(﹣)2=,是正数,﹣=﹣,是负数,﹣(﹣1)2=﹣1,是负数,﹣|﹣4|=﹣4是负数,综上所述,负数有5个.故选D.【点评】本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方,绝对值的性质,要注意负数和分数的乘方加括号和不加括号的意义完全不同.40.在有理数﹣(﹣3),(﹣2)2,0,﹣32,﹣|3|,﹣中,负数的个数有()个.A.0 B.1 C.2 D.3【分析】此题只需根据负数的定义,即负数为小于0的有理数,再判定负数的个数.【解答】解:根据负数的定义,则﹣32,﹣|3|,﹣为负数,共3个.故选D.【点评】本题考查了负数的定义,比较简单,容易掌握.41.在海平面上15米记作15米,那么在海平面下5米可记作()A.5 B.﹣5 C.5米 D.﹣5米【分析】根据正数和负数表示相反意义的量,海平面上记为正,可得海平面下的表示方法.【解答】解:海平面上15米记作15米,那么在海平面下5米可记作﹣5米,故选:B.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.42.下列各数:﹣6,﹣3.4,+2.25,1,0,﹣3.14,2014,其中正数的个数有()A.2个 B.3个 C.4个 D.5个【分析】根据正数的定义选出即可.【解答】解:正数有+2.25,1,2014,共3个,故选B.【点评】本题考查了对正数和负数的应用,主要考查学生的理解能力.43.小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m):500,﹣400,﹣700,800,小明同学跑步的总路程为()A.800m B.200m C.2400m D.﹣200m【分析】求出运动情况中记录的各个数的绝对值的和即可.【解答】解:各个数的绝对值的和:500+400+700+800=2400(米).则小明同学跑步的总路程为2400米.故选:C.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.而求路程不考虑方向,是各数的绝对值的和.44.下列语句叙述不正确的是()A.若上升3米记作+3米,则不升不降记为0米B.水位的变化是﹣2米,表示的意义是水位下降了﹣2米C.温度上升﹣10℃是指下降10℃D.盈利﹣10元是指亏损10元【分析】根据各个选项中的语句可以判断正确与否,从而可以解答本题.【解答】解:若上升3米记作+3米,则不升不降记为0米,故选项A正确,水位的变化是﹣2米,表示的意义是水位下降了2米或上升了2米,故选项B错误,温度上升﹣10℃是指下降10℃,故选项C正确,盈利﹣10元是指亏损10元,故选项D正确,故选B.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际含义.45.如果规定向东行进为正,那么﹣50m表示的意义是()A.向东行进50m B.向南行进50m C.向西行进50m D.向北行进50m 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果规定向东行进为正,那么﹣50m表示的意义是向西行进50m.故选:C.【点评】此题考查了正数和负数,本题解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.46.下列各数中,﹣(﹣3),(﹣3)2,﹣|+5|,,﹣12,﹣(﹣1)2013,负数的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据负数是小于零的数,可得答案.【解答】解:﹣(﹣3)=3>0,(﹣3)2=9>0,﹣|+5|=﹣5<0,﹣=﹣<0,﹣(﹣1)2013=+1>0.故选:B.【点评】本题考查了正负数,小于零的数是负数,大于零的数是正数,0既不是正数也不是负数.47.在下列各数:﹣(+3)、﹣22、(﹣1)100、﹣(﹣1)、2007、﹣|﹣4|中,负数的个数是()A.2 B.3 C.4 D.5【分析】首先利用相反数的意义,绝对值的意义,乘方的计算方法化简,再进一步找出负数即可.【解答】解:﹣(+3)=﹣3,(﹣1)100=1,﹣(﹣1)=1,﹣|﹣4|=﹣4,所以负数有:﹣(+3)、﹣22、﹣|﹣4|共3个.故选:B.【点评】此题考查正负数的意义,求绝对值、相反数、乘方的方法,注意不要把带负号的都看做负数.48.排球比赛所使用的排球质量是有严格规定的.现检查4个排球的质量,超过规定质量的记做正数,不足规定质量的记做负数.1﹣4号排球检查结果如下+15,﹣10,+30,﹣20,那么哪一号排球的质量好些()A.1号 B.2号 C.3号 D.4号【分析】根据绝对值越小的说明误差越小,所以先求已知几个数的绝对值,选择绝对值最小的即可.【解答】解:∵|+30|>|﹣20|>|+15|>|﹣10|,又∵绝对值最小的数,越是离标准质量的克数最近的,∴第2个球质量好些;故选B.【点评】本题考查了绝对值,正数和负数的知识,解决此类问题的关键是找出绝对值最小的有理数,并理解绝对值的概念.49.在下列各组中,()是互为相反意义的量.A.上升的反义词是下降B.篮球比赛胜5场与负5场C.向东走3米,再向南走2米D.增产10吨粮食与减产吨粮食【分析】根据相反意义的量的定义对各选项分析判断利用排除法求解.【解答】解:A、上升的反义词是下降,但没有量,故本选项错误;B、篮球比赛胜5场与负5场是互为相反意义的量,故本选项正确;C、向东走3米,再向南走2米不是互为相反意义的量,故本选项错误;D、增产10吨粮食与减产吨粮食,减产没有量,故本选项错误.故选B.【点评】本题考查了正数和负数,主要是对相反意义的量的考查,是基础题.50.三和超市出售的三种品牌的月饼袋上,分别标有质量为(600±5)g,(600±l0)g,(600±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.40g B.30g C.20g D.10g【分析】根据题意计算出月饼质量最多的为600+20=620g,最少的为600﹣20=580g,求出之差即为它们的质量最多相差.【解答】解:根据题意得:月饼质量最多的为600+20=620g,最少的为600﹣20=580g,则从中任意拿两袋月饼,它们的质量最多相差620﹣580=40g.故选A.【点评】此题考查了正数与负数,弄清题意是解本题的关键.。
1.1正数和负数随堂练习一、选择题1.如果收入80元记作+80元,那么支出20元记作()A.+20元B.-20元C.+100元D.-100元2.一个物体做左右方向的运动,规定向右运动6m记做+6m,那么向左运动8m记做( )。
A.+8mB.-8mC.+14mD.-14m3.下列说法:①+2是正数,但2不是正数;②0既不是正数也不是负数;③0℃表示没有温度;④一个数不是正数就是负数;⑤如果a是正数,那么-a一定是负数,其中正确的有()A.1个B.2个C.3个D.4个4.四个数-3.14,0,1,2中为负数的是()A.-3.14 B.0 C.1 D.25. 如果收入100元记作+100元,那么支出100元记作()A.-100元B.+100元C.-200元D.+200元6.若某日最低气温为“-3 ℃”,则它的意义是 ( )。
