HTRI空冷器教程
- 格式:doc
- 大小:3.55 MB
- 文档页数:63
H T R I7教程01界面熟悉1.双击快捷图标,打开程序界面:HTRI启动界面2.创建一个“新的空冷器”3.设置自己熟悉的一套单位制,比如MKH公制,也可以通过<Edit…>来自定义。
4.接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据,4.1 “Process”工艺条件:包括热流体侧和空气侧;4.2 “Geometry”机械结构:包括管子、管束、风机等;5.当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。
02?工艺参数输入1.点击左边目录栏的“Process”标签,右边显示的就是供工艺参数输入的界面:??2.我们从上到下依次来看需要输入的参数:*为必要输入参数2.1 Fluid name –?流体名称,这里没有红框,不是必须输入的,就是自己定义下流体描述比如“Propylene”“Oil”“Wet Air”等,要注意的是程序对中文字符不支持,那么大家多写写英文就是了~本帖隐藏的内容2.2 Phase/Airside flow rate units –?流体相态/空气侧的流量单位*2.3 Flow rate –?流量不必多解释,热侧为质量流量。
2.4 Altitude of unit(above sea level) –?海拔高度*2.5 Temperature –?流体的温度,单位°C (SI,MKH), °F(US),这里要注意的是想输入0度,那么请填 0.001,不然0或0.0的输入都将被程序认为是没有输入(这个原则在HTRI程序的其他地方也适用)。
2.6 Weight fraction vapor –?重量气相分率,那么全气相就是1,全液相就是0咯。
2.7 Pressure reference –?压力参照点,就是接下来你输入的操作压力值指的是进口压力还是出口压力。
实验一食品中水分活度(AW)的测定水分活度测定法有多种方法可采用,但归纳起来主要可分为相对湿度测定法、恒定相对湿度平衡室法和仪器法等。
在中间水分至高水活度区域(Aw0.5以上),使用恒定相对湿度平衡室法精度较高,是目前在实际工作中作为食品水活度测定法中最常用的方法。
在低水分至中间水活度区域(Aw 0.1~0.7),则使用蒸汽压直接测定法较为合适。
仪器法和这些方法比较而言主要是测定操作简单,因此实际应用较多。
食品中含有较多的乙醇、香料、醋酸等挥发性物质,容易造成测定的误差。
目前已开发出通过配有热导检测器的气相色谱将试样顶隙中的空气、水蒸气进行分离定量分析,同时测定水活度和乙醇平衡蒸汽浓度的方法。
一实验目的1.掌握水分活度的概念。
2.掌握水分活度测定仪(无锡华科仪表有限公司HD-4型)的使用方法。
二实验原理水分活度为食品中水的蒸气压和该温度下纯水的饱和蒸气压的比值,即AW=P/Po。
水分活度计测定的原理是把被测食品置于密闭空间内,在恒温条件下,食品与周围空气的蒸气压达到平衡,此时,气体空间的水蒸气分压即可作为食品水蒸气压力的数值。
同时,测定同样条件下纯水的蒸气压,利用上述公式,计算出食品的水分活度。
三实验材料食盐1袋白砂糖1袋面粉1袋猪肉1盒水分活的测定仪1台菜刀(板)4套小镊子4把四实验过程1.仪器的校正:称15gNaCl加入60℃以上于10ml纯净水中充分溶解,置于常温下放置12h 以上。
按“选择”键选择校正功能,按“确认”键进入下一级菜单,按“选择”键选择NaCl 饱和溶液,将装有配置好的饱和溶液倒入玻璃皿后放入测定点1中,盖好传杆器,在其他测定中依次放入相同浓度的饱和溶液,按下“确认”键,提示“是否确认要停止校正”,选择“否”,按下“确认”键,此时开始校正。
2.测定:将试样尽量弄碎,测定时玻璃盖不得盖上,放入水分活度传感器中,盖好传感器。
用选择键选择“测量”功能,按“确认”键,进入测定状态。
HTRI Exchanger 使用手册一、换热器的基础设计知识1。
1 换热器的分类1.按作用原理和实现传热的方式分类(1)混合式换热器;(2)蓄热式换热器;(3)间壁式换热器其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.按换热器服务类型分类:(1)交换器(Exchanger): 在两侧流体间传递热量。
(2)冷却器(Chiller):用制冷剂冷却流体.制冷剂有氨(Ammonia)、乙烯、丙烯、冷却水(Chilled water)或盐水(brine). (3)冷凝器(Condenser):在此单元中,制程蒸汽被全部或部分的转化成液体。
(4)冷却器(Cooler):用水或空气冷却,不发生相变化及热的再利用。
(5)加热器(Heater):增加热函,通常没有相变化,用如Dowtherm或热油作为热媒加热流体。
