第17章早期量子物理
- 格式:ppt
- 大小:10.77 MB
- 文档页数:51
习题十七17-1 计算电子经过V U 1001=和V U 100002=的电压加速后,它的德布罗意波长1λ和2λ分别是多少?分析 本题考察的是德布罗意物质波的波长与该运动粒子的运动速度之间的关系。
解:电子经电压U 加速后,其动能为eU E k =,因此电子的速度为:m2e v U = 根据德布罗意物质波关系式,电子波的波长为:)(23.12nm U emU h m h ==v =λ若V U 1001=,则12301.=λnm ;若V U 100002=,则012302.=λnm 。
17-2 子弹质量m =40 g, 速率m/s 100=v ,试问:(1) 与子弹相联系的物质波波长等于多少?(2) 为什么子弹的物质波性不能通过衍射效应显示出来?分析 本题考察德布罗意波长的计算。
解:(1)子弹的动量)s /m kg (410010403⋅=⨯⨯==-v m p与子弹相联系的德布罗意波长)m (1066.141063.63434--⨯=⨯==p h λ (2) 由于子弹的物质波波长的数量级为m 1034-, 比原子核的大小(约m 1014-)还小得多,因此不能通过衍射效应显示出来.17-3 电子和光子各具有波长0.2nm ,它们的动量和总能量各是多少?分析 本题考察的是德布罗意物质波的波长公式。
解:由于电子和光子具有相同的波长,所以它们的动量相同,即为: )/(1032.3102.01063.624934s m kg hp ⋅⨯=⨯⨯==---λ 电子的总能量为:)(1030.81420J hcc m E e -⨯=+=λ而光子的总能量为:)(1095.916J hcE -⨯==λ17-4 试求下列两种情况下,电子速度的不确定量:(1)电视显像管中电子的加速电压为9kV ,电子枪枪口直径取0.10mm ;(2)原子中的电子,原子的线度为1010-m 。
分析 本题考察的是海森堡不确定关系。
解:(1)由不确定关系可得: 2≥∆⋅∆x p x 依题意此时的mm x 10.01=∆,因此有:)/(6.021s m x m m p x =∆≥∆=∆ x v 电子经过9kV 电压加速后,速度约为s m /1067⨯。
第17章量子物理基础19世纪末、二十世纪初,为解决经典物理在解释一系列物理实验(如黑体辐射、光电效应、康普顿散射等)时所遇到的巨大困难,物理学家们创立了量子理论,它与相对论理论一起,是现代物理学的两大理论支柱。
本章介绍量子理论基础。
主要内容有:普朗克能量子假设;爱因斯坦光量子假设和光电效应方程;光子和自由电子互相作用的康普顿效应;德布罗意物质波假设;不确定关系;量子力学波函数;薛定谔方程以及薛定谔方程用于求解一维势阱和势垒问题;氢原子的玻尔理论、量子力学关于氢原子的主要结果和原子的壳层结构等。
17.1 黑体辐射普朗克量子假设17.1.1 热辐射黑体辐射定律当加热一块铁块时,温度在3000C以下,只感觉到它发热,看不见发光。
随着温度的升高,不仅物体辐射的能量越来越大,而且颜色开始呈暗红色,继而变成赤红、橙红、黄白色,达15000C,出现白光。
其它物体加热时发光的颜色也有类似随温度而改变的现象。
这说明在不同温度下物体能发出不同波长的电磁波。
实验表明,任何物体在任何温度下,都向外发射波长不同的电磁波,在不同的温度下发出的各种电磁波的能量按波长的分布不同。
这种能量按波长的分布随温度而不同的电磁辐射叫做热辐射。
实验表明:热辐射具有连续的辐射能谱,并且辐射能按波长的分布主要决定于物体的温度。
温度越高,光谱中与能量最大的辐射所对应的波长越短。
同时随着温度升高,辐射的总能量也增加。
为定量描述某物体在一定温度下发出的能量随波长的分布,引入“单色辐射本领”(也叫单色辐射度)的概念:温度为T时,辐射体表面上单位面积在单位时间内所辐射的波长在λ附近单位波长范围内电磁波能量。
通常用e(λ,T)表示,单位:瓦/米3(W/m3)。
任何物体在任何温度,不仅能辐射电磁波,还能吸收电磁波。
不同物体发射(或吸收)热辐射的本领往往是不同的。
理论和实验表明:热辐射吸收本领大的物体,发射热辐射的本领也大。
白色表面吸收热辐射的能力小,在同温度下它发出热辐射的本领也小;表面越黑, 吸收热辐射的能力就越大,在同温度下它发出热辐射的本领也越大。