A.零上3 ℃B.零下3 ℃C.比最低气温多3 ℃D.比最低气温少3 ℃7.在-3,-5,-1,0这四个数中,与其余三个数不同的是()A.-3 B.-5 C.-1 D.08. 某天的温度上升了-2℃的意义是( )A.上升了2℃ B.下降了-2℃C.下降了2℃ D.没有变化9.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“-32”写成“”,下列算筹表示负数的是()。
A. B. C. D.10. 纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时 +2 -13当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时二、填空题11. 用正数或负数表示下面的数量:(1)零下7 ℃:________;(2)海拔220 m:________;(3)如果向右走150 m记作+150 m,那么向左走280 m记作________.12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示。
2023-2024学年人教版七年级数学上册《第一章正数和负数》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1. 下面四个数中,负数是( )A. 0B. −12C. 1D. +72. 如果规定收入为正,支出为负,收入3元记作3元,那么支出8元记作( )A. 5元B. −11元C. 11元D. −8元3. 中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )A. 10℃B. 0℃C. −10℃D. −20℃4. 如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作( )A. −2mB. −1mC. 1mD. 2m5. 如果把一个物体向右移动1m时记作移动+1m,那么这个物体向左移动2m时记作移动( )A. −1mB. +2mC. −2mD. +3m6. 一种面粉的质量标识为“(25±0.25)千克”,则下列面粉中合格的是( )A. 24.70千克B. 24.80千克C. 25.30千克D. 25.51千克7. 有下列四组数: ①−3,2.3,−14; ②34,0,212; ③113,0.3,7; ④12,15,2.其中三个数都不是负数的是( )A. ① ②B. ② ④C. ③ ④D. ② ③ ④8. −a一定是( )A. 正数B. 负数C. 0D. 以上都不对9. 体育课上全班女生进行百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“−”表示成绩小于18秒,“0”表示刚好达标,这个小组女生的达标率是( )A. 25%B. 37.5%C. 50%D. 75%10. 北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A. 10:00B. 12:00C. 15:00D. 18:00二、填空题11. 如果盈利100元记作+100元,那么亏损50元记作元.12. 如果收入100元记作+100元,则−55元表示.13. 翠屏山高于海平面503米,记作+503米,吐鲁番盆地低于海平面155米,记作______ 米.14. 某种试剂的说明书上标明保存温度是(10±2)℃,请你写出一个适合该试剂保存的温度:______ ℃.15. 某仓库记账员为方便记账,将进货10件记作+10,那么出货5件应记作______ .16. 负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数”数量相等,意义相反”.若向东走200米记作+200米,则向西走80米记作米.17. 把下列各数填在相应的横线上.−18,227,3.1416,0,2001,−35,−0.142857,95%.正数:.负数:.18. A,B,C三位同学一次立定跳远的成绩分别是1.75米,2米,1.80米.若以C同学的成绩为基准,大于C同学的成绩记为正数,小于C同学的成绩记为负数,则A同学的成绩记为米,B同学的成绩记为米.19. 某同学计划在假期每天做6道数学题,超过的题数记为正数,不足的题数记为正数负数,十天中做题记录如下:3,5,4,2,-1,1,0,-3,8,7,那么他十天共做的数学题有______ 道.20. 观察这一列数:−34,57,−910,1713,−3316⋯则第6个数是.三、解答题21. 某股民A上星期五买进某公司股票1000股,每股27元,如表为本周内每日该股票的涨跌情况(单位:元),根据表格解答下列问题:星期一二三四五每股涨跌+4+4.5−1−2.5−6(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?22. 2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量与计划相比有出入,下表是二月份某一周的生产情况:(超产为正,减产为负,单位:个)星期一二三四五六日增减+100−200+400−100−100+350+150(1)这一周共生产多少个口罩?(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.15元,本周口罩加工厂应支付工人的工资总额是多少元?23. 某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,−8,+6,−13,+7,−12,+3,−1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站______ 次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?24. 在一次质量检测中,测得七袋牛奶的质量分别为498克、500克、503克、496克、497克、502克、504克.这七袋牛奶质量的平均值是500克,以平均值为标准,用正、负数分别表示出它们对应的数.25. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“−”,如表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量−3+4−5+14−8+7+12 (单位:单)(1)求该外卖小哥这一周平均每天送餐多少单?(2)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元.求该外卖小哥这一周工资收入多少元?参考答案1、B 2、D 3、C 4、A 5、C 6、B 7、D 8、D 9、D 10、C 11、−50 12、支出55元 13、−155 14、10(答案不唯一) 15、−5 16、−8017、227,3.1416,2001,95% −18,−35,−0.142857 18、−0.05 +0.20 19、78 20、651921、解:(1)最初的股票每股为27元,则:星期三收盘时每股价格为27+4+4.5−1=34.5元.(2)从图表可知本周内最高价应该在星期二,最低价格在星期五,分别算出这两天收盘时的价格就是本周内每股最高价和最低价.在星期二时每股价格为27+4+4.5=35.5元,即本周内最高价每股为35.5元.在星期五时每股价格为27+4+4.5−1−2.5−6=26元,即本周内最低价每股为26元.22、解:(1)5000×7+100−200+400−100−100+350+150=35600(个)答:这一周共生产35600个口罩 (2)400−(−200)=600(个)答:产量最多的一天比产量最少的一天多生产600个 (3)35600×0.15=5340(元)答:本周口罩加工厂应支付工人的工资总额是5340元.23、424、 以500克为标准,将多于500克的部分记为正,少于500克的部分记为负,则这七袋牛奶的质量分别表示为−2克、0克、+3克、−4克、−3克、+2克、+4克.25、解:(1)由题意,得:50+[(−3)+(+4)+(−5)+(+14)+(−8)+(+7)+(+12)]÷7 =50+3 =53(单)答:该外卖小哥这一周平均每天送餐53单 (2)由题意,得:(50×7−3−5−8)×2+(4+7+10×2)×4+(4+2)×6+60×7 =668+124+36+420=1248(元)答:该外卖小哥这一周工资收入1248元.。
