四年级奥数 第7讲 最有问题
- 格式:docx
- 大小:81.73 KB
- 文档页数:7
四年级秋季尖子班第七讲年龄问题(一)年龄问题,就是知道两人的年龄关系,求两人的年龄,或知道两人的年龄,求两人年龄之间的关系。
年龄问题有自己独特的解题思路和方法,同学们在思考和解答这类题目时可以从以下几个方面去考虑:1.两人的岁数无论怎样变化,其年龄差始终不变(定差)。
2.定差的两量,随着年份的变化,倍数关系也发生变化。
3.解题时,依据年龄之间的倍数关系,参照年龄差(和),画出线段图,可以更好地帮助我们理解题中的数量关系。
典例精讲例1 奶奶今年57岁,孙子今年5岁,再过多少年,奶奶的年龄是孙子的5倍?【思路点拨】不管是今年还是几年后,奶奶的年龄始终比孙子大57-5=52(岁)。
几年后奶奶的年龄是孙子的5倍,也就是奶奶的年龄比孙子5倍,如下图:【详细解答】例2 父亲今年比儿子大32岁,2年后父亲的年龄是儿子的5倍。
今年儿子多少岁?【思路点拨】画图分析:2年后,父子之间的年龄差没有变化。
如果将2年后儿子的年龄看作1份的量,则父亲的年龄比儿子多(5-1)份的量,是32岁,由此可求出2年后儿子的年龄,进而求出今年儿子的年龄。
【详细解答】例3 王亮5年前的年龄等于小丽7年后的年龄,王亮4年后与小丽3年前的年龄和是45岁。
问:王亮、小丽两人今年各多少岁?【思路点拨】根据题意可知,王亮比小丽大5+7=12(岁),今年他们两人的年龄和是45+3-4=44(岁)。
由和差问题的解法,可求出王亮今年的年龄,再求小丽今年的年龄。
【详细解答】达标练习1.今年叔叔40岁,丽丽12岁,再过多少年,叔叔的年龄是丽丽的3倍?2.兰兰今年10岁,奶奶比兰兰大60岁,再过多少年,奶奶的年龄是兰兰的5倍?3.今年强强12岁,叔叔的年龄是强强的3倍,再过多少年,叔叔的年龄是强强的2倍?4.母亲今年比儿子大28岁,4年后母亲的年龄是儿子的5倍。
今年儿子多少岁?5.今年妈妈比儿子大30岁,3年后妈妈的年龄是儿子的3倍。
今年妈妈多少岁?6.强强今年10岁,2年后爷爷的年龄是强强的6倍。
题目:东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从西到东地,1.5小时后,乙车从东地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?1、相遇问题的特点和关键词是什么呢?2、解决二次或多次相遇问题重点是什么?3、简单的相遇问题解题时的入手点及需要注意的地方在哪?一、同步知识梳理1、列车过桥问题研究的还是速度、路程和时间的关系,但有一点先要搞清楚,列车从车头上桥,到车尾离开,所走过的路程是什么?2、人过桥,由于不考虑人的宽度,从人上桥到下桥,所行路程就是桥的长度,是普通的行程问题,但火车过桥就不一样,火车有长度,从火车头接触桥头开始,到火车尾正好离开桥尾为止,火车所走过的路程是:桥长+车长。
3、相关公式:过桥的路程=桥长+车长车速=(桥长+车长)÷过桥时间通过桥的时间=(桥长+车长)÷车速桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长二、同步题型分析题型1、求时间例:一列火车长180米,每秒行20米,这列火车通过320米长的大桥需要多长时间?分析:根据路程÷速度=时间,可以求出列车通过桥梁时用的时间。
列车完全通过桥梁一共走的路程是桥长+车长:180+320=500(米),列车通过这座桥梁要500÷20=25(秒)。
题型2、求速度例1:一列长300米的列车,完全通过一座长450米的桥梁,一共用了2分钟。
这列火车过桥时每分钟行多少米?分析:列车完全通过一座桥梁,行的路程是桥长+车长。
火车完全通过桥梁一共走的路程是300+450=750(米),这列火车过桥时每分钟行750÷2=375(米)。
例2:一列火车通过一座长500米的桥梁用了40秒,用同样的速度通过另一座600米的桥梁用了45秒。
这列火车过桥时每秒钟行多少米?列车通过第一座桥梁:行的路程是500米+车长 40秒列车通过第二座桥梁:行的路程是600米+车长 45秒这列火车(45-40)秒钟行的路程是(600-500)米。
第七讲应用问题综合强化编写说明本讲将要分成:和差倍分问题、年龄问题和盈亏问题三个方面进行讲解.这三个方面按照小学奥数的一般进度,都在四年级上半期的前半期进行系统学习,我们在此讲解的目的主要是帮助孩子“温故”,防止他们遗忘,同时帮助之前没有学习过奥数的同学把这部分知识补习上!教师根据本班孩子学习接受的情况,进行适当的基础知识讲解.内容概述从三年级到最后的小升初、分班考试中,很多学生都会问学了那么多专题(行程问题、年龄问题,植树问题,鸡兔同笼,盈亏问题,牛吃草问题等等),到底应该怎么去记忆和具体解答呢,这也是许多听课的家长所迷惑的问题.其实这所有的专题都不是平行的,也就是划分标准不同,一般是按照三类来划分:第一:按照题目内容,行程问题、年龄问题、时钟问题等;第二:按照题目本质,和差倍分问题、盈亏问题、鸡兔同笼等,涉及的是思想,可以变成第一类的任何一种问题;第三:按照解题思想,从反面考虑问题、还原问题等.本讲是对原来学过和差倍分、年龄、盈亏问题进行总结强化,同时帮助你不断回顾已有知识,更加深刻体会做题的思路方法!和差倍分问题【例1】有5堆苹果.较小的3堆平均有18个苹果.较大的2堆,苹果数之差为5个.又较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个.最大堆与最小堆平均有22个苹果.问:每堆各有多少个苹果?分析:最大堆与最小堆共22×2=44个苹果.较大的2堆与较小的2堆共44×2+7-5=90个苹果.所以中间的一堆有:(18×3+26×3—90)÷2=21个苹果;较大的2堆有:26×3—21=57个苹果;最大的一堆有:(57十5)÷2=31个苹果;次大的2堆有:57—31=26个苹果;较小的2堆有:18×3—21=33个苹果;次小的一堆有:(33+7)÷2=20个苹果;最小的一堆有:20—7=13个苹果.