当前位置:文档之家› 零点与分段函数综合应用完整版

零点与分段函数综合应用完整版

零点与分段函数综合应用完整版
零点与分段函数综合应用完整版

零点与分段函数综合应用

1、零点:()()=0()f x f x f x x ??有零点有解图像与轴有交点。

2、求零点的主要方法:????

??????

??

解方程图像法

重点零点存在性定理二分法 3、分段函数:???求值图像与零点的综合应用类型一:零点

1、求函数2()=-2f x x x 的零点个数?

2、求函数(1)ln(1)

()=

3

x x f x x ---的零点个数?

★3、(2012年高考(湖北文))函数

()cos 2f x x x =在区间[0,2]π上的零点

个数为

( ) A .2 B .3 C .4 D .5

4、函数1

2

1

()()2x f x x =-的零点个数为 5、已知()sin f x x π=,1

()4

g x x =,求

()()f x g x =的零点个数。

6、求函数()cos f x x x =-的零点个数 ★

7、(12湖南)设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是

()f x 的导函数,当[]0,x π∈时,0()1f x <<;

当(0,)x π∈且2

x π

时 ,()()02

x f x π

'->,则

函数()sin y f x x =-在[2,2]ππ-上的零点个数为

( )

A .2

B .4

C .5

D .8

8、函数()23x f x x =+的零点所在的一个区

间是

A.()2,1-- B.()1,0- C.()0,1

D.()1,2

9、函数()e 2x f x x =+-的零点所在的一个区间是

A.()2,1-- B.()1,0-C.()0,1

D.()1,2 ★10、函数32

()ln 2x f x x

=-的零点所在一个区间是

A.()1,2 B.()2,3C.()3,4 D.()4,5 类型二:分段函数 1

1,

()0,

1,

f x ???=??-??0(0)(0)

x x x >=<,

1,

()0,

g x ??=?

??

()(x x 为有理数为无理数)

,则(())f g π的值为

( )

A .1

B .0

C .1-

D .π 2、(2012年高考(陕西文科))设函数

,0,

()

1(),0,

2

x

x x f x x ,则((4))f f =____ _ 3

lg ,0()10,0

x

x x f x x >?=??,

((2))f f -=______.

4、(12江西文)设函数2

11

()2

1x x f x x x

?+≤?=?>?

?,则((3))f f =

( ) 5、(12建文)已知函数2()1x f x x ?=?+?0

x x >≤,

若()(1)0f a f +=,则实数a =

★6、已知lg 010()16102

x x f x x ?<≤?

=?-+>??若,,a b c 互

不相等,且有()()()f a f b f c ==,求abc 的取值范围。

类型三:分段函数图像与零点

1、求函数223,0

()2ln ,0

x x x f x x x ?+-≤=?-+>?的零点个数

2、已知

221,0()2,0

x x f x x x x ?->?=?--≤??,若

()()g x f x m =-有3个零点,

求实数m 的取值范围。

3、若方程()210,1x a a a a =->≠有两实数解,求a

3、已知2

log(1),0

()2,0

x x f x x x x +>?=?--≤?,若()()g x f x m =-有两个零点,

求实数m 的取值范围。

练习:①、若()()g x f x m =-有3个零点(实数根)

②、若()()g x f x m =-有1个零点(实数根)

4、已知,1

,1

a a

b a b b a b ?-≤??=?->??

①求2(2)(1)x x -?-的表达式()f x ; ②若()y f x c =-有两个零点,求c 的取值范围。

★5、(2012年高考(天津文))已知函数

211

x y x -=

-的图像与函数y kx =的图像恰有

两个交点,则实数k 的取值范围是________

专题复习之--函数零点问题

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 变式:函数b x a x f x -+=)(的零点))(1,(0Z n n n x ∈+∈,其中常数b a ,满足 23,32==b a , 则=n ( ) A. 0 B.1 C.2- D.1- 2.已知a 是实数,函数2 ()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()44f x x x = ++-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5.若存在区间[,]a b ,使函数[]()2(,)f x k x x a b =+ +∈的值域是[,]a b ,则实数k 的范围 是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. 7.(选作思考)函数f (x )=234 20122013123420122013x x x x x x ??+-+-+-+ ?? ? cos2x 在区间[-3,3]上的零点的个数为_________.