第一章正数和负数1、正数和负数(附答案)建议用时:45分钟总分50分一选择题(每小题3分,共18分)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.2.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃3.如图所示的是图纸上一个零件的标注,Φ30±表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是()A.30mm B.30.03mm C.30.3mm D.30.04mm4.如图某用户微信支付情况,3月28日显示+150的意思()A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包5.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.6.下面对“0”的说法正确的个数是()①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定意义;④0是正数;⑤0是自然数.A.3 B.4 C.5 D.0二、填空题(每小题3分,共9分)7.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作:.8. 某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为__.9.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.三、解答题(共23分)10.(7分)有一个水库某天8:00的水位为﹣0.1m(以警戒线为基准,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,﹣0.8,0,﹣0.2,﹣0.3,0.1经过6次水位升降后,水库的水位超过警戒线了吗?11.(8分)某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6天,仓库里的货品是(填增多了还是减少了).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?12.(8分)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3 ﹣0.2 ﹣0.15 0 0.1 0.25 与标准质量的差值(单位:千克)箱数 1 4 2 3 2 8 (1)20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?正数和负数参考答案一选择题1.A2.A3.B4.B5.C6.B二、填空题(每小题3分,共9分)7.﹣3.8.-39.49.3kg.三、解答题(共23分)10.解:﹣0.1+0.5﹣0.8+0﹣0.2﹣0.3+0.1=﹣0.8.答:水库的水位没有超过警戒线.11.解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6天仓库里的货品减少了40吨,所以6天前仓库里有货品460+40=500吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6天要付860元装卸费.12.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25=0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8),=3×500.8,=1502.4(元).故出售这20箱冬桃可卖1502.4元.人教版七年级数学上册第一章第1节正数与负数(附答案)一、选择题1.气温上升,记作,那么下降记为A. B. C. D.2.飞机上升了米,实际上是A. 上升80米B. 下降米C. 先上升80米,再下降80米D. 下降80米3.2019年内,甲同学的体重增加了记为,乙同学的体重减少了,应记为A. B. 3 C. D.4.一个物体做左右方向的运动,规定向右运动6m记做,那么向左运动8m记做A. B. C. D.5.小红设计了一个游戏规则:先向南走5米,再向南走米,最后向北走5米,则结果是A. 向南走10米B. 向北走5米C. 回到原地D. 向北走10米6.下列不是具有相反意义的量是A. 前进5米和后退5米B. 收入30元和支出10元C. 向东走10米和向北走10米D. 超过5克和不足2克7.给出下列各数:,0,,,,,2004,其中是负数的有A. 2个B. 3个C. 4个D. 5个8.下列各组数中,具有相反意义的量是A. 节约汽油10公斤和浪费酒精10公斤B. 向东走5公里和向南走5公里C. 收入300元和支出500元.D. 身高180cm和身高90cm9.下列各数一定是负数的是.A. B. C. D.10.一袋大米的质量标识为“千克”,则下列大米中质量合格的是A. 千克B. 千克C. 千克D. 千克11.向东行进米表示的意义是A. 向东行进30米B. 向东行进米C. 向西行进30米D. 向西行进米12.如果将“收入50元”记作“元”,那么“支出20元”记作A. 元B. 元C. 元D. 元13.在0,,,5这四个数中,正数是A. 0B.C.D. 514.若存入2500元记做“”,则支出3000元记做A. B. C. D.15.某图纸上注明:一种零件的直径是,下列尺寸合格的是A. B. C. D.二、计算题16.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数:星期一二三四五六日增减辆生产量最多的一天比生产量最少的一天多生产多少辆?本周的总生产量和原计划相比___________填“增加”或“减少”了_____辆.17.有10筐西红柿,以每筐25千克为标准,超过千克数记为正数,不足的千克数记为负数,记录如表:01与标准质量的差值单位:千克筐数22312(1)这10筐西红柿一共重多少千克?(2)若西红柿每筐进价75元,每千克售价5元,则出售这10筐西红柿可获利多少元?三、解答题18.某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是一周的生产情况超过每天计划量记为正、不足每天计划量记为负.星期一二三四五六日与计划量的差值该厂星期四生产自行车________辆;产量最多的一天比产量最少的一天多生产自行车________辆;求该厂本周实际平均每天生产多少辆自行车?19.