【前铺】小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?分析:如果小玲吃掉3块,那么小红与小玲的糖就一样多,说明小玲比小红多3块;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍,即小明加2是小红减2后的2倍,说明小明是小红的2倍少6(2×2+2).小红的颗数=(73-3+6)÷(1+1+2)=19块.【例2】某项竞赛分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍. 如果评出一、二、三等奖各2人,那么每个一等奖的奖金是308元.如果评出1个一等奖,2个二等奖,3个三等奖,那么一等奖的奖金是多少元?分析:我们把每个三等奖奖金看作1份,那么每个二等奖奖金是2份,每个一等奖奖金则是4份.当一、二、三等奖各评2人时,2个一等奖的奖金是(308×2)元,2个二等奖的奖金等于1个一等奖的奖金308元,2个三等奖的奖金等于1个二等奖奖金(308÷2)元.所以奖金总数是:(308×2+308+308÷2)元.当评1个一等奖,2个二等奖,3个三等奖时,1个一等奖奖金看做4份,2个二等奖奖金2×2=4(份),3个三等奖奖金的份数是1×3=3(份),总份数就是:4+4+3=1l(份).这样,可以求出1份数为98元,一等奖的奖金:98×4=392(元).【例3】有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔支数的2倍,钢笔支数是铅笔支数的13,只有一只盒里放的是水彩笔.这盒水彩笔共有多少支?分析:铅笔数是钢笔的3倍,圆珠笔数是钢笔的2倍,因此这三种笔支数的和是钢笔数的6(=l+3+2)倍.17+23+33+36+38+42+49+5l 除以6余l,所以水彩笔的支数除以6余l,在上述8盒的支数中,只有49除以6余1,因此水彩笔共有49支.【前铺】盒中有黄、红、蓝三种颜色的棋子共66粒,其中黄色棋子数是红色棋子数的4倍,蓝色棋子数的2倍等于黄色棋子数的3倍.这个盒中三种颜色的棋子各有多少粒?分析:把红棋子数看作1份,则黄棋子为4份,蓝棋子为6份,红、黄、蓝棋子数分别为:6、24、36粒.【例4】有长短两支蜡烛(两支蜡烛同样时间燃烧的长度相同),它们的长度之和为56厘米.将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃之前一样长,这时短蜡烛的长度又恰好是长蜡烛的23.点燃前,长蜡烛有多长?分析:我们要注意发掘题目中真正的不变量,实际上这个题目中两根蜡烛的长度差是不变的.(为什么?由于两根蜡烛燃烧的速度一样).把原来短蜡烛的长度看作3份,那么后来长蜡烛的长度也为3份,后来短蜡烛的长度为2份,差值为1份,那么原来长蜡烛长度为4份,所以1份为56÷(4+3)=8(厘米),原来长蜡烛为4×8=32(厘米).【前铺】某日停电,房间里燃起了长短两根蜡烛,它们燃烧速度是—样的.开始时长蜡烛是短蜡烛长度的2倍,当送电后吹灭蜡烛,发现此时长蜡烛是短蜡烛长度的3倍.短蜡烛燃烧掉的长度是5厘米.问原来两根蜡烛各有多长?分析:我们要注意发掘题目中真正的不变量,实际上这个题目中两根蜡烛的长度差是不变的.(为什么?由于两根蜡烛燃烧的速度一样).那么我们根据题意可知:原长蜡烛长度=2倍原短蜡烛长度,差为1倍原短蜡烛长度;后长蜡烛长度=3倍后短蜡烛长度,差为2倍后短蜡烛长度;所以原短蜡烛长度=2倍后短蜡烛长度,也就是说短蜡烛燃烧了1倍后短蜡烛长度,为5厘米,所以原短蜡烛长10厘米,原长蜡烛长20厘米.【巩固】某日停电,房间里同时点燃了两支同样长的蜡烛.这两支蜡烛的质量不同,一支可以维持3小时,另一支可以维持5小时,当送电时吹灭蜡烛,发现其中一支剩下的长度是另一支剩下长度的3倍.这次停电时间是多少小时?分析:设停电x小时,可得:1113(1)53x x-=⨯-,解得:x=2.5(小时).【例5】有三堆棋子每堆棋子一样多并且都只有黑白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占到三堆棋子里黑子总数的25,如果把三堆棋子集中到一起,那么白子占全部棋子的几分之几?分析:第一堆里的黑子和第二堆里的白子一样多,那么我们不妨把第一堆里的黑子与第二堆里的白子调换一下,那么第一堆全白子,第二堆全黑子,且每堆总数不变.因为第三堆里的黑子占到三堆棋子里黑子总数的25,我们不妨把第三堆里的黑棋子看作2份,那么剩下的3份都是第二堆的黑子,所以每堆都是三份,白子共(1+3)份,白子占全部棋子的9分之4.【例6】有一个分数,如果分子减1,那么这个分数就变成13;如果分母减少1,那么这个分数变成12.那么这个分数是多少?分析:把分母看成一个3倍量,那么分子就是1倍量+1,根据:如果分母减少1,那么这个分数变成12,那么分母就是:(2倍量+2)+1=2倍量+3,所以1倍量代表3,所以分数为:4 9 .【例7】一批工人到甲乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的3 2 .每天分成上午和下午两段,每人在上午和下午所完成的工作量相等,上午去甲工地的人数是去乙工地人数的3倍;下午这批工人中有712的人去甲工地,其他的人到乙工地.到晚上时,甲工地的工作已完成,乙工地的工作还需要4名工人再做1天.那么这批工人有多少名?分析: 我们定义一个单位量:一个单位工人工作半天所完成的工作量称作1个单位量.假设一共有12单位个工人,那么上午分成4份,每一份有3个.去甲工地的工人是3份9个,完成的工作量是9个单位;去乙工地的工人是1份,3个单位.因此乙工地完成的工作量是3个.下午是这样子的:712的人去甲工地,其他的人到乙工地.所以去甲工地的人有12×712=7个单位,完成了7个单位工作量,乙工地完成的工作量是(12—7)=5个.这样一天和起来:甲工地完成了(9+7)=16个工作量,乙工地完成了(5+3)=8个工作量.甲工地的工作量全部完成了,所以甲工地的任务工作量是16个.