(三)复合函数与分段函数零点问题(由里及外,画图分析) 8.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的 零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 变式一:设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 变式三:已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B. b >-2且c <0 C. b <-2且c =0 D. b 2c=0≥-且

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

专题分段函数与函数零点答案

11. 已知函数f(x)=???x ,x ≥0,x 2,x <0, 则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=???-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=? ??-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=? ??-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为???-x 2-x +2>-x +4,x ≤1, 或???x 2-5x +4>-x +4,x>1, 解得x >4. 11. 已知f(x)=???x 2+x (x≥0),-x 2+x (x<0), 则不等式f(x 2-x +1)<12的解集是________. 11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

函数零点的题型总结

函数零点的题型总结 例题及解析 考点一函数零点存在性定理的应用 【例1】已知函数f(x)=(1 2 )x-13x,那么在下列区间中含有函数f(x)零点的是( ) (A)(0,1 3) (B)(1 3 ,1 2 ) (C)(1 2,2 3 ) (D)(2 3 ,1) 解析:f(0)=1>0,f(1 3)=(1 2 )13-(1 3 )13>0, F(1 2)=(1 2 )12-(1 2 )13<0,f(1 3 )f(1 2 )<0, 所以函数f(x)在区间(1 3,1 2 )内必有零点,选B. 【跟踪训练1】已知函数f(x)=2 x -log3x,在下列区间中包含f(x)零点的是( ) (A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4) 解析:由题意,函数f(x)=2 x -log3x为单调递减函数, 且f(2)= 2 2-log32=1-log32>0,f(3)= 2 3 -log33=-1 3 <0, 所以f(2)·f(3)<0, 所以函数f(x)=2 x -log3x在区间(2,3)上存在零点,故选C.

【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( ) (A)[0,1] (B)[-1,0] (C)[0,2] (D)[-1,1] 解析:f(1)=ln 2>0, 当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D; 当a=2时,f(1 2)=ln 3 2 -1 2 <0,所以f(x)在(1 2 ,1)上至少有一个零点,舍 去C.因此选A. 考点二函数零点的个数 考查角度1:由函数解析式确定零点个数 【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( ) (A)5 (B)4 (C)3 (D)2 (2)已知f(x)=2x x +x-2 x ,则y=f(x)的零点个数是( ) (A)4 (B)3 (C)2 (D)1 解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以 x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π 2 ,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B. 解析:(2)令2x x +x-2 x =0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由 图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

分段函数零点问题研究

分段函数零点问题研究

分段函数作业 1. 已知函数f(x)=???(1-2a )x +3a ,x<1,lnx ,x ≥1 的值域为R ,那么实数a 的取值范围是________. 2. 已知函数f(x)=???(3a -1)x +4a ,x<1,log a x ,x ≥1在R 是单调函数,则实数a 的取值范围是______. 3. 已知函数f(x)=???x +2,x >a ,x 2+5x +2,x ≤a , 若函数g(x)=f(x)-2x 恰有3个不同的零点,则实数a 的取值范围是________. 4. 已知函数f(x)=? ??x 2,x ∈[0,+∞),x 3+a 2-3a +2,x ∈(-∞,0)在区间(-∞,+∞)上是增函数,则常数a 的取值范围是________. 5. 已知函数f(x)=? ????-x 2+4x ,x ≤4,log 2x ,x>4,若函数y =f(x)在区间(a ,a +1)上单调递增,则实数a 的取值范围是________. 6. 已知函数f(x)=?????(x -a )2 ,x ≤0,x +1x +a ,x>0,若f(0)是f(x)的最小值,则实数a 的取值范围为_____. 7. 已知函数f(x)=???|x|,x ≤m ,x 2-2mx +4m ,x>m , 其中m>0,若存在实数b ,使得关于x 的方程f(x)=b 有3个不同的根,则m 的取值范围是________. 8. 已知函数f(x)=?????1x +1-3,x ∈(-1,0],x ,x ∈(0,1], 且g(x)=f(x)-mx -m 在(-1,1]内有且仅有2个不同的零点,则实数m 的取值范围是________. 9. 已知函数f(x)=???(2a -4)x +2a -3,x ≤t ,-x 2+3x ,x>t , 无论t 取何值,函数f(x)在区间(-∞,+∞)上总是不单调,则实数a 的取值范围是________. 10. 设函数f(x)=???log 2??? ?-x 2,x ≤-1,-13x 2+43x +23,x>-1, 若f(x)在区间[m ,4]上的值域为[-1,2],则实数m 的取值范围为________.