第17章 量子物理基础17.1 根据玻尔理论,计算氢原子在n = 5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比.[解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为2π==n n hL mvr n ,对于第一激发态,n = 2,所以L 5/L 2 = 5/2.17.2设有原子核外的3p 态电子,试列出其可能性的四个量子数.[解答] 对于3p 态电子,主量子数为n = 3,角量子数为 l = 1,磁量子数为 m l = -l , -(l - 1), …, l -1, l ,自旋量子数为 m s = ±1/2.3p 态电子的四个可能的量子数(n ,l ,m l ,m s )为(3,1,1,1/2),(3,1,1,-1/2),(3,1,0,1/2),(3,1,0,-1/2),(3,1,-1,1/2),(3,1,-1,-1/2) .17.3 实验表明,黑体辐射实验曲线的峰值波长λm 和黑体温度的乘积为一常数,即λm T = b = 2.897×10-3m·K .实验测得太阳辐射波谱的峰值波长λm = 510nm ,设太阳可近似看作黑体,试估算太阳表面的温度.[解答]太阳表面的温度大约为392.8971051010λ--⨯==⨯m b T = 5680(K).17.4 实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度)与温度的4次方成正比,即M = σT 4,其中σ =5.67×10-8W·m -2·K -4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题).[解答]太阳单位表面积的辐射功率大约为M = 5.67×10-8×(5680)4 = 5.9×107(W·m -2).17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K 黑体辐射.求:(1)此辐射的单色辐射强度在什么波长下有极大值?(2)地球表面接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表面积为 S = 4πR 2.根据公式:黑体表面在单位时间,单位面积上辐射的能量为 M = σT 4,因此地球表面接收此辐射的功率是P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.6 铝表面电子的逸出功为6.72×10-19J,今有波长为λ = 2.0×10-7m 的光投射到铝表面上.试求:(1)由此产生的光电子的最大初动能;(2)遏止电势差;(3)铝的红限波长.[解答](1)光子的能量为E = hν = hc/λ,根据爱因斯坦光电效应方程hν = E k + A,产生的光电子的最大初动能为E k= hν - A= 6.63×10-34×3×108/2.0×10-7-6.72×10-19= 3.23×10-19(J).(2)遏止电势差的公式为eU s = E k,遏止电势差为U s = E k/e = 3.23×10-19/1.6×10-19=2.0(V).(3)铝的红限频率为ν0= A/h,红限波长为λ0= c/ν0= hc/A= 6.63×10-34×3×108/6.72×10-19= 2.96×10-7(m).17.7 康普顿散射中入射X射线的波长是λ = 0.70×10-10m,散射的X 射线与入射的X射线垂直.求:(1)反冲电子的动能E K ;(2)散射X 射线的波长;(3)反冲电子的运动方向与入射X 射线间的夹角θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin 2 2.42610sin 24ϕπλΛ-∆==⨯⨯= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电子的动能为`k hchcE λλ=-34834810106.6310310 6.63103100.7100.7242610----⨯⨯⨯⨯⨯⨯=-⨯⨯= 9.52×10-17(J).(3)由于 /`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹角为θ = 44°1`.17.8 求波长分别为λ1 = 7.0×10-7m 的红光;λ2 = 0.25×10-10m 的X 射线的能量、动量和质量.[解答]X 射线的能量为E = h ν = hc/λ,动量为 p = h/λ;由E = hc/λ = mc 2,得其质量为m = h/cλ.对于红光来说,能量为348176.6310310710E --⨯⨯⨯=⨯= 2.84×10-19(J),动量为34176.6310710p --⨯=⨯= 9.47×10-25(kg·m·s -1),质量为341876.6310310710m --⨯=⨯⨯⨯= 3.16×10-36(kg).对于X 射线来说,能量为3482106.63103100.2510E --⨯⨯⨯=⨯= 7.956×10-15(J),动量为342106.63100.2510p --⨯=⨯= 2.652×10-23(kg·m·s -1),质量为3428106.63103100.2510m --⨯=⨯⨯⨯= 8.84×10-32(kg).17.9 处于第四激发态上的大量氢原子,最多可发射几个线系,共几条谱线?那一条波长最长.[解答]第四激发态的氢原子处于第5个能级,最多可发射四个线系.