甲工地的工作量是乙工地的工作量的32,所以乙工地的任务工作量是16÷3×2=323个.乙工地完成了8个工作量,这样乙工地剩下的工作量是(323-8)=83个工作量,这83个工作量需要4个人工作1天也就是需要8个人工作半天.而83是83个单位的工人作半天完成的工作量,因此83个单位的工人有8个.所以1个单位的工人有8÷83=3(个).这批工人一共是12个单位,所以一共有工人:3×12=36(个).年龄问题年龄问题是小学数学中常见的一类问题.例如:已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等.年龄问题又往往是和倍、差倍、和差等问题的综合.它有一定的难度,因此解题时需抓住其特点.年龄问题变化关系的三个基本规律:1、两人年龄的差是不变的量;2、两人年龄的倍数关系是变化的量;3、每个人的年龄随着时间的增加都增加相等的量.年龄问题的解题要点是:1、入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2、关键:抓住“年龄差”不变.3、解法:应用“差倍”、“和倍”或“和差”问题数量关系式.年龄问题的解题正确率保证:验算!【例8】女儿今年(2007年)12岁,妈妈对女儿说:“当你有我这么大岁数时,我已经60岁喽!”问:妈妈12岁时,是哪一年?分析:画线段图分析.母女年龄的差是(60-12)÷2=24,2007-24=1983(年).【巩固】(第一届祖冲之杯数学邀请赛) 甲对乙说:“当我的岁数是你现在的岁数时,你才5岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将50岁.”那么,甲现在( )岁,乙现在( )岁.分析:画图分析.年龄差=(50-5)÷3=15,乙现在的岁数为:15+5=20(岁),甲现在的岁数为:20+15=35(岁).【前铺】兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍.问:兄、弟二人今年各多少岁?分析:根据题意,作示意图如右:由上图可以看出,兄3年后的年龄比弟4年前的年龄大5+3+4=12(岁),由“差倍问题”解得,弟4年前的年龄为(5+3+4)÷(3-1)=6(岁). 由此得到,弟今年6+4=10(岁),兄今年10+5=15(岁).【前铺】今年爷爷78岁,三个孙子的年龄分别为27、23、16岁.经过多少年后爷爷的年龄等于三个孙子年龄和?分析:三个孙子的年龄和是:27+23+16=66(岁),跟爷爷年龄差等于12岁,过一年两者的年龄差减少2岁,所以6年后爷爷的年龄等于三个孙子年龄和.【拓展】已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父年龄恰好等于孙子年龄的5倍.求祖孙三人各多少岁?分析:“祖父和父亲年龄差与父亲和孙子年龄的差相同”这一条件较难理解,可作出示意图,从图中容易看出,祖父和孙子年龄之和恰为父亲年龄的2倍.父亲的年龄:82÷2=41(岁) ,孙子的年龄:(82+1×2)÷(1+5)-1=13(岁),祖父的年龄:82-13=69(岁).【例9】五位老人的年龄互不相同,其中年龄最大的比年龄最小的大6岁,已知他们的平均年龄为85岁,其中年龄最大的一位老人是谁?分析:如果最小的比85只小一岁,那么由于这时其他人的年龄均不小于85,而最大的比85大5(=6-1)岁,这样平均年龄必超过85;如果最小的比85小2,那么可能还有一人比85小1,但最大的比85大4(=6-2)岁,而4>1+2,从而是年龄仍超过85;如果最小的比85小3,那么最大的比85大3(=6-3),两人的平均年龄正好是85,其他三人如果年龄是84、85、86(或83、85、87)那么五人平均年龄正好是85;如果最小的比85小4或小5,这时平均年龄必小于85(与开始两种情况的推理类似,只是将大、小互易)因此,最大的年龄一定是88(=85+3)岁. 【例10】梁老师问陈老师有多少子女,她说:“现在我和爱人的年龄和是子女年龄和的6倍;两年前,我们的年龄和是子女年龄和的10倍;六年后,我们的年龄和是子女年龄和的3倍。
第7讲直线形计算一兴趣篇1、如图,由十六个同样大小的正方形组成一个“5”字。
如果这个图形的周长是102厘米,那么它的面积是多少平方厘米?2、如图,用两块长方形纸片和一块小正方形纸片拼成了一个大正方形纸片,其中小正方形纸片面积是49平方厘米,其中一个长方形纸片的面积为28平方厘米,那么最后拼成的大正方形纸片面积是多少平方厘米?3、如图,小、中、大三个正方形从左到右依次紧挨着摆放,边长分别是3、7、9。
图中两个阴影平行四边形的面积分别是多少?4、如图,从梯形ABCD中分出两个平行四边形ABEF和CDFG。
其中ABEF的面积等于60平方米,且AF的长度为10米,FD的长度为4米。
平行四边形CDFG的面积等于多少平方米?5、如图,把大、小两个正方形拼在一起,它们的边长分别是8厘米和6厘米,那么左图和右图中阴影部分的面积分别是多少平方厘米?6、如图,在正方形ABCD中,对角线AC的长度为8厘米,那么正方形的面积是多少平方厘米?7、如图,平行四边形ABCD中,AD的长度为20厘米,高CH的长度为9厘米;E是底边BC上的一点,且BE长6厘米,那么两个阴影三角形的面积之和是多少平方厘米?8、图中,平行四边形ABCD的面积是32平方厘米,三角形CED是一个直角三角形。
已知AE=5厘米,CE=4厘米,那么阴影部分的面积是多少平方厘米?9、如图,在平行四边形ABCD中,三角形BCE的面积是42平方厘米,BC的长度为14厘米,AE的长度为9厘米,那么平行四边形ABCD的面积是多少平方厘米?三角形BCE的面积又是多少平方厘米?10、如图,小正方形ABCD放在大正方形EFGH的上面。
已知小正方形的边长为4厘米,且梯形AEHD的面积是28平方厘米,那么梯形AFGD的面积多少平方厘米?拓展篇1、如图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜。
