第12章 量子物理基础(2)
- 格式:ppt
- 大小:2.84 MB
- 文档页数:42
2020高中物理竞赛江苏省苏州高级中学竞赛讲义第十二章量子物理第三次课:2学时1 题目:§12-5 波函数及统计解释§12-6 薛定谔方程2 目的:1.了解波函数及其统计解释。
2.了解薛定谔方程(选讲)。
一、引入课题:二、讲授新课:§12-5 波函数及统计解释历史上两种典型的看法,很容易把微观粒子看作是经典粒子和经典波的混合体。
“粒子是由波组成的”:把粒子看作是由很多波组成的波包,但波包在媒质中要扩散、消失(和粒子性矛盾)。
“波是由粒子组成的”:认为波是大量粒子组成的;但这和单个粒子就具有波动性相矛盾。
一、波函数和概率波统计性把波和粒两个截然不同的经典概念联系了起来1 概率波德布罗意提出的波的物理意义是什么?他并没有给出明确的回答,只是说它是虚拟的和非物质的。
对光辐射(电磁波),爱因斯坦1917年引入统计性概念;波动观点:光强∝ E 2粒子观点:光强∝某处光子数∝某处发现一个光子的概率∴ E 2 ∝ 某处发现一个光子的概率当前得到公认的关于德布罗意波的实质的解释是玻恩在1926年提出的概率波的概念。
玻恩发展了爱因斯坦的思想,保留了粒子的微粒性,认为物质波描述了粒子在各处被发现的概率。
德布罗意波是概率波。
2 波函数(wave function)为了定量地描述微观粒子的状态,量子力学中引入波函数,并用ψ ( r , t ) 或 ψ (x , y , z , t )表示。
薛定谔认为具有波粒二象性的微观粒子,也可以像机械波或电磁波那样用波函数来描述它的波动性。
我们从机械波的波函数出发,写出物质波的波函数。
平面机械波的波(方程)函数将其写成复数形式前式是后式的实数部分。
按照德布罗意的物质波假设,一个不受外力作用的自由粒子,它的能量和动量都不改变,与这样的粒子相关的德布罗意波就是一个单色平面波,则有将ν=E/h 和λ=h/P 代入上式则有称上式为德布罗意波的波函数,其中为波函数的振幅,又称概率幅。
量⼦物理基础习题解量⼦物理基础17.1 夜间地⾯降温主要是由于地⾯的热辐射。
如果晴天夜⾥地⾯温度为-5°C ,按⿊体辐射计算,每平⽅⽶地⾯失去热量的速率多⼤?解:每平⽅⽶地⾯失去热量的速率即地⾯的辐射出射度2484W /m2922681067.5=??==-TM σ17.2 在地球表⾯,太阳光的强度是1.0?103W/m 2。
地球轨道半径以1.5?108km 计,太阳半径以7.0?108 m 计,并视太阳为⿊体,试估算太阳表⾯的温度。
解:42244TR I R M SE σππ==K103.51067.5)107.6(100.1)105.1(348283211422==S E R I R T 17.3宇宙⼤爆炸遗留在宇宙空间的均匀背景辐射相当于3K ⿊体辐射.求:(1)此辐射的单⾊辐射强度在什么波长下有极⼤值?(2)地球表⾯接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表⾯积为 S = 4πR 2.根据公式:⿊体表⾯在单位时间,单位⾯积上辐射的能量为 M = σT 4,因此地球表⾯接收此辐射的功率是 P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.4 铝的逸出功是eV 2.4,今有波长nm 200=λ的光照射铝表⾯,求:(1)光电⼦的最⼤动能;(2)截⽌电压;(3)铝的红限波长。
解:(1) A chA h E k -=-=λνeV 0.22.4106.1102001031063.6199834=-=---(2)V 0.21/0.2/===e E U k c (3)Ahc c==0νλnm6.12.41031063.6719834=?==---17.5 康普顿散射中⼊射X 射线的波长是λ = 0.70×10-10m ,散射的X 射线与⼊射的X 射线垂直.求:(1)反冲电⼦的动能E K ;(2)散射X 射线的波长;(3)反冲电⼦的运动⽅向与⼊射X 射线间的夹⾓θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin2 2.42610sin24πλΛ-?==??= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电⼦的动能为`k hchcE λλ=810106.63103106.63103100.7100.7242610----=-= 9.52×10-17(J).(3)由于/`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹⾓为θ = 44°1`.17.6 求波长分别为71100.7-?=λm 的红光和波长1021025.0-?=λm 的X 射线光⼦的能量、动量和质量。