(6)过热器(Superheater):高于蒸汽的饱和蒸汽压进行加热.(7)再沸器(Reboiler):提供蒸馏潜热至分流塔的底部。
(8)蒸汽发生器(Steam generator)(废热锅炉(waste heat boiler)):用产生的蒸汽带走热流体中的热量。
通常为满足制程需要后多余的热量。
(9)蒸馏器(Vaporizer):是一种将液体转化为蒸汽的交换器,通常限于除水以外的液体。
(10)脱水器(Evaporator):将水蒸气浓缩为水溶液通过蒸发部分水分以浓缩水溶液.1.2换热器类型管壳式换热器(Shell and Tube Exchanger):主要应用的有浮头式和固定管板式两种。
-应用:工艺条件允许时,优先选用固定管板式,但下述两种情况使用浮头式:a)壳体和管子的温度差超过30度,或者冷流体进口和热流体进口温度差超过110度;b)容易使管子腐蚀或者在壳程中容易结垢的介质。
HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。
HTRI帮助其会员设计高效、可靠及低成本的换热器。
HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。
该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。
HTRI.Xphe能够设计、核算、模拟板框式换热器。
这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。
该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。
HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。
该软件使用了HTRI的最新逐点完全增量计算技术。
HTRI.Xjpe是计算套管式换热器的软件。
HTRI.Xtlo是管壳式换热器严格的管子排布软件。
HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。
HTRI.Xfh能够模拟火力加热炉的工作情况。
该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。
在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。
一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。
HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。
HTRI帮助其会员设计高效、可靠及低成本的换热器。
HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。
该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。
HTRI.Xphe能够设计、核算、模拟板框式换热器。
这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。
该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。
HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。
该软件使用了HTRI的最新逐点完全增量计算技术。
HTRI.Xjpe是计算套管式换热器的软件。
HTRI.Xtlo是管壳式换热器严格的管子排布软件。
HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。
HTRI.Xfh能够模拟火力加热炉的工作情况。
该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。
在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。
一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。
HTRI7 教程01界面熟悉1.双击快捷图标,打开程序界面:HTRI启动界面2.创建一个“新的空冷器”3.设置自己熟悉的一套单位制,比如MKH公制,也可以通过<Edit…>来自定义。
4.接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据,4.1 “Process”工艺条件:包括热流体侧和空气侧;4.2 “Geometry”机械结构:包括管子、管束、风机等;5.当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。