(1)能级5到4,1条谱线;(2)能级5和4到3,2条谱线;(3)能级5、4和3到2,3条谱线;(3)能级5、4、3和2到1,4条谱线.共10条谱线.从能级5跃迁到4发射的光谱频率最小,波长最长.17.10 设氢原子中电子从n = 2的状态被电离出去,需要多少能量.[解答]氢原子能级公式为4222018n me E h n ε=-,当n =1时,基态能级的能量为412208me E h ε=-≈-2.18×10-18(J) = -13.6(eV),因此 12n E E n =.当电子从n 能级跃迁到m 能级时放出(正)或吸收(负)光子的能量为12211()n m E E E E n m ∆=-=-.电离时,m 趋于无穷大.当电子从n = 2的能级电离时要吸收能量 221113.6()2E ∆=--∞= -3.4(eV),因此需要3.4eV 的能量.17.11 质量为m 的卫星,在半径为r 的轨道上环绕地球运动,线速度为v .(1)假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立.证明地球卫星的轨道半径与量子数的平方成正比,即r = Kn 2,(式中K 是比例常数);(2)应用(1)的结果求卫星轨道和下一个“容许”轨道间的距离,由此进一步说明在宏观问题中轨道半径实验上可认为是连续变化的(利用以下数据作估算:普朗克常数h = 6.63×10-34J·s ,地球质量M = 6×1024kg ,地球半径R = 6.4×103km ,万有引力常数G =6.7×10-11N·m 2·kg -2.[解答](1)卫星绕地球运动的向心力是万有引力22Mm mv G r r =;根据玻尔理论,角动量为mvr = nh /2π.将前式乘以mr 3得2222()()4nh GMm r mvr π==,所以 222224h n r Kn GMm π==,即:卫星的轨道半径与量子数的平方成正比.(2)假设卫星质量m = 100kg ,比例系数为2224h K GMm π=342211242(6.6310)4 6.710610(100)π--⨯=⨯⨯⨯⨯⨯ = 2.77×10-87.可见:比例系数很小.当r = R 时,地球表面的量子数为460 4.810n ⨯.可见:地球表面处的量子数很大.地面以上的量子数设为n `,(n` = 1,2,3,…),则总量子数可表示为两个量子数之和:n =n 0 + n`.轨道间的距离为Δr = K [(n 0 + n` + 1)2 - (n 0 + n`)2]= K [2(n 0 + n`) + 1].由于n 0>>1,所以Δr = 2Kn 0 + 2Kn`.设n` = kn 0,即:取地面以上的量子数为地球表面量子数的倍数,有n = (k + 1)n 0,则r = Kn 02(k + 1)2,Δr = 2Kn 0(k + 1) = 2.66×10-40(k + 1).这说明:当地面以上的量子数按k + 1成倍地增加时,半径将按k + 1的平方的规律增加,而轨道之间的距离只按k + 1的一次方的规律增加;由于Δr 的系数很小,所以轨道间距是非常非常小的,因此可认为轨道半径是连续变化的.17.12 电子和光子各具有波长2.0×10-10m ,它们的动量和总能量各是多少?[解答]它们的动量都为34106.6310210h p λ--⨯==⨯= 3.315×10-24(kg·m·s -1).根据公式E 2 = p 2c 2 + m 02c 4,电子的总能量为E ==3×108×[(3.315×10-24)2+ (9.1×10-31×3×108)2]1/2=8.19×10-14(J).光子的静止质量为零,总能量为E = cp= 3×108×3.315×10-24 = 9.945×10-16(J).17.13 室温下的中子称为热中子T = 300K ,试计算热中子的平均德布罗意波长.[解答]中子热运动的平均速度为=v其中k为玻尔兹曼常数k= 1.38×10-23J·K-1,m p是电子的质量m p= 1.675×10-27kg,可得平均速度为v= 2.509×104(m·s-1),平均动量为=np m v= 4.2×10-27(kg·m·s-1).平均德布罗意波长为/λ=h p= 1.58×10-10(m) = 0.158(nm).17.14 一束动量是p的电子,通过缝宽为a的狭缝,在距离狭缝为R 处放置一屏,屏上电子衍射图样中央最大的宽度是多少?[解答]根据动量和位置的不确定关系Δp x·Δx≧h,其中位置不确定量为Δx = a,动量的不确定量为Δp x = p sinθ.设电子衍射图样的中央最大半宽度为w,则sinθ = w/R,可得wp a hR⋅≥,宽度为22hRwpa≥.[注意]如果将h改为ћ/2,则宽度为2w≧ћR/pa.两者相差很小.17.15 一宽度为a的一维无限深势阱,试用不确定关系估算阱中质量为m的粒子最低能量为多少?[解答]粒子坐标的不确定范围是Δx ≦a ,动量的不确定范围是Δp ≧h /Δx ≧h /a .这也就是动量p 的范围.