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况增产为正,减产为负,单位:个星期一二三四五六日增根据记录可知前三天共生产____个;产量最多的一天比产量最少的一天多生产____个;该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?答案1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C12.【答案】A13.【答案】D14.【答案】B15.【答案】D16.【答案】解:辆;答:生产量最多的一天比生产量最少的一天多生产17辆;减少;4.17.【答案】【1】解:因为,所以这10筐西红柿一共重千克.【2】解:因为,所以这10筐西红柿一共重千克.因此这10筐西红柿可获利元.18.【答案】解:辆,所以该厂星期四生产自行车213辆,故答案为:213;辆,所以产量最多的一天比产量最少的一天多生产自行车24辆,故答案为:24;19.【答案】解:;故答案为298;;故答案为23;这一周多生产的总辆数是:个;元;答:该厂工人这一周的工资是35390元.课题 1.1正数与负数(无答案)学生姓名班级日期一.选择题(共7小题)1.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个B.2个C.3个D.4个2.下列各组数中,负数的个数是()﹣2,33.2,0.75,﹣37.5%,,0,﹣0.6,﹣7.A.1个B.2个C.3个D.4个3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数4.下面四个选项中,不具有相反意义的量的是()A.借贷5万元与还贷6万元B.高出海平面8888米与低于海平面188米C.亏损2万元与盈利8万元D.增产10吨粮食与减产﹣10吨粮食5.“—a”表示()A.负数B.正数C.正数或负数D.以上都不对6.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415m B.﹣415m C.±415m D.﹣8848m7.下列说法中正确的有()①海拔﹣73米表示比海平面低73米;②温度0℃表示没有温度;③0是最小的自然数;④若向东走5米记作+5米,则0米表示原地不动.A.1个B.2个C.3个D.4个二.填空题(共7小题)8.如果向东走18米记为+18,那么向西走18米记为.9.若气温为零上10℃记作+10℃,则﹣3℃表示气温为.10.如果80m表示向东走80米,那么—60m表示_____________________11.如果水位升高3m时记作+3m,那么水位下降3m应记作____________人教版七年级上册数学课堂小测 1.1正数和负数(附解析)1.如果温度上升10C °记作10C +°,那么温度下降5C °记作( )A.10C +°B.10C -°C.5C +°D.5C -°2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在数12,0,π---,中,负数有( )A.1个B.2个C.3个D.4个3.向北走12-米的意义是( )A.向北走12米B.向南走12米C.向西走12米D.向东走12米4.在下列说法中,正确的是( )A. 带“-”号的数是负数B.0℃表示没有温度C.0前加“+”号为正数,0前加“-”号为负数D. -108是一个负数5.6,2005,,0,-3,+1, ,-6.8中,正整数和负分数共有…( ) A .3个 B .4个C .5个D .6个 6.如果向南走5米,记作+5米,那么向北走8米应记作___________.7.如果温度上升3℃记作+3℃,那么下降5℃记作____________.8.海拔高度是+1356m ,表示________,海拔高度是-254m ,表示______.9.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.10.把下列各数分别填在相应的大括号里:+9,-1,+3,,0, ,-15,,1.7.正数集合:{ …}, 负数集合:{ …}.11.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.12.如果把+210元表示收入210元,那么-60元表示______________.13.粮食产量增产11%,记作+11%,则减产6%应记作______________.14.如果把公元2008年记作+2008年,那么-20年表示______________.15.如果向西走12米记作+12米,则向东走-120米表示的意义是___.16.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________.17..举出一个数字“0”表示正负之间分界点的实际例子,如__________.18.在下列各对量中:①向东走3千米与向北走3千米;②购进200千克苹果与卖出180-千克苹果;③收入20元与支出30元;④上升3米与前进7米.具有相反意义的量的是 .19.下面的数中,哪些是正数?哪些是负数?18-,16,0,0.15,131,4,120%,0.8,4-+--答案以及解析1.答案:D解析:如果温度上升10C °记作10C +°,那么下降5C °记作5C -°;故选D .2.答案:C解析:在数1,2,0,π---中,负数有1,2,π---,共3个.故选C.3.答案:B解析:向北走12-米的意义是向南走12米,故选B.4.答案:D解析:不是带“-”号的数是负数,要看化简后的结果,故A 错误;0℃表示温度为0℃,不表示没有温度,故B 错误;0既不是正数, 也不是负数,故C 错误;-108是一个负数,正确,故选D.5.C6.-8米7.-5℃8.超出海平面1356m ,低于海平面254m 。
第一章 1.1 正数和负数同步练习正数和负数的定义同步练习(答题时间:20分钟)(附答案)1. 下列各数 -11 ,0.2,,,1, -1, -a, -30%中,_______一定是正数,_______一定是负数。
2. 下列说法正确的有_______①0是最小的自然数;②0是整数也是偶数;③0既非正数也非负数;④一个数不是正数就是负数;⑤负数也叫非正数。
3. 在-3,-1,0,-,2002各数中,是正数的有()A. 0个B. 1个C. 2个D. 3个4. 下列既不是正数又不是负数的是()A. -1B. +3C. 0.12D. 05. 下列结论中正确的是()A. 0既是正数,又是负数B. 0是最小的正数C. 0是最大的负数D. 0既不是正数,也不是负数6. 任意写出5个正数:________________;任意写出5个负数:_______________。
正数和负数的定义同步练习参考答案1. 0.2,,1; -11,,-1,-30%2. 解析:①②③正确④一个数不是正数就是负数;说法不全面,0既不是正数也不是负数。
⑤负数也叫非正数。
错误,非正数是小于等于0的数。
3. B 解析:在正数前面加上负号“-”的数叫做负数,0既不是正数也不是负数,只有2002为正数,所以选择B。
4. D 解析:0既不是正数也不是负数,所以选择D。
5. D 解析:A. 0既是正数,又是负数。
错误,0是正负数的分界线。
B. 0是最小的正数。
错误,0不是正数。
C. 0是最大的负数。
错误,0不是负数。