其中栽种茄子的面积是16平方米,栽种黄瓜的面积是28平方米,栽种豆角的面积是32平方米,栽种莴笋的面积是72平方米,而且左上角栽种茄子的田地恰好是一个正方形。
小学奥数基础教程(四年级)第1讲速算及巧算(一)第2讲速算及巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题及归总问题第12讲年龄问题第13讲鸡兔同笼问题及假设法第14讲盈亏问题及比较法(一)第15讲盈亏问题及比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算及巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算及巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同及同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析及解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数及80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数及80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
四年级奥数专题第7讲上楼梯问题有这样一道题目:如果每上一层楼梯需要1分钟,那么从一层上到四层需要多少分钟?如果你的答案是4分钟,那么你就错了.正确的答案应该是3分钟。
为什么是3分钟而不是4分钟呢?原来从一层上到四层,只要上三层楼梯,而不是四层楼梯。
下面我们来看几个类似的问题。
例1 裁缝有一段16米长的呢子,每天剪去2米,第几天剪去最后一段?例2 一根木料在24秒内被切成了4段,用同样的速度切成5段,需要多少秒?例3 三年级同学120人排成4路纵队,也就是4个人一排,排成了许多排,现在知道每相邻两排之间相隔1米,这支队伍长多少米?例4 时钟4点钟敲4下,12秒钟敲完,那么6点钟敲6下,几秒钟敲完?例5.某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?例6 晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?习题1.一根木料截成3段要6分钟,如果每截一次的时间相等,那么截7段要几分钟?2.有一幢楼房高17层,相邻两层之间都有17级台阶,某人从1层走到11层,一共要登多少级台阶?3.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?4.一座楼房每上1层要走16级台阶,到小英家要走64级台阶,小英家住在几楼?5.一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?6.时钟3点钟敲3下,6秒钟敲完,12点钟敲12下,几秒钟敲完?7.某人到高层建筑的10层去,他从1层走到5层用了100秒,如果用同样的速度走到10层,还需要多少秒?8.A、B二人比赛爬楼梯,A跑到4层楼时,B恰好跑到3层楼,照这样计算,A跑到16层楼时,B跑到几层楼?9.铁路旁每隔50米有一根电线杆,某旅客为了计算火车的速度,测量出从第一根电线杆起到经过第37根电线杆共用了2分钟,火车的速度是每秒多少米?。
第七讲 数表与幻方幻方问题千变万化,幻方的填法虽然单一,但组合起来却也是千变万化.1.三阶、四阶幻方与奇数阶幻方的填法;2.三阶幻方的主要性质;3.利用幻方的主要性质补填幻方图;数表一类的问题与幻方问题往往有结合和相近的内容,但数表问题更考验学生对数字规律的发现和运用能力.分析:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方…… 如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.专题精讲教学目标98765432114115106213169711548312 想 挑 战 吗?将1到9这9个数字填入3×3的正方形表格内,使表格中横、竖、对角线上三个数的和相等,你能有多少种填法?(一)幻方[小故事](教师导入)同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987653421【例1】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.分析:第一步:求幻和:2+3+4+…+9+10=54第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18×4=72,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:(72-54)÷3=6第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共八解,如图:[巩固]3×3的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列对角线上的三个数的和相等,请给出至少一种填法分析:除了运用例题中的方法,还有两种方法:(方法一)罗伯法:把1(或最小的数)放在第一行正中,按以下规律排列剩下的数:(1)每一个数放在前一个数的右上一格(2)如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列(3)如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行(4)如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:1213213421563421563742156387421563987421(方法二)对易法:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.563987421563987421563987421[说明]南宋数学家杨辉曾概括幻方为:“九子斜排,上下对易,左右相更,四维挺出.”