函数与函数地零点知识点的总结

函数及函数的零点有关概念 函数的概念:设 A 、 B 是非空的数集,如果按照某个确定的对应关系 f ,使对于集合A 中的任意一个数 x ,在 集合B 中都有唯一确定的数 f(x)和它对应,那么就称 f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x) , x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的 y 值叫做函数值,函数值的集 合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数(一)函数三要素 1.定义域:能使函数式有意义的实数 x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于 1. (5) 指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的 x 的值组成的 集合即交集.(7)三角函数正切函数 tan y x 中()2 x k k Z . (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义 . (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法:复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1) 已知f(x)的定义域是[a,b],求f[g(x)] 的定义域,是指满足 () a g x b 的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b 的条件下,求g(x)的值域; (3) 已知f[g(x)] 的定义域是[a,b], 求f[h(x)] 的定义域,是指在[,]x a b 的条件下,求g(x)的值域,g(x)的值 域就是h(x)的值域,再由h(x)的范围解出x 即可。2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法3).值域 : 先考虑其定义域3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法;3.2分段函数的值域是各段的并集3.3复合函数的值域

导数在函数零点中的应用

方程根的个数 图像法 1. 已知函数?(x )=2 -x e x (1)求?(x )的单调区间 增),3(+∞减)3,2()2,( -∞ (2)判断关于x 的方程e x =k(x-2)(k ∈R)的解的情况 2已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++= 利用单调性 1已知二次函数)(x f 的二次项系数为a ,且不等式)(x f >x 2的解集为(-1,3)。 (1)若方程a x f 7)(-=有两个相等的实数根,求)(x f 的解析式 34)(2++-=x x x f (2)若函数)()(x xf x g =在区间?? ? ??∞-3,a 内单调递减,求a 的取值范围 (]1,-∞- (3)当a =-1时,证明:方程12)(3 -=x x f 仅有一个实数根 2、已知a >0,l x n x ax x f ),1(112)(2+++-=是曲线)(x f y =在点))0(,0(f P 处的切线 (1)求l 的方程 1+-=x y (2)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值 2 1=a (3)证明:对任意的),(*N ∈=n n a 函数)(x f y =总有单调递减区间,并求出)(x f 的单调递减区 间的长度的取值范围(区间[]21,x x 的长度=12x x -) (] 2,1 分离参数求值域 1. 已知函数=)(x f log 4)()14(R x kx x ∈++是偶函数 (1)求k 的值 2 1-=k (2)若方程0)(=-m x f 有解,求m 的取值范围 m ≥ 21

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用 函数观点处理问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). < A.()2,1-- B.()1,0- C.()0,1 D.() 1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()11e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选 C. 二、 基础知识回顾

1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 · 解法二:几何解法 (1). ()e 2x f x x =+- 可化为2x e x =-+. 画出函数x y e =和 2y x =-+的图象,可观察得出C 正确. ) )0=有实数根