(不确定关系、薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子)一. 选择题 二.[ A ] 1.(基础训练8)设粒子运动的波函数图线分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?【提示】: 根据动量的不确定关系:2x x p ∆⋅∆≥,图(A)对应的粒子位置的不确定量大,则动量的不确定量小。
[ C ] 2.(基础训练10) 氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (2,2,1,21-). (B) (2,0,0,21).(C) (2,1,-1,21-). (D) (2,0,1,21).【提示】:2p 电子:n =2,l =1。
[ C ] 3.(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性.[ A ] 4.(自测提高5)已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ, ( - a ≤x ≤a )那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ). (B) 1/a . (C) a 2/1. (D) a /1【提示】:25/61()2x a x aψ==[ B ] 5.(自测提高7)一维无限深方势阱中,已知势阱宽度为a .应用测不准关系估计势阱中质量为m 的粒子的零点能量为 (A) )/(2ma . (B) )2/(22ma .(C) )2/(2ma . (D) )2/(2ma . [ ]x (A) x (B)x (C) x(D) 图 19-4【提示】:根据动量的不确定关系:x x p ∆⋅∆ ,以及2()2x p E m∆=,题中:x a ∆=。
量子物理基础
量子物理基础是一门研究微观领域中粒子行为的物理学科,探讨了
微观领域中粒子的粒子性和波动性。
量子物理的基础概念包括以下几个方面:
1. 波粒二象性:微观粒子既可以表现出粒子的特性,如位置和动量,又可以表现出波动的特性,如干涉和衍射。
根据德布罗意关系(波长
与动量的关系),粒子的动量与波长成反比。
2. 不确定性原理:由于测量的作用,我们无法同时准确地知道粒子
的位置和动量。
海森堡不确定性原理指出,测量过程会对粒子状态造
成干扰,从而导致测量的不确定性。
3. 波函数和概率解释:用波函数描述量子系统的状态。
波函数可以
通过薛定谔方程来求解,得到的解是描述系统可能态的概率分布。
根
据波函数的模平方,可以计算出在不同位置和动量上找到粒子的概率。
4. 量子叠加态和态叠加:在量子物理中,粒子的状态可以处于多个
可能的状态之间的叠加态。
比如,光子的偏振可以处于水平和垂直方
向的叠加态。
通过测量,粒子的态将塌缩到其中一个确定的状态上。
5. 量子纠缠和量子纠缠态:如果两个或更多的粒子在某种方式下相
关联,它们的状态将纠缠在一起,这被称为量子纠缠。
纠缠态是一个
多粒子系统的状态,它不能被分解为单个粒子的状态。
以上是量子物理基础的一些核心概念,它们为量子物理学的更深入的理论和实验研究奠定了基础。
(1)斯特藩—玻耳兹曼定律 黑体的总辐射本领M T 之间满足关系: 4
)(T T M B σ=。
8
2
4
5.67010W/(m K )-⨯⋅。
上逸出的光电子全部飞到了阳极A上。
单位光电子的最大初动能随入射光的频率的增大而增大。
(2)实验规律:
a. 在散射的X射线中,除有波长与入射射线相同的成分外,还有波长较长λ的成分。
由于反冲,光量子把部分能量传给电子,能量与动量都减小,散射X 射线频率变小而波长变长。
利用能量与动量守恒定律有 22
00h m c h mc νν+=+
(R νλ==2
(1R n ν-=2(2R ν-=
∴发射的光子频率h E E v n
k -=
22111ννR λc k n ⎛⎫===- ⎪⎝⎭ ()
1m - 波尔理论的局限性:
能解释氢原子和类氢原子的光谱、即单原子系统的原子光谱,不能解释稍复杂
≥。
2π
=,称为约化普朗克常数
说明:如果测量光子的方向动量的知识,使之产生一p ∆。
对坐标,动量不确定性x p ∆就越大。
≥ 或 2
∆t ,则测得光子能量的精度就不会好于∆E 。
不确定关系的物理根源是粒子的波动性,实物粒子的不确定关系与光子的相同。
222i t m x
ψ
∂=-∂∂。
谔方程:
§14.7 电子自旋原子的壳层结构。