这就是我们现在所学的对易法.[小知识] 我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久,三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”【例2】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.[亮点设计](1)提问:三阶幻方的我们可以通过算的方法填出,五阶的呢?算算看,累死.七阶呢?更累死.同学们想不想在一分钟之内写出五阶幻方呢?看老师的:(2)示范:边写边说口诀:“一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样”.见第二个图.这是法国人罗伯特总结出的“罗伯法”,它对于构造连续自然数幻方是最简单易行的.(3)练习:写个七阶的看看(大家一起来练)注意强调细节.上出框与右出框的处理有时不容易把握,老师隆重推荐大家一种方法——“卷纸筒”,即把上下边重合在一线,则上出框后往右上填的位置正好在下边的对应点上.强调这种方法适用于任意奇数阶幻方.(4)亮化:大家现在感到是不是很好玩?美国的有个小孩子写出了105阶的幻方,被记在一本数学课本上.我们现在知道,这里的方法其实不算难吧?其实我们也不妨跟美国小朋友PK一下,来构造一个比较大的幻方,也可以是或者就是做一份数学作品,跟书法作品一样装裱得非常漂亮地挂在你家客厅的墙上,客人到你家作客时,一看是一头雾水,你就简单地问一问他,横行的所有数之和是多少?所有横行的每个和怎么样呢?都相等吧?竖列所有数之和是多少?跟横行的和相等吧!还有,看看两条对角线上,每条对角线上所有数之和呢?轻轻而清晰地告诉他,这就是57阶幻方或者**阶幻方!厉害吧,这就是奥数研究生的作品.(研究奥数的学生简称奥数研究生嘛)当然,别忘了,十几阶的奇数幻方奖一个章,二十几阶的奖励三个章,三十几阶的奖励五个章,四十几阶的奖励七个章,如果六十几阶应该奖励几个章呢?【例3】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k.如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有:九数之和+中心方格中的数×3=4k,3k+中心方格中的数×3=4k,中心方格的数=k÷3注意:例题中对九个数及定数k都没有特殊要求.这个结论对求解3×3方格中的数阵问题很实用. [拓展]如图是一个三阶幻方,那么标有*的方格中所填的数是多少?110 8*分析:首先确定左下角的数为17,这样才能保证第一行和第一列的和相等,如此可以得出,这个三阶幻方中围绕中心的相对位置上的两个数和为17+10=27,接着确定底边和右边上的数,通过设左上角标有*的方格中所填的数未知数为X,列式为(18+x)÷3+27=18+x,最后求出标有*的方格中所填的数为22.5.【例4】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.分析:中间方格中的数为7.再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x).因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10.考虑到5,7,9已填好,所以x只能取4,6,8或10.经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图).这两个解实际上一样,只是方向不同而已.[巩固]如图所示,在3×3方格表内已填好了两个数19和95,在其余的空格中填上适当的数,可以使得每行、每列以及两条对角线上的三个数之和都相等.(1)求x;(2)如果中间的空格内填入100,试在上一小题的基础上,完成填图.x19 95100951918124171291761051009519分析:(1)设中间的数为Y,则各行各列的和为3Y,求出各个方格中每个数的代数式,左上角为Y-X+95,右上角为2Y-95,右下角为:Y+X-95,最下面一行中间的数为:2Y-X,根据每行每列的和相等,最左面的一列等于最右面的一列,可列出方程:X+3Y-190+19=3Y-X+190-19,解得X=171.(由此引出三阶幻方性质:角上的数等于不相邻边上数的平均数)(2)根据(1)所得的每个方格中的代数式可得右上图.【例5】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.分析:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线.经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解.因为第二种情况是螺旋形,故本题的解称为螺旋反幻方.[前铺]用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.分析:给出的九个数形成一个等差数列,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13+25=17+21;余下各数就不难填写了(见下图).与幻方相反的问题是反幻方.将九个数填入3×3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.【例6】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.分析:这一例题较复杂些,但如果我们充分利用题目的要求和1至9这九个数的特性(五奇四偶),那么也能缩小每格中所应填的数的范围,直至完全确定每格中应填的数.为了方便起见,把九个格中的数字用A至I这九个英文字母代替.这样,例如C=2,则F=4,I=6.