D. 0既不是正数,也不是负数。
正确,0是正负数的分界线。
6.正数:1,0.3,5%,1000,0.001负数:-5,-0.7,-0.06%,-2017,-1用正负数表示具有相反意义的量同步练习(答题时间:20分钟)1. 在-2、+、-3、2、0、4、5、-1中,负数有()A. 1个B. 2个C. 3个D. 4个2. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A. Φ45.02B. Φ44.9C. Φ44.98D. Φ45.01单位:mm45+0.03-0.04*3. 若萧萧比萌萌重3千克记为+3,反过来萌萌比萧萧重3千克记为()A. +3B. 0C. -3D. -64. 下列各数:6、-3、8、123、-12、0、-57、3、0.3中,是正数的有______个。
人教版数学七年级第一章第1节正数和负数一、选择题(共10题)1、纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间1月7日8时时,纽约的时间是()A.1月6日21时 B.1月7日21时 C.1月6日19时 D.1月6日20时2、化简的值为()A.0 B.25 C.50 D.803、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边200m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向西走了-60m,这时小明的位置().(A)文具店(B)玩具店(C)文具店西边40m (D)玩具店东边-60m4、冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作(▲)A.7℃ B.﹣7℃ C.2℃ D.﹣12℃5、在数0,2,-3,-1.2中,属于负整数的是( )A.0 B.2C.-3 D.-1.26、下列各数:0,+5,-3,+3.1,-24,2 018,-2π,其中负数有( )A.2个 B.3个C.4个 D.5个7、一天早晨的气温是﹣6℃,中午的气温比早晨上升了12℃,中午的气温是()A.12℃ B.﹣6℃ C.18℃ D.6℃8、一天早晨的气温是-7 ℃,中午的气温比早晨上升了11 ℃,中午的气温是()A.11 ℃B.4 ℃C.18 ℃D.-11 ℃9、下列说法:①一定是负数;②一定是正数;③倒数等于它本身的数是;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个 B.2个 C.3个 D.4个10、下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数C.若是正数,则不一定是负数D.零既不是正数也不是负数二、填空题(共5题)1、如果向北走20米记作+20米,那么向南走120米记为______米.2、如果-15米表示低于海平面15米,那么+120米的意义是______.3、向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少”换一种说法可以叙述为“体重增加_______”.4、比较大小:﹣﹣.5、下列数:-, 4.8 ,-, 10 , - 0.42 ,0 ,,- (-)中,.正分数: _______________________ ;三、解答题(共4题)1、快递配送员王叔叔一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(长度单位:千米): +3 ,﹣ 4 , +2 . +3 .﹣1 ,﹣ 1 ,﹣ 3( 1 )这天送完最后一个快递时,王叔叔在出发点的什么方向,距离是多少?( 2 )如果王叔叔送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油 0.2 升)?2、某病人每天下午需要测量一次血压,下表是该病人本周星期一至星期五收缩压的变化情况 . (“+”表示上升,“-”表示下降)( 1 )本周三与周一相比较收缩压 ________ 了;(填“上升”或“下降”)( 2 )通过计算说明本周五收缩压与上周日相比是上升了还是下降了,并求出上升或下降了多少;( 3 )如果该病人本周五的收缩压为 185 ,那么他上个周日的收缩压为多少?3、小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5 ,-3, +10 ,-8,-6, +12,-10问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?4、某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“一”表示出库)+23,﹣30,﹣16,+35,﹣33(1)经过这5天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品508吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?============参考答案============一、选择题1、 C【解析】纽约与北京的时差为-13小时,表示纽约的时间比北京时间晚13个小时,比得北京时间1月7日8时晚13个小时的时间为1月6日19时,从而得出答案.【详解】解:24﹣[8+(﹣13)]=19,故选:C.【点睛】考查有理数的意义,具有相反意义的量一个用正数表示,则与之相反的量就用负数表示,理解有理数的意义是解决问题的关键.2、 D【解析】故选D.3、 B【解析】试题分析:首先审清题意,明确“正”和“负”所表示的意义;向西走了-60米就是向东走了60米,再根据题意作答.解:向西走了-60米就是向东走了60米.所以,小明从书店向东走了40米,再向西走-60米,结果是小明的位置在书店东边100米,也就是玩具店的位置,故选B.考点:正数和负数的应用点评:解答本题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4、 B5、 C6、 B7、D.8、 B9、 A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①不一定是负数,故该说法错误;②一定是非负数,故该说法错误;③倒数等于它本身的数是,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.10、 D【分析】根据相反数的意义和零的性质逐一进行判断即可.【详解】如-2前加负号为-(-2)=2,为正数故A选项错误,如a=2,,则-a= -2,故C选项错误,零既不是正数也不是负数,说法正确,故B错误、D正确,故选D.【点睛】此题考查了相反数的意义及零的性质,熟练掌握是解题关键.二、填空题1、 -120【解析】根据正负数的意义即可求解.【详解】向北走20米记作+20米,那么向南走120米记为-120米故答案为:-120.【点睛】此题主要考查有理数,解题的关键是熟知正负数的意义.2、高出海平面120米【解析】试题分析:根据正数和负数的相对性可知负数表示低于海平面,则正数表示高出海平面,即可求得结果.解:如果-15米表示低于海平面15米,那么+120米的意义是高出海平面120米.考点:正数和负数的相对性点评:本题属于基础应用题,只需学生熟练掌握正数和负数的相对性,即可完成.3、 -1.5【解析】根据负数在生活中的应用来表示.