零点与分段函数综合应用完整版

零点与分段函数综合应用 1、零点:()()=0()f x f x f x x ??有零点有解图像与轴有交点。 2、求零点的主要方法:???? ?????? ?? 解方程图像法 重点零点存在性定理二分法 3、分段函数:???求值图像与零点的综合应用类型一:零点 1、求函数2()=-2f x x x 的零点个数? 2、求函数(1)ln(1) ()= 3 x x f x x ---的零点个数? ★3、(2012年高考(湖北文))函数 ()cos 2f x x x =在区间[0,2]π上的零点 个数为 ( ) A .2 B .3 C .4 D .5 4、函数1 2 1 ()()2x f x x =-的零点个数为 5、已知()sin f x x π=,1 ()4 g x x =,求 ()()f x g x =的零点个数。 6、求函数()cos f x x x =-的零点个数 ★ 7、(12湖南)设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是 ()f x 的导函数,当[]0,x π∈时,0()1f x <<; 当(0,)x π∈且2 x π ≠ 时 ,()()02 x f x π '->,则 函数()sin y f x x =-在[2,2]ππ-上的零点个数为 ( ) A .2 B .4 C .5 D .8 8、函数()23x f x x =+的零点所在的一个区 间是 A.()2,1-- B.()1,0- C.()0,1 D.()1,2 9、函数()e 2x f x x =+-的零点所在的一个区间是 A.()2,1-- B.()1,0-C.()0,1 D.()1,2 ★10、函数32 ()ln 2x f x x =-的零点所在一个区间是 A.()1,2 B.()2,3C.()3,4 D.()4,5 类型二:分段函数 1 、 设 1, ()0, 1, f x ???=??-??0(0)(0) x x x >=<, 1, ()0, g x ??=? ??

函数的零点及应用

函数的零点及应用 一、要点扫描 1.函数零点的理解:(1)函数的零点、方程的根、函数图象与x 轴的交点的横坐标,实质是同一个问题的三种不同表达形式;(2)若函数f (x )在区间[a ,b ]上的图象是一条连续的曲线且f (a )f (b )<0,则f (x )在区间(a ,b )内有零点. 2.函数零点的判定常用方法:(1)零点存在性定理;(2)数形结合法;(3)解方程f (x )=0. 3.曲线的交点问题:(1)曲线交点坐标即为方程组的解,从而转化为方程的根;(2)求曲线y =f (x )与y =g (x )的交点的横坐标,实际上就是求函数y =f (x )-g (x )的零点,即求f (x )-g (x )=0的根. 二、典型例题剖析 1.求函数的零点 例1 求函数f (x )=x 3-3x +2的零点. 解 令f (x )=x 3-3x +2=0,∴(x +2)(x -1)2=0. ∴x =-2或x =1, ∴函数f (x )=x 3-3x +2的零点为-2,1. 评注 求函数的零点,就是求f (x )=0的根,利用等价转化思想,把函数的零点问题转化为方程根的问题,或利用数形结合思想把函数零点问题转化为函数图象与x 轴的交点问题. 2.判断函数零点的个数 例2 已知函数f (x )=a x +x -2 x +1 (a >1),判断函数f (x )=0的根的个数. 解 设f 1(x )=a x (a >1),f 2(x )=-x -2 x +1 ,则f (x )=0的解,即为f 1(x )=f 2(x )的解,即为函数f 1(x ) 与f 2(x )的交点的横坐标.

专题3---分段函数与函数零点答案

11. 已知函数f(x)=? ????x ,x ≥0,x 2,x <0,则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x ≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x ≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x ≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2 =-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x ≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=? ????-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=?????-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=?????-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为?????-x 2-x +2>-x +4,x ≤1, 或? ????x 2-5x +4>-x +4,x>1, 解得x >4.

函数的零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的 联系,掌握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点 个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用 函数观点处理问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()11e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念

对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 有零点吗? 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗? 解法二:几何解法 (1). ()e 2x f x x =+- 可化为2x e x =-+. 画出函数x y e =和 2y x =-+的图象,可观察得出C 正确. ) )0=有实数根 图像有交点.