因而其余六格应包含全部奇数(1、3、5、7、9)和偶数8,由于DEF=2×ABC,GHI=3×ABC,所以GHI=ABC+DEF,因此又可把3×3方格中的数看作一个加式:前两行之和等于第三行.这对于我们用奇偶性去分析加式成立的可能性是有用的.由于个位上的加法没有进位,因此十位上的三个数字不能都为奇数(否则将出现奇数+奇数=奇数的矛盾等式),即8一定是其中的一个十位数字,显然B≠8(否则E=6,与I=6矛盾).又H≠8(否则,B≤8/3,只有B=1.而当B=1时,H至多为5).因此E=8,这样,B=9,H=7.最后,由于A<D<G必有A=1,D=3,G=5.由于192×2=384,192×3=576,所以所填的数满足题目要求.又如,C=4,则F=8,I=2.个位上的加式向十位进1,因此十位上的三个数字都是奇数,因此6是一个百位数字.显然A≠6.如果D=6,则必有A=3,G=9.而B、E、H是1、5、7这三个数,要满足B+E+1=H,只能B=1,E=5,H=7或B=5,E=1,H=7.由于314×2≠658,354×2≠618,所以此时不满足题目要求.如果G=6,显然A<3,此时只有A=1,但当A=1时,G<(1+1)×3=6.因而当C=4时,不可能有满足题目要求的填法.其他的情形可以类似地加以讨论,分别给出肯定的或否定的结论.由分析,下左图是一种符合要求的填法.由于作为一个加法算式(上两行的和等于第三行),上图只是在十位上的加式向百位进了1,其他两个数位上都没有进位,因此把它的个位移到百位的位置上加式仍然成立,所以上右图也是一种符合要求的填法.还有两种符合要求的填法,希望同学们利用分析中的方法把它们找出来.【例7】 在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.分析:先填出一个普通幻方,任意取一个自然数n ,然后将幻方中的数改成以n 为底,原来的数为指数的形式即可,取n=2,如果取2,则九个数字为:2、4、8、16、64、128、256、512,如图.563987421512256128641684232[拓展]把1,2,3,4,6,9,12,18,36这9个数分别填入3×3方格表的各方格内,使每一行、每一列及两条对角线上的3个数的乘积都是216.求位于正中间的方格中所填的数.分析:1=2030,2=2130,3=2031,4=2230,6=2131,9=2032,12=2231,18=2132,36=2232,只要将这些数填入空格保证每行每列以及对角线上的2和3上的指数和相等.943122183616【例8】已知如图是一个四阶幻方,那么标有*的方格中所填的数是多少?分析:对角线上的和为34,由此可以确定第四行第三列的数为2,右下角的数为13,于是便可以确定标有*的方格中所填的数为6.3811165*49712(二)数表【例9】如下图,在方格中填入一些数以后使得无论横行、竖行相邻三个数的和都为20,那么“*”所代表的数是多少?分析:设左上角方格中的数为x,由相邻三个数的和为20,可知横行、竖行都以3为循环,那么左上角的数为14-x,左下角方格中的数为12-x,由此还能求到右下角的数为6+x,“*”所代表的数为20-(14-x)-(6+x)=0.[巩固]如图,横、竖各有12个方格,每个方格内都有一个数.已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为2l,并且其中4个方格内的数分别是3,5,8和x.那么x所代表的数是多少?分析:先分析竖直方向的数字出现规律,都是以3为周期循环出现相同数字,求得交叉点上数字为10,同理可求得x=5.【例10】请在4×8方格表的每个方格内填入数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.11121132113211321133232132113211分析:这个图形如中间图所示打上斜线,那么这四个格子都在不同的斜线上,将4×8的方格网也打上斜线,填数的时候,只要保证同一条斜线上的数相同,并且从最上边的斜线向下,线上对应的数以4为周期依次出现两个1,一个2,一个3.[拓展] 请在4×8方格表的每个方格内填入数1、2、3、4,使得任何排列如例10图所示形状的4个方格中所填数的和都是10.分析:只需将图中的部分斜线上的1替换成4.[前铺]请在4×8方格表的每个方格内填人数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.*26883x511121132113211321133232132113211分析,首先考虑一个横排,要使横排任意四个数包含3、2、1、1,那么每个横排上的数都应该以4为一个周期,将这样的一个横排向左错位一格作为它的下一排,向左错位两格作为它的下边第二排,……,那么在竖直方向,数表也将符合题目条件的性质.[巩固]在如左图6×6的方格网中填入1、2、3这三个数,使得用右图任意一种图形覆盖方格网,盖住的数和为12.分析:12=1+1+2+2+3+3,由例10得到灵感:将1、2、3如图排列后能保证符合条件211333222211111333333222221111333221[拓展]用一个九宫格盖住下边表中9个数,已知这个九宫格中间一个数是86,你能否用这被盖住的9个数构成一个幻方,使得每一横行,每一竖行还有对角线上三个数的相等.1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45…………………………………………………………分析:表中对于任何一个数,它的左邻比它小1,右邻比它大1,上邻比它小9,下邻比他大9,由此可知,九宫格盖住的9个数分别为76、77、78、85、86、87、94、95、96,将它们填成幻方如图,86当然放在最中间.969594878685787776【例11】 如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第一列 第二列 第三列 第四列……第一行 1 2 5 10 17 第二行 4 3 6 11 第三行 9 8 7 12 第四行 16 15 14 13 ……分析:按照填写顺序,所有的完全平方数都出现在数表的第一列,所有小于等于2n 的正整数数都能够组成一个边长为n 的正方形,442<2007<452,所以2007处在边长为45的正方形的边缘,边长为四十五的正方形边缘第一个数是442+1=1937,位于第一行、第四十五列,最后一个数是452=2025,位于第四十五行,第一列,所以第四十五行,第四十五列的数是(2025+1937)÷2=1981,2007>1981,所以2007在第四十五行上,2025-2007=18,所以2007在第十九列上.