02工艺参数输入1.点击左边目录栏的“Process”标签,右边显示的就是供工艺参数输入的界面:2.我们从上到下依次来看需要输入的参数:*为必要输入参数2.1 Fluid name –流体名称,这里没有红框,不是必须输入的,就是自己定义下流体描述比如“Propylene”“Oil”“Wet Air”等,要注意的是程序对中文字符不支持,那么大家多写写英文就是了~本帖隐藏的内容2.2 Phase/Airside flow rate units –流体相态/空气侧的流量单位*2.3 Flow rate –流量不必多解释,热侧为质量流量。
2.4 Altitude of unit(above sea level) –海拔高度*2.5 Temperature –流体的温度,单位°C (SI,MKH), °F(US),这里要注意的是想输入0度,那么请填 0.001,不然0或0.0的输入都将被程序认为是没有输入(这个原则在HTRI程序的其他地方也适用)。
2.6 Weight fraction vapor –重量气相分率,那么全气相就是1,全液相就是0咯。
2.7 Pressure reference –压力参照点,就是接下来你输入的操作压力值指的是进口压力还是出口压力。
2.8 Pressure–操作压力。
2.9 Allowable pressure drop –允许压降,按照工艺条件来选择,一般热流体侧用kPa比较直观,而空气侧常常使用mmH2O。
2.10 Fouling resistance –污垢热阻,是一个大于0的数,单位为m²°C/W (SI), hr ft²°F/Btu (US),m²°C hr/kcal (MKH)。
这里注意的是最好按照流体的实际情况来取值,如果取值过大意味着在换热器操作初期或介质其实很干净的情况下,换热器的余量会过大,反而影响了正常运行。
2.11 Fouling layer thickness –污垢层厚度,通常认为与污垢系数有如下的关系图,不过通常设计时很少在此处输入数值。
*2.12 Exchanger duty –换热负荷,如果上面的参数输入满足了计算出换热负荷,这里就不必要再输入,如果在此输入了确定的负荷值,那么程序将以输入值为准来计算换热流体的出口温度。
2.13 Duty/flow multiple –负荷/流量系数,这里其实提供了一个简化负荷变化核算的工具,比如要核算110%负荷的运行工况,那么只需要在此填入“1.1”,而不必要去修改输入的流量值。
3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。
03热流体物性参数输入1.对于空冷器的流体物性输入界面,因为冷侧是空气,所以只需对热侧的物性参数进行输入,如下图左侧目录。
只有用Xace设计“省能器”时,冷侧介质不一定为空气,那么冷侧物性也需要输入。
2.下面我们按从上到下的次序来看看都需要定义那些参数。
本帖隐藏的内容2.1 Fluid name –流体名称,在此可以填入热物流的英文描述,比如“Hot Oil”。
2.2 Physical Property Input Option –物性输入方式的选项@User-specifiedgrid (Recommended) –用户自定义的物性表(推荐)就是填入在一定温度范围和一定压力范围内的包括,密度,粘度,导热系数和热容等必要物性的表,这种输入方式适用于从1模拟软件导入物性,2软件的“物性生成器”自生成或3非理想物性但通过实验、文献等手段能获得物性的方式,这种输入方式也是使用得最广泛。
由上图也可看出,程序最多支持输入30个温度点,最多支持12组压力点;而最少需要3个温度点,最少要一组操作压力点下的参数。
@Program calculated –由程序计算输入物质组成,由程序通过特定的热力学方法计算出需要的物性,这种输入方法通常用于组成清晰,每种物质在程序物性库中都存在,并且用混合规则计算的物性准确。
可以这么说,是适用于纯物质或理想混合物。
程序自带的物性库包括“HTRI”、“VMG”,如果你有其他模拟软件的授权,就有对应的接口,灰色的“Not Available”就会消失变得可用。
通常由HTRI内嵌的VMG物性库就很够用啦~@Combination –组合是两种输入方法的组合,在输入组成的条件下,同时又通过物性表来定义了一部分物性,这种方式用得较少。
2.3 Property Options/ Temperature interpolation–属性选项之温度插值方法@Program –程序默认,也即是“Quadratic”。
@Linear –线性,以直线连接温度点,中间点的物性就由斜率计算出。
@Quadratic–二次式,计算三点温度的表达式,中间点的物性就由此二次式计算出。
*这里需要注意的是,对于外推的物性,程序都是以对最外端两个温度点线性的方式外推计算的。
2.4 Fluid compressibility –流体压缩因子如果没有输入,那么程序按理想气体计算。