因此能量为E = p 2/2m ≧ h 2/2ma 2,最低能量可估计为E min = h 2/2ma 2.17.16 设有一宽度为a 的一维无限深势阱,粒子处于第一激发态,求在x = 0至x = a /3之间找到粒子的几率?[解答]粒子在一维无限深势阱中的定态波函数为(0)(),(1,2,3,...)πψ≤≤==n x a n x x n a ,Ψ(x ) = 0,(x < 0,x > a ).当粒子处于第一激发态时,n = 2,在x = 0至x = a /3之间被发现的几率为/3220|()|d ψ⎰a x x /32022sin d π=⎰a x x a a23== 0.391.17.17 设粒子在宽度为a 的一维无限深势阱运动时,其德布罗意波在阱内形成驻波,试利用这一关系导出粒子在阱中的能量计算式.[解答]当粒子在势阱中形成稳定驻波时,势阱宽度必然为半波长的整数倍,即n (λ/2) = a ,(n = 1,2,3,…).根据德布罗意假设 λ = h/p ,可得粒子的动量为2λ==h nhp a 能量为 222228==p h E n m ma .17.18假定对某个粒子动量的测定可精确到千分之一,试确定这个粒子位置的最小不确定量.(1)该粒子质量为5×10-3kg ,以2m·s -1的速度运动;(2)该粒子是速度为1.8×108m·s -1的电子.[解答]粒子的动量为 p = mv ,动量的不确定量为 Δp = p /1000,根据动量和位置的不确定关系Δp ·Δx ≧ћ/2,位置的不确定量为 Δx = ћ/2Δp .(1)100024h x p mv π∆≥=∆h3431000 6.631045102-⨯⨯=π⨯⨯⨯= 5.276×10-30(m).(2)100024h x p mv π∆≥=∆h343181000 6.631049.110 1.810--⨯⨯=π⨯⨯⨯⨯= 3.22×10-10(m).17.19设有某线性谐振子处于第一激发态,其波函数为2221ψ-=a x .式中a =,k 为常数,则该谐振子在何处出现的概率最大?[解答]第一激发态的概率为22221||a xw e ψ-==,对x 求导得222222d (2)]d a x a x w xe x a x e t --=+-2222(1)a xx x a e -=-,令d w /d t = 0,得概率最大的位置为x = ±1/a .17.20一维运动的粒子,处于如下的波函数所描述的状态,(0);()0,(0).x Axe x x x λψ-⎧>=⎨<⎩式中λ > 0,A 为常数.(1)将此波函数归一化;(2)求粒子位置的概率分布函数;(3)粒子在在何处出现的概率最大?[解答](1)归一化得222201||d d x x A xe x λψ∞∞--∞==⎰⎰ 22201d 2x A x e λλ∞--=⎰2222001{2d }2x x A x e xe x λλλ∞∞---=-⎰222012()d 2xA x e λλ∞--=-⎰ 22220012(){d }2xx A xe e x λλλ∞∞---=--⎰22323012()24xA A e λλλ∞--==,所以A =2λ3/2 .归一化波函数为3/22,(0);()0,(0).x xe x x x λλψ-⎧>=⎨<⎩([注]利用Γ函数的性质可简化积分过程.10()d n x n x e x∞--Γ=⎰,当n 为整数时,Γ(n ) = (n - 1)!.设y = 2λx ,则d x = d y /2λ,可得22331001d ()d 2x y x ex y e y λλ∞∞---=⎰⎰ 3311()(3)2()22λλ=Γ=,可以得出同一结果.)(2)粒子坐标的几率分布函数为32224,(0);()|()|0,(0).x x e x w x x x λλψ-⎧>==⎨<⎩(3)利用上一题的方法求导可得几率最大的位置为x = 1/λ.17.21 设有某一维势场如下:0,(0);,(0,).≤≤⎧=⎨<>⎩x LVV x x L该势场可称为有限高势阱,设粒子能量E < V0,求E所满足的关系式.[解答]粒子运动的薛定谔方程为222()0mE Vψψ∇+-=h.在三个区域的方程为210122d2()0,(0);dmE V xxψψ+-=<h22222d20,(0);dmE x Lxψψ+=<<h230322d2()0,().dmE V x Lxψψ+-=>h设1k=h,2k=h,则得221112d0,(0);dk xxψψ-=<(1)222222d0,(0);dk x Lxψψ+=<<(2)223132d0,().dk x Lxψψ-=>(3)方程的通解为ψ1(x) = A1exp(k1x) + B1exp(-k1x),(x<0);(4)ψ2(x ) = A 2cos(k 2x ) + B 2sin(k 2x ),(0<x <L );(5)ψ3(x) = A 3exp(k 1x ) + B 3exp(-k 1x ),(x >L ).