[拓展]如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第1列 第2列 第3列 第4列 第5列 第6列……第1行 1 2 6 7 15 16 第2行 3 5 8 14 17 第3行 4 9 13 18 第4行 10 12 19 第5行 11 20 第6行 21 ……分析:每当所填的数能表示成n n+12()时(n 为正整数),所有已经填的数就构成一个直角边长为n 个数的直角三角形,n 为奇数时,2n (n+1)在第一行,n 为偶数时,n n+12()在第一列,因为6262+12⨯()<2007<6363+12⨯(),所以2007在边长为63个数的直角三角形的斜边上,6363+12⨯()=2016位于第1行第63列,2016-2007=9,所以2007在第10行,第54列.【例12】在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S. 9S=4×45 S=20.这就说明每个正方形角上四个数字之和为20. 所以:b2=5. 从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数..这样,就比较容易找到此解专题展望幻方、数表类题目虽然变化不多,但这一类题目与数学很多分支包括:组合数学、数论等都有结合,今后同学们接触到更多的数学知识后会对幻方有更深入的了解.1. (例4)在图中的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于19.95.那么,标有*的格内所填的数是多少?分析:设中间的数为X ,可以此确定上边、右上角、右下角、左下角、左边、右边所填数的代数式,由于3X=19.95,X=6.65,最后得到,标有*的格内所填的数是11.12.*8.804.332. (例6)将自然数1至9分别填在如图所示的3×3方格表内,使得每行、每列及两条对角线上的数满足:两端的两个数之和减去中间的数,结果都等于5.分析:中间的数只能为5,这样才能保证有4组数对分别填写于方格四周,相对位置两数和相等并且比中心所填的数大5.9876432153. (例9)如图,有一个11位数,它的每3个相邻数字之和都是20.问标有*的那个数位上的数字应是几?分析:这个数的各个数位上的数字以3为周期循环出现,这个数为97497497497,标有*的那个数位上的数字应是7.7*9练习七4.(例11)如图表中数的排列顺序,2007在第几行第几列?2007的下边是哪个数?第一列第二列第三列第四列第五行第一行 1 2 3 4第二行8 7 6 5第三行9 10 11 12第四行16 15 14 13……分析:各个自然数的列号以8为循环,行号每4个数加一行,2007=8×250+7,所以2007在第3列,第502行,它下边的数比2007大4,所以2007下边是2011.5.(例12)将1~8填入下图中的○内,要求按照自然数顺序相邻的两个数不能填入有直线段连接的相邻的两个○内.分析:因为中间两个○分别只与一个○不相邻,只能填1和8,其余数的填法见右上图.许多名人喜欢用数学比喻,往往出语幽默、诙谐,好比深山闻钟,使人记忆久远.古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天.他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习".人民教育家陶行知先生曾经说,他有八位好朋友做帮手,使他少犯错误,甚至可以不犯错误.他编了一首歌,读起来非常动听:我有八位好朋友,肯把万事指嘉摇?你若想问真姓名,名字不同都姓何. 何事、何故、何人、何如、何时、何来、何去,好像弟弟与哥哥.还有一个西洋派,姓名颠倒叫几何.若向八贤常请教,虽是笨人少错误. 美国作家杰克·伦敦成名后,曾收到过一位女士的求爱信;"你有一个出众的名声,我有一个高贵的地位.这两者加起来,再乘上万能的黄金,足以使我们建立起一个天堂都不能比拟的美满家庭."杰克·伦敦连忙回信,他答得很妙:"根据你列出的那道爱情公式,我看还要开平方!不过这个平方根却是负数".古希腊哲学家芝诺对他的学生说:“如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积大一点;但两圆之外的空白,都是我们的无知面,圆越大其圆周接触的无知面就越多.”毛泽东曾经批评个人主义严重的人说:“有的人总是以‘我'为‘圆心'、‘个人主义'为‘半径',在这个圆圈里转来转去,总是不能跳出这个圆圈.”数学知识。
第7周最优问题
专题简析:在日常生活中,我们经常会遇到下面类似的问题:完成一件事情怎样合理安排才能做到用时最少、效果最佳。
这类问题在数学中称为统筹问题。
解决此类问题时,必须树立统筹思想,能同时做的事,尽量同时做。
有时,我们还会遇到“费用最省”“面积最大”“损耗最小”等问题。
这些问题往往可以从极端情况去探讨它的最大(小)值。
这些问题在数学中称为极值问题。
统筹问题和极值问题实际上都属于最优问题。
例1:用一只平底锅煎鸡蛋,每次只能放两个,煎一个需2分钟(规定正反面各需要1分钟)。
问煎三个至少需要多少分钟?
练习一:1、烤面包时,第一面要烤2分钟,第二面只要烤1分钟,即烤一片面面包需要3分钟。
小丽用的烤面包机一次只能放两片面包,她每天早上吃三片面包,最少需要烤多少分钟?
2、用一只平底锅烙大饼,锅里只能同时放两张大饼,烙熟大饼的一面需要3分钟,现在要烙三张大饼,最少需要几分钟?