2.5 Numberof condensing components –可冷凝成分数量定义1个或多个可冷凝成分,程序将修正冷凝相变的传热计式。
2.6 Pure component –纯物质程序默认在计算冷凝时加入适当的阻力系数来体现多组分冷凝过程,如果在此定义为“Yes”纯组分,那么这个修正的阻力系数将不体现。
3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。
->微信公众号@HTRICN关注接下来的【Xace】设计你的第一个空冷器_04空冷结构参数输入04.0空冷结构参数输入1.今天开始我们来看一下空冷器结构参数的输入,如左边目录,进入“Geometry”页面,空冷器的主要结构包括,管束、风机、构架。
右边显示的是总输入界面,罗列了结构的主要参数。
2.1对于型式(Unit type),程序分了4种:@Air-Cooled Heat Exchanger -空气冷却器管外介质是空气,并配有风机。
@Natural Draft Air-Cooler –自然对流式空气冷却器管外介质是空气,无风机强制空气循环,可以理解为风机停开的工况。
@Economizer –省能器管内外的介质无限制,只是不适用于在高翅片管或螺旋翅片管外的蒸发和冷凝工况。
@A-frame air cooler - A型空气冷却器管外是空气,适用于管内单相或冷凝的工况,采用水平与垂直的组合算法来计算传热和压降,若是冷凝工况最多设2管程,第2程上升冷凝采用的是回流冷凝方法来计算传热系数和压降。
本帖隐藏的内容2.2对于空冷类型,程序分了4种:@Horizontal–水平@Vertical(top inlet) –垂直上进@Vertical(bottom inlet) –垂直下进@Inclined–倾斜2.3当类型为“Economizer”,省能器时,热物流就需要定义。
@Inside tube–管内走热流体@Outsidetube –管外走热流体2.4当类型为“A-frame air cooler - A型空气冷却器”,倾斜角选项会打开并需要定义,1-89度。
Apex angle–尖部角度,如图示意。
2.5 Numberof bays in parallel per unit –每个单元并联的跨数量2.6 Numberof bundles in parallel per bay –每跨里并联的管束数量2.7 Numberof tubepasses per bundle –每个管束里的管程数在管子与管束的结构定义里:2.8管子类型分为1Plain光管、2低翅片管、3高翅片管、4连续翅片管。
2.9再输入OD管外径、Wall thickness管壁厚、No. of tuberows管排数、odd/even rows奇排管数/偶排管数2.10管间距输入2.11管子型式包括:2.12风机的参数包括:@Number of fans/bay -每跨的风机数,默认为2.@Fan arrangement –风机的布置为1在下鼓风式,2在上引风式.@Fan diameter –风机直径@Fan ring –风机环3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。
04.1构架单元参数输入1.如左侧目录,我们点击“Unit”进入构架单元的参数输入,其上级目录为Geometry,在上一节中我们已经熟悉了许多关键参数的输入,这一级的页面是更进一步的输入。
2.其他参数见上一节介绍。
2.1Flow type –流动形式@Cocurrent –并流@Countercurrent –逆流本帖隐藏的内容2.2 No. of services –多台空冷串并联2.3 Nozzle database / Schedule–管口数据库/对应管道等级表包含了13种 ANSI、JIS、DIN、ISO标准数据库表文件,以及对应的管道等级表,选择适合你的。
2.4 Entry type/Exit type –热物流进出管口型式,如图中示意,程序认为出口型式与进口一致。
2.5 Tubeside nozzle inside diameter –管口的内径和外径,当然可以从各标准的列表中选择。
2.6 Number of nozzle per bundle –每个管束的管口数量。
3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。
04.2风机参数输入1.如左侧目录,我们点击“Fans”进入风机的参数输入。
2.Fan Information -风机信息本帖隐藏的内容2.1Number of fans per bay –每跨的分机数量,默认值为2,“省能器”模型下为0。
2.2Fan diameter –风机直径,默认值是40%的管束面积被风机叶片覆盖。
2.3Radial fan tip clearance –风机叶片尖部空隙,用于压降计算。