副题01 分段函数与函数的图象(解析版)

2020届高考数学23题对对碰【二轮精品】 第一篇 副题1 分段函数与函数的图像 【副题考法】本热点考题类型为选择或填空题,考查分段函数的图象、性质及分段函数求值、函数的图象、分段函数求值、复合函数求值及利用图像性质研究函数的零点、方程的解,难度为容易题或中档题或选择填空题的压轴题,长为1-2个小题,每小题5分,共5到10分. 【主题考前回扣】 1.函数的图象 (1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. (2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究. (3)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则y =f (x )的图象关于直线x =a 对称; ②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则y =f (x )的图象关于点(a ,0)对称. 2.函数图象的基本变换 (1)平移变换 y =f (x )――→h >0,右移 h <0,左移y =f (x -h ), y =f (x )――→k >0,上移 k <0,下移y =f (x )+k . (2)伸缩变换 y =f (x )――→0<ω<1,伸 ω>1,缩y =f (ωx ), y =f (x )――→0

函数应用、零点、二分法知识点和练习

一、方程的根及函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象及x 轴交点的横坐标。 即:方程0)(=x f 有实数根?函数)(x f y =的图象及x 轴有交点?函数)(x f y =有零点. 3、函数零点的求法: ○ 1 (代数法)求方程0)(=x f 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它及函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、基本初等函数的零点: ①正比例函数(0)y kx k =≠仅有一个零点。 ②反比例函数没有零点。 ③一次函数(0)y kx b k =+≠仅有一个零点。 ④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象及x 轴有两个交点,二次函数有两个零点. (2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象及x 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象及x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。 ⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1. ⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。 5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是 函数()f x 零点的个数。即f(x)=g(x)的解集 f(x)的图像和g(x)的图像的交点。 6、选择题判断区间(),a b 上是否含有零点,只需满足()()0f a f b <。 7、确定零点在某区间(),a b 个数是唯一的条件是:①()f x 在区间上连续,且()()0f a f b <②在区

函数的应用函数的零点

函数的应用函数的零点 LELE was finally revised on the morning of December 16, 2020

《函数的零点》教学设计 【教学目标】 1、学生能够结合具体二次方程,说出方程的根、函数的零点、函数图象与x轴的交点横坐标三者的关系; 2、学生能利用函数图象和性质判断二次函数的零点个数,并会求二次函数的零点; 3、通过对具体例题的讨论,学生能总结出函数零点存在性定理,能说出图象连续不断的意义及作用;能举例说明定理的逆命题不成立; 4、学生能运用零点存在性定理证明函数在某区间上存在零点; 5、学生初步体会函数方程思想,能将方程求解问题转化为函数零点问题.【课堂实录】 一、创设情境,引入新课 1.你会解方程0 3 2 2= -x x吗方法是什么 - 学生众:会。可以用因式分解,配方,求根公式…… 2.你会解方程x lg吗你能确定上述方程的解的个数吗 =3 x- 学生众:(第一个问号)不会。 学生1:可以作函数x y- =3的图象,两个函数交点的横坐标就 =和x y lg 是方程x lg的根,由图可知,两个函数有且只有一个交点,所以方程的=3 x- 解有一个。 教师:这位同学说的非常完美。我们在现实问题的解决中经常会遇到无法用公式法等求解的方程,这位同学将方程的问题转化为函数来解决,这正是本

章要研究的一个重要思想与方法——函数与方程。为了理清两者的关系,我们从简单的一元二次方程和一元二次函数的关系出发进行研究。 二、问题引动,明晰概念 问题1:方程x2-2x-3=0与函数y= x2-2x-3有怎样的联系呢? 学生2:方程x2-2x-3=0的根就是函数y= x2-2x-3的图象与x轴交点的横坐标,也就是函数y= x2-2x-3中令y=0时的x的解。 教师:很好。我们把函数y= x2-2x-3中使y=0时的x的解称为函数y= x2-2x-3的零点。“零点”是一个新的概念,但它的本质我们并不陌生。(在黑板上板书一元二次函数零点的定义,及零点、交点横坐标、方程的根三者之间的等价关系) 例1求证:二次函数y=x2-2x-1有两个不同的零点。 学生3:(略) 问题2:你能将这个特殊的二次函数推广到一般的二次函数来研究它的零点吗? 学生4:用对应方程的Δ的正负判断零点的 个数。Δ>0,函数有两个零点;Δ=0,函数有一 个零点;Δ<0,函数无零点。 学生一起归纳:二次函数零点的判定(填写右表) 问题3:你能将零点的概念推广到一般函数吗? 学生归纳定义:一般地,我们把使函数y=f(x) 的值为0的实数x称为函数y=f(x)的零点。