【详解】减少1.5kg可以表示为增加﹣1.5kg,故答案为:﹣1.5.【点睛】本题考查负数在生活中的应用,关键在于理解题意.4、<【分析】应先算出两个负数的绝对值,比较两个绝对值,进而比较两个负数的大小即可.【解答】解:∵|﹣|=,|﹣|=,>,∴﹣<﹣.5、 4.8 ,- (- )三、解答题1、( 1 )在出发点的南方,距离出发点是 1km ;( 2 ) 3.6 升.【分析】( 1 )在计算最终位置的时候,既要考虑距离的变化,又要考虑方向的变化,所以包含表示方向的符号一起进行加减运算,即求: +3-4+2+3-1-1-3 的和.( 2 )考虑耗油时,只要考虑路程的总变化,不需要考虑方向的变化,所以将上述数值的绝对值相加,并包括回到出发点的距离求总路程,再计算耗油量.【详解】解:( 1 )由题意得:+3-4+2+3-1-1-3=-9+8=-1答:王叔叔送完最后一个快递时,在出发点的南方,距离出发点是 1km .( 2 )设王叔叔总的行驶路程为 S ,则 S=|+3|+|-4|+|+2|+|+3|+|-1|+|-1|+|-3|+|-1|=18 ∵每行驶 1 千米耗油 0.2 升,∴耗油量为18×0.2=3.6答:王叔叔这天送快递(含返回)共耗油 3.6 升.故答案为( 1 )在出发点的南方,距离出发点是 1km ;( 2 ) 3.6 升.【点睛】本题考查有理数中正负数表示的意义与绝对值的意义,理解符号在问题中表示的意义是解题的关键.2、( 1 )下降;( 2 )上升了,上升了 25 ;( 3 ) 160【分析】( 1 )把本周三与周一的收缩压作比较,即可解答;( 2 )把正负数相加,看最后得到的是正数和负数,即可解答;( 3 )利用有理数的减法,即可解答.【详解】解:( 1 )本周一的收缩压升高了 30 ,本周三的收缩压升高: 30-20+17=27 ;∵ 30 > 27 ,∴本周三与周一相比收缩压下降了,故答案为下降;( 2 )所以:本周五收缩压与上周日相比是上升了,上升了 25 ,答:上升了,上升了 25 ;( 3 ).答:他上个周日的收缩压为 160.故答案为( 1 )下降;( 2 )上升了,上升了 25 ;( 3 ) 160.【点睛】本题考查正负数、有理数加减的混合运算,难度不大,关键是理解图表信息.3、(1)小虫最后回到原点O;(2)小虫离开出发点O最远是10厘米;(3)小虫共可得到54粒芝麻.【解析】(1)把爬行记录相加,然后根据正负数的意义解答;(2)根据正负数的意义分别求出各记录时与出发点的距离,然后判断即可;(3)求出所有爬行记录的绝对值的和即可.【详解】(1)∵5-3+10-8-6+12-10=0∴小虫最后回到原点O(2)第一次5cm,第二次5+(-3)=2cm,第三次2+10=12cm,第四次12+(-8)=4cm,第五次4+(-6)=-2cm,第六次-2+12=10cm,第七次10+(-10)=0cm,因为12>10>4>2>0 所以小虫离开出发点O最远是10厘米(3)绝对值的和等于54厘米所以,小虫共可得到54粒芝麻.【点睛】本题考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4、(1)减少了;(2)5天前仓库里存有货品529吨;(3)这5天一共要付548元装卸费.【解析】(1)求出这5天的进出货的总和,根据总和的结果,判断货品的增多或减少.(2)根据现在的货品的吨数,逆推出5天前的货品的吨数.(3)计算进出货的绝对值的和,再乘以单价即可.【详解】(1)23﹣30﹣16+35﹣33=﹣21吨,答:仓库的货品减少了,故答案为:减少了;(2)508﹣(﹣21)=529吨,答:5天前仓库里存有货品529吨;(3)4×(|+23|+|﹣30|+|﹣16|+|+35|+|﹣33|)=4×137=548元,答:这5天一共要付548元装卸费.【点睛】本题考查了正数和负数在实际生活中的应用,掌握有理数的加法法则,正数和负数的意义是解题的关键.。
2011-2012学年七年级数学(人教版上)同步练习第一章第一节正数和负数一、教学内容:1、了解正数和负数是怎样产生的,什么是相反意义的量;2、知道什么是正数和负数;3、理解数0表示的量的意义;4、有理数的概念及分类.二. 知识要点:1、负数产生的原因:(1)生活和生产的需要,对实际生活中出现的相反意义的量,如卖出与买入、盈利与亏损、上升与下降、增加与减少、前进与后退等,无法用自然数表示,为了解决这些问题人们引进了负数;(2)数学本身的需要,如对较小的数减去较大的数的问题的解决,需要引进负数.2、像3,2,1.8%这样大于0的数叫做正数;3、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.4、数0既不是正数,也不是负数;5、正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.6、有理数也可以这样:有理数注:掌握分类的标准是关键,不同的标准就有不同的分法.三. 重点难点1、重点:①正数、负数、有理数的概念;②数0表示的量的意义;③有理数的分类.2、难点:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.【考点分析】数是数学知识的基础,也是其他学科的工具,在近年来各地的中考试题中经常出现.全国大多数省市中考试题对数的概念单独命题,试题难度为低、中档次,题量约占总量的1%,题型以填空题、选择题居多.【典型例题】例1 用正数和负数表示下列具有相反意义的量.(1)温度上升3℃和下降5℃;(2)盈利5万元和亏损8千元;(3)向东10米和向西6米;(4)运进50箱和运出100箱.分析:本题中的上升和下降,盈利和亏损,向东和向西,运进和运出都是相反意义的量,如果我们规定上升、盈利、向东、运进为正,那么下降、亏损、向西、运出就为负.解:(1)+3℃,-5℃(2)+5万元,-8千元(3)+10米,-6米(4)+50箱,-100箱评析:用正负数表示相反意义的量,并不是固定不变的.我们只是习惯把向东、上升、盈利、增加、收入规定为正,把其相反意义的量规定为负.通过本题同学们要体会数学符号与对应的思想,学会用正、负数表示具有相反意义的量的符号化方法.例2 下列各数哪些是正数,哪些是负数?分析:首先确定我们熟悉的大于0的数,即正数,然后再观察带有“-”号的数,看“-”号后的部分是否大于0,因为“正数的前面加上负号便是负数”.特别注意:0不是正数,也不是负数.解:正数有:负数有:评析:分类要做到“不重复,不遗漏”.例3 给出一对数+2和-3,请赋予它们实际的意义.分析:此题为开放题,考查相反意义的量在实际生活中的作用,解题的关键是给“+”和“-”赋予生活中一组相反的意义,例如:收入和支出,前进和后退等.解:+2表示收入2元,-3表示支出3元+2表示前进2米,-3表示后退3米等.评析:对于两种具有相反意义的量,究竟哪一种意义的量为正的,哪一种意义的量为负的,并不是固定的,而是在实际的生活和生产中人们根据实际情况的要求人为规定的.例4 (2007城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.8 13.1 -19.4其中气温最低的城市是()A、北京B、武汉C、广州D、哈尔滨分析:根据生活经验和正、负数的意义我们知道,表示零下的负数温度比正数温度低,负数温度中负号后面的数值越大温度越低.显然,气温最低的城市是哈尔滨.