(6)当x →-∞时,ψ1有限,所以B 1 = 0;当x →∞时,ψ3有限,所以A 3 = 0.当x = 0时,ψ1(0) = ψ2(0),可得A 1 = A 2; (7)同时ψ1`(0) = ψ2`(0),可得k 1A 1 = k 2B 2. (8)当x = L 时,ψ2(L ) = ψ3(L ),ψ2`(L ) = ψ3`(L ),可得A 2cos k 2L +B 2sin k 2L = B 3exp(-k 1L );(9)-k 2A 2sin k 2L + k 2B 2cos k 2L = -k 1B 3exp(-k 1L )(10)将(9)乘以k 1加(10)得k 1A 2cos k 2L + k 1B 2sin k 2L-k 2A 2sin k 2L + k 2B 2cos k 2L = 0.即 (k 1A 2 + k 2B 2)cos k 2L = (k 2A 2 - k 1B 2)sin k 2L ,亦 122222212t a n k A k B k L k A k B +=-. (11)由(7)和(8)得k 1A 2 = k 2B 2,即 B 2 = k 1A 2/k 2, (12)(12)代入(11)式得12222212tan kk k L k k =-,即0t a n =h (13)这就是总能量满足的关系式.17.22 原子内电子的量子态由n 、l 、m l 、m s 四个量子数表征,当n 、l 、m l 一定时,不同的量子态数目为多少?当n 、l 一定时,不同量子态数目为多少?当n 一定时,不同量子态数目为多少?[解答]当n 、l 、m l 一定时,m s 只取两个值,所以量子态数目为2. 当n 、l 一定时,m l 有(2l + 1)种不同取值,所以量子态数目为2(2l + 1).当n 一定时,l 从0到(n - 1)共有n 种不同取值,量子态数目为1110002(21)421n n n l l l l l ---===+=+∑∑∑2(1)4222n n n n -=⨯+=.。
第一节能量量子化光的粒子考点1 黑体和黑体辐射1.热辐射现象(1)定义:任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
(2)热辐射:①我们周围的一切物体都在辐射电磁波,这种辐射与物体温度有关,所以叫热辐射②这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
(3)热辐射的特性①.物体在任何温度下都会辐射能量。
②.物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
③辐射强度按照波长的分布情况随物体的温度变化而有所不同:a当物体温度较低时(如室温),热辐射的主要成分是波长较长的电磁波(在红外线区域),不能引起人的视觉b当温度升高时,热辐射中较短波长的成分越来越强,可见光所占份额增大,如燃烧饿炭块会发出醒目的红光④辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
⑤实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体(1)定义:如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体(2)理解:能全部吸收各种频率的电磁辐射,是理想模型,绝对黑体实际是不存在的。
(3)模型:不透明的材料制成带小孔的空腔,可近似看成黑体(4)物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领(5)黑体是指在任何温度下,全部吸收任何波长的辐射的物体3.黑体辐射黑体辐射的特点:①一般物体辐射的电磁波的情况除了与温度有关之吻,还与材料的种类以及表面的情况有关②黑体辐射电磁波的强度按波长的分布只与温度有关4.黑体辐射的实验规律(1)温度一定时,黑体辐射强度随波长的分布有一个极大值(2)随着温度的升高,一方面,各种波长的黑体辐射强度都有增加;另一方面,辐射强度的极大值向波长较短方向移动。
(3)19世纪末,物理学家从实验和理论两方面严重各种温度下的黑体辐射,测量了他们的黑体辐射强度按波长分布如图所示5.黑体辐射的实验规律的理论解释(1)黑体中存在大量不停运动的带电微粒,带电微粒的振动产生变化的电磁场,向外辐射电磁波(2)维恩公式解释:1896年,德国物理学家维恩从热力学理论出发得到一个公式,但是它只在短波区与实验非常接近,在长波区则与实验偏离很大(3)瑞利公式解释:1900年,英国物理学家瑞利从经典电磁波理论出发推导出一个公式,其预测结果如图所示,在长波区与实验基本一致,但是在短波区与实验严重不符,不符合,而且当波长趋于0时,辐射强度竟变成无穷大,这种情况当时称为“紫外灾难”考点2 普朗克能量量子化假说1.量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。