3、小华用平底锅烙饼,这只锅同时能放四张大饼,烙一张要4分钟(每面各需要2分钟),可小华烙六张饼只用了6分钟,他是怎样做的?
例2:妈妈让小明给客人烧水沏茶。
洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟,拿茶叶需要2分钟。
为了使客人早点喝上茶,按照最合理的安排,多少分钟后就能沏茶了?
练习二:1、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。
为了尽快做完这些事情,最少需要几分钟?
2、小强给客人沏茶,烧开水要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶要1分钟。
为了使客人能早点喝上茶,按照最合理的安排,多少分钟就能沏茶了?
3、在早晨起床后的1小时之内,小欣需要完成以下事情:叠被子3分钟,刷牙洗脸8分钟,读外语30分钟,吃早餐10分钟,收碗擦桌子5分钟,收听广播30分钟。
为了尽快做完这些事,应怎样安排才能使所用的时间最少?最少需要多少分钟?
例3:五(1)班赵明、孙勇、李佳三位同学同时到校卫室等候校医治病,赵明打针需要5分钟,孙勇包纱布需要3分钟上,李佳点眼药水只需要1分钟,卫生室只有一位校医。
问校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短?请你算出这个时间?
练习三:1、甲、乙、丙三人分别拿着2个、3个、1个热水瓶同时到开水供应点打热水。
热水龙头只有一个,怎样安排他们打水的次序,可以使他们打热水所花的总时间(包括等候时间)最少?(假如打满1瓶水需要1分钟)
2、甲、乙、丙三人到商场批发部洽谈业务,甲10分钟就能洽谈完,乙16分钟能洽谈完,丙8分钟能洽谈完。
怎样安排三人谈话的先后次序,使三人所花的总时间最少?最少时间是多少?
3、甲、乙、丙、丁四人同时到1个水龙头处用水,甲洗拖把需要3分钟,乙洗抹布需要2分钟,丙洗衣服需要10分钟,丁用桶接水需要1分钟。
怎样安排四人用水的次序,使他们所花的总时间最少?最少时间是多少?
例4:用长18厘米的铁丝围成各种长方形,要求长和宽的长度都是整数,并比较它们面积的大少。
练习四:1、用长26厘米的铁丝围成各种长方向形,要求长和宽的长度都是整数,那么围成的长方形的面积最大是多少?
2、一个长方形的周长是20分米,它的面种最大是多少?
3、一个长方形的面积是36平方厘米,并且长和宽的长度都是整数。
这个长方形的周长最长是多少厘米?
例5:用3~6这四个数字分别组成两个两位数,使这两个两位数的乘积最大。
练习五:1、用1~4这四个数字分别组成两个两位数,使这两个两位数的乘积最大。
2、用5~8这四个数字分别组成两个两位数,使这两个两位数的乘积最小。
3、用3~8这六个数字分别组成两个三位数,使这两个三位数的乘积最大。
课后练习
1、用一只平底锅做煎饼,每次能同时放两块饼,如果一块饼需要4分钟(正反两面各需2分钟),问前2004块饼至少需要几分钟?
2、妞妞每天早晨要完成这样几件事,烧一壶开水要8分钟,灌开水要1分钟,取牛奶和报纸要5分钟,整理书包要6分钟,为了尽快做完这些事,怎样安排才能使所用的时间最少?最少需要几分钟?
3、家里来了客人,妈妈要给客人沏茶,洗水壶要1分钟,烧开水要10分钟,洗茶杯要2分钟,取茶叶要1分钟,泡茶要2分钟。
为了让客人早点喝上茶,你来设计,如何安排所需时间最少?
4、玲玲帮奶奶下碗面:买面条5分钟,切葱花2分钟,洗锅4分钟,烧开水9分钟,把面条煮熟3分钟。
为了让奶奶尽快吃到面条,你帮玲玲算算最少要多少时间。
5、老师分别要和甲、乙、丙三个人谈话,和甲要谈8分钟,和乙要谈5分钟,和丙要谈6分钟。
甲、乙、丙三位同学同时到办公室,老师应如何安排和他们谈话的次序,使他们三人所花的总时同最少?总时间是多少分钟?
6、丽丽、小红、嘉嘉三人同时到后台准备表演节目,丽丽表演唱歌要7分钟,小红表演小品要12分钟,嘉嘉表演魔术要10分钟。
这时主持人应如何安排他们三人的表演顺序,可以使他们用的总时间最少(包括在后台等候的时间)?共花了多少时间?
提优练习
1、牛牛要赶黑、白、灰、棕色的四匹马过河,黑马过河要4分钟,白马过河要6分钟,灰马过河要3分钟,棕马过河要9分钟,牛牛每次只能赶两匹马过河,再骑其中一匹马返回。
要把四匹马赶到河对岸,应怎样赶时间最少?
2、用34厘米的钢丝围成一个长方形,长和宽的长度都是整厘米数,围成的长方形的面积最大是多少?
3、用一根长14分米的铁丝围成一个长方形,长和宽的长度都是整分米数,围成的长方形的面积最小是多少?
4、若干千个长方形的面积都为48平方厘米,而且长和宽的长度都是整厘米数,周长最短的那个长方形的周长是多少厘米?
5、用1,3,5,7这四个数字分别组成两个两位数,使这两个两位数的乘积最小。
6、用4~9这六个数字分别组成两个三位数,使这两个三位数的乘积最大。