解:D评析:这四个城市平均气温从高到低的顺序是:广州→武汉→北京→哈尔滨,它们对应的温度顺序是:13.1℃>3.8℃>-4.6℃>-19.4℃.通过本题同学们要初步理解这种将实际问题转化为数学问题的方法.思考:从这四个有理数的大小关系中你可以得出哪些结论?例5 如图所示,某化肥厂生产的颗粒磷肥外包装袋上标有净重:50±0.5kg,请你说说这是什么意思?分析:本题考查正、负数表示量的实际意义,以标准重量为基准:+0.5kg表示多出0.5kg,-0.5kg 表示少0.5kg,这都属于正常范围,因为实际生活中不能做到绝对准确的50kg,只能尽量减小误差.解:50±0.5kg表示这袋化肥的净重可能比50kg多,但不会超过50+0.5=50.5kg,可能比50kg少,但不会少于50-0.5=49.5kg.评析:在生产中,产品可能与标准规格有差异,也就是会产生误差.但误差不能太大,产品可略有不足或略有超出,即误差应在一个允许的范围内.不足用负数表示,超出用正数表示,这个范围就可以用正负数表示出来了.例6 下列说法正确的是()A、整数、分数和负数统称为有理数B、有理数包括正数和负数C、正整数都是整数、整数都是正整数D、0是整数,也是自然数分析:A分类时有重复,应改为整数和分数统称有理数,B有遗漏,应改为有理数包括:正有理数、0、负有理数.在C中正整数和整数在有理数系中属不同的等级,不是两个相同的概念,应改为:正整数都是整数,但整数不是正整数.只有D是正确的.解:D评析:数的范围扩大到有理数后,注意数的分类方法,特别是0的归属.0既不是正数,也不是负数;整数包括正整数、0、负整数,所以0是整数,当然也是有理数.【方法总结】通过本节的学习我们要掌握整数、分数、正数、负数、有理数的区分方法,体会符号化在数学问题中的重大意义,理解把实际问题转化为数学问题来解决的转化思想.【模拟试题】(答题时间:50分钟)一、选择题1、有五个数为其中正数的个数是()A、1个B、2个C、3个D、4个2、2008年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是(城市温州上海北京哈尔滨广州平均气温60-9-1515A、广州B、哈尔滨C、北京D、上海3、正整数集合和负整数集合合在一起,构成数的集合是()A、整数集合B、有理数集合C、自然数集合D、非零整数集合4、规定正常水位为0m,高于正常水位0.5m时,记作+0.5米,下列说法错误的是()A、高于正常水位1.5m记作+1.5mB、低于正常水位1.5m记作-1.5mC、-1m表示比正常水位低1mD、+2m表示比正常水位低2m5、如果收入200元记作+200元,那么支出150元记作()A、+150元B、-150元C、+50元D、-50元6、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在()A、文具店B、玩具店C、文具店西边20mD、玩具店东边-60m7、下面是关于有理数的叙述:①有理数分为正有理数和负有理数两部分;②有理数分为整数和分数两部分;③有理数分为正数、负数和零三部分;④有理数分为正分数、负分数、正整数、负整数和零五部分;⑤有理数分为正整数、负整数和零三部分.其中正确的有()A、1个B、2个C、3个D、4个8、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A、11℃B、4℃C、18℃D、-11℃二、填空题9、如果把顺时针转60°记作+60°,那么逆时针转30°记作__________.10、在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________.11、孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰__________周年.(注:不存在公元0年)12、把下列各数分别填入相应的括号:(1)整数集:{…};(2)正整数集:{…};(3)负整数集:{…};(4)分数集:{…};(5)正分数集:{…};(6)负分数集:{…};(7)有理数集:{…};(8)正有理数集:{…};(9)负有理数集:{…};三、解答题13、工商部门抽查了一些500g包装的白糖,检查的记录如下:10,-15,13,-20,-18,15,-31,24,-25,-5,-14,-9.你估计这里的正、负数表示什么?从这些数据中,你能获得哪些信息?14、用正、负数表示下面各组具有相反意义的量,并指出它们的分界点.(1)零上10℃与零下5℃;(2)高出海平面100m与低于海平面200m;(3)收入8元,支出6元.15、观察下列各数,找出规律后填空:(1)-1,2,-4,8,-16,32,……,第10个数是__________.(2)1,-3,5,-7,…,第15个数是__________.(3)1,-4,7,-10,13,…,第100个数是__________.【试题答案】一、选择题1、B2、B3、D4、D5、B6、A7、B8、B二、填空题9、-30°10、零下5摄氏度11、255712、(1)整数集:{20,-3,0,-1,+5…};(2)正整数集:{20,+5…};(3)负整数集:{-3,-1…};(4)分数集:(5)正分数集:{4.5,3.14…};(6)负分数集:(7)有理数集:(8)正有理数集:{20,4.5,3.14,+5…};(9)负有理数集:三、解答题13、正数表示包装超过500g,负数表示包装少于500g.一共抽查了12包白糖,其中不足500g的有8包,超过500g的只有4包,不足秤的约占67%,且个别不足秤的达到31g,是严重的短斤少两现象.14、(1)+10℃,-5℃,它们的分界点是0℃(2)+100m,-200m,分界点是海平面,用0表示(3)+8元,-6元,它们的分界点是不收入也不支出,用0表示.15、(1)512(2)29(3)-298试题使用说明各位使用者:本试题均是经过精心收集整理,目标是为广大中小学教师或家长在教学或孩子教育上提供方便!附:如何养成良好的数学学习习惯“习惯是所有伟人的奴仆,也是所有失败者的帮凶.伟人之所以伟大,得益于习惯的鼎力相助,失败者之所以失败,习惯的罪责同样不可推卸.”由此可知,良好的数学学习习惯是提高数学成绩的制胜法宝.良好的数学学习习惯有哪些呢?初中数学应该从课堂学习、课外作业和测试检查等方面养成良好的学习习惯.一、课堂学习的习惯课堂学习是学习活动的主要阵地.课堂学习习惯主要表现为:会笔记、会比较、会质疑、会分析、会合作.1.会笔记上课做笔记并不是简单地将老师的板书进行抄写,而是将学到的知识点、一些类型题的解题一般规律和技巧、常见的错误等进行整理.做笔记实际是对数学内容的浓缩提炼.要经常翻阅笔记,加强理解,巩固记忆.另外,做笔记还能使你的注意力集中,学习效率更高.2.会比较在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分.如找出“同类项”和“同类二次根式”,“正比例函数”和“一次函数”,“轴对称图形”和“中心对称图形”,“平方根”和“立方根”,“半径”和“直径”,等概念的异同点,达到合理运用的目的.3.会质疑“学者要会疑”,要善于发现和寻找自己的思维误区,向老师或同学提问.积极提问是课堂学习中获得知识的重要途径,同时也要敢于向老师同学的观点、做法质疑,锻炼自己的批判性思维.学习中哪怕有一点点的问题,也要大胆提问,不能留下知识上的“死角”,否则问题就会积少成多,为后续学习设置障碍.4.会分析一是要认真审题:先弄清楚题目给出的条件和要解答的问题,把一些已知条件填在图形上,并将一些关键词做好标记,达到显露已知条件,同时又挖掘隐含条件的目的.如做几何体时,将已知的相等的角、线段、面积及已知的角、线段、位置关系等在图形中做好标记,避免忘记.再如做应用题时,象“不超过”“不足”等字眼,就暗示着存在不等量关系.只有弄清楚已知条件和所要解答的问题才能有目的、有方向地解题;二是要认真思索:依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“由因求果”,或从结论入手,根据问题的条件找到解决问题的方法,即“由果索因”,或将两种方法结合起来,需找解题方法.要注意“一题多解”、“一题多变”、“一图多用”、“一法多题”等,拓展思路,训练自己的求异思维.5.会合作英国著名剧作家萧伯纳曾经说过“你给我一个苹果,我给你一个苹果,我们每人只有一个苹果;你给我一个思想,我给你一个思想,我们每人就有两个思想了”,这足以说明合作、交流的学习方式的重要性.我们主要的学习方式是自主学习,在独立思考的基础上,要适时地和同桌交流意见.在小组学习期间,要积极发表自己的观点和见解,倾听他人的发言,并作出合理的评判,以锻炼自己的表达能力和鉴别能力.二、课外作业的习惯课外作业是数学学习活动的一个组成部分,它包括:复习、作业等.1.复习及时复习当天学过的数学知识,弄清新学的内容、重点内容及难于理解和掌握的内容.首先凭大脑的追忆,想不起来再阅读课本及笔记.在最短的时间内进行复习,对知识的理解和运用的效果才能最好,相隔时间长了去复习,其效果不明显,“学而时习之”就是这个道理.同时,要坚持每天、每周、每单元、每学期进行复习,使复习层层递进、环环紧扣,这样才能在正确理解知识的基础上,熟练地运用知识.2.作业会学习的同学都是当天作业当天完成,先复习,后做作业.一定要独立完成,决不能依赖别人.书写一定要整洁,逻辑一定要条理.对作业要自我检查,及时改正存在的错误,三、测试、检查的习惯1.认真总结测试、检查前,可以借助于笔记,把某一阶段的知识加以系统化、深化,弥补知识的缺陷,进一步掌握所学知识.2.认真反思测试、检查后,通过回顾反思,查清知识缺陷和薄弱环节,寻找失误的原因,改进学习方法,明确努力方向,使以后的测试、检查取得成功.良好的学习习惯是提高我们学习成绩的决定因素,但必须持之以恒.。
七年级上册数学暑假班学习资料(01)
学生姓名:_______ 成绩:_______
第一章:有理数(正数和负数)
一、知识点梳理
1.正数和负数的定义
(1)正数:大于0的数叫正数。
(2)负数:在正数前加上符号:“-”(负号)的数叫做负数,小于0的数叫负数.
注意:比0大的数是正数。
正数前面有“+”号,人们习惯将“+”号省略,在正数前面加“-”号,就是负数,负数前面必须有“-”号。
3)“0”既不是正数,也不是负数。
( 0是正数和负数的分界)
2. 正数负数是表示具有相反意义的量
扩充:(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,习惯上把升、上、零上为正,而相反为负;
(2)具有相反意义的量一定是具体的数量;
(3)具有相反意义的量中的两个量必须是同类量.不是同类量不具有对此性;(例如:上升和下降,零上和零下)
(4)具有相反意义的量是成对出现的,单独的个量不能成为具有相反意义的量;
考试点:用正数和负数表示具有相反意义的量时要明确“基准"。
为了计算方便,常把高于平均数,标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示。
二、强化训练
(一)选择题(3*11=33)
1.在0,-1,3,,中,负数的个数是( )
2.如果零上3℃记作+3℃,那么零下3℃记作( )
A.3 ℃℃
3. 下列关于“0”的叙述,不正确的是( )
是正数与负数的分界
比任何负数都大
只表示没有
常用来表示某种量的基准
4.如果“盈利5%”记作+5%,那么-3%表示()
A.亏损3%
B.少赚3%
C. 盈利7%
D.亏损5%
5.在下列各组量中,具有相反意义的是()A.收入20元与支出30元
B.上升了6米和后退了7米
C.卖出10斤米和盈利10元
D.向东行30米和向北行30米
6.在跳远测试中及格的标准是米,王菲跳了米,记作+米,何叶跳了米,记作()米.
A.+米 C.+
7、向东行进-30米表示的意义是()
A、向东行进30米
B、向东行进-30米
C、向西行进30米
D、向西行进-30米
8、先向东走3m,然后又向东走-3m,结果是()
A.向东走6m B. 向西走3m C. 向西走6m D. 回到原地
9、如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()
A. Φ
B. Φ
C. Φ
D. Φ
10、大米包装袋上(10±kg的标识表示此袋大米重()
A.下列语句中正确的有( )个.
①不带“一”号的数都是正数; ②如果a是正数,那么-a一定是负数; ③不存在既不是正数,也不是负数的数; ④0℃表示没有温度.
D. 3
(二)填空题(3*9=27)
1.在同一个问题中,分别用正数与负数表示的量具有的意义。
2.小明姐姐在银行工作,她把存入3万元记作+3万元,那么- 4万元表示为
3.如果高于海平面的高度记作正,低于海平面的高度记作负,那么海
平面以上988m记作-11022m的意义是
年元旦,已知A地的最高气温为-2℃,B地的最高气温为-3℃,则()地的最高气温高一些。
5.甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走32m,记为m这时甲乙两人相距m.
6. -12. ,,20%,3,-3,,0,,-π前面各数中是正数,
是负数。
(三)应用题(4*6=24 2*8=16)
1. 如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.(6分)
2. 2、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克) 2,3,-,-3,5,-8,,,8,-
这10名学生的总体重为多少平均体重为多少(6分)
3. 在一次数学测验中,七年级四班的平均分为86分,把高于平均分的部分记作正数.(6分)
(1)王洋得了90分,应记作多少
(2)张明得了86分,应记作多少
(3)李杰被记作-5分,他实际得多少分
4. 某中学对七年级男生进行引体向上的测试,以做7个为标准,超
(1)这8名男生有百分之几达到标准
(2)他们共做了多少个引体向上(6分)
5.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:(8分)
(1)该服装店在售完这30件连衣裙后,是多赚了还是少赚多赚或少赚了多少钱
(2)该服装店在售完这30件连衣裙后,平均每件连衣裙赚了多少钱(精确到)
6. 出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定:向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,
问:(1)将最后一位乘客送到目的地时,小李在什么位置
(2)若汽车耗油量为km(升/千米),这天上午小李接送乘客,出租车共耗油多少升
(3)若出租车起步价为8元,起步里程为(包括),超过部分(不足1千米按1千米计算)每千米元,问小李这天上午共得车费多少元(8分)。