新高一数学第16讲-函数的零点与应用问题

主题函数的零点与应用问题 教学内容 1. 理解函数零点的概念,会求函数的零点; 2. 掌握常见类型函数的应用。 问题:已知二次函数6 2- - =x x y ①求0 = y时x的值. ②作出函数的简图,并观察方程0 6 2= - -x x的根与函数图象与x轴交点之间的关系. 1.零点的定义:一般地,如果函数) (x f y=在实数a处的值等于零,即0 ) (= a f,则a叫做这个函数的零点; 2.函数零点的求法:求函数) (x f y=的零点就是求相应的方程0 ) (= x f的根,一般可以 借助求根公式或因式分解或二分法等办法,求出方程的根,从而得出函数的零点. 思考:如何判断函数) (x f y=在区间] , [b a上是否存在零点. 问题:完成下表,回答问题: 方程 3 2 2= - -x x 1 2 2= + -x x0 3 2 2= + -x x 函数 3 2 2- - =x x y 1 2 2+ - =x x y3 2 2+ - =x x y 图像 x y -2 3 x y -1 3 x y 1 x y

方程的根 11-=x ,32=x 121==x x 无实根 函数零点 3. 函数)(x f y =在区间],[b a 上存在零点的条件:如果函数)(x f y =在区间],[b a 上的图像是一条不间断的曲线,且0)()(b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

微专题分段函数及零点问题1

微专题分段函数的零点问题 活动一:预习反馈导学 1.已知函数f (x )=????? -x 2+12x x ,x +x , 若函数y =f (x )-kx 有3个零点,则实数k 的取值范围是________. 2.已知函数311,,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 3.【2014江苏,理13】已知错误!未找到引用源。是定义在错误!未找到引用源。上且周期为3的函数,当错误!未找到引用源。时,错误!未找到引用源。,若函数错误!未找到引用源。在区间错误!未找到引用源。上有10个零点(互不相同),则实数错误!未找到引用源。的取值范围是 . 4.【2015高考江苏,13】已知函数错误!未找到引用源。,错误!未找到引用源。,则方程错误!未找到引用源。实根的个数为 活动二. 合作提炼探究

例1.设函数f (x )=????? x ,x ≤0,x 2-x ,x >0,若方程f (x )=m 有三个不同的实根,则实数m 的取值范围为________. 变式 已知32,(),x x a f x x x a ?≤=?>?,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是___. 探究1:已知函数(),0 { 21,0lnx x f x x x >=+≤,若直线y ax =与()y f x =交于三个不同的点 ()(),A m f m , ()(),B n f n , ()(),C t f t (其中m n t <<),则12n m + +的取值范围是__________. 探究2: 已知k 为常数,函数()2,0{ 1 ,0 x x f x x lnx x +≤=->,若关于x 的方程()2f x kx =+有且只有4个不同解,则实数k 的取值集合为__________. 例2. 【2015高考天津,文8】已知函数错误!未找到引用源。,函数错误!未找到引用源。,则函数错误!未找到引用源。的零点的个数为________.

函数的性质及其零点应用问题

函数的性质及零点应用问题 1. 已知f (x )是定义在R 上的奇函数,当X ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为_________ 2. 已知偶函数f (x )在 [ 0,+∞)上单调递减,f (2)= 0 ,若f (x -1)> 0,则x 的取值范围是________ 3. 函数f (x )是周期为4的偶函数,当x ∈[ 0 ,2 ]时,f (x )=x -1,则不等式xf (x )> 0在[-1,3]上的解集为______ 4. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )= -4x 2+2 (-1≤x <0),f (x ) = x (0≤x <1),则f (3/2)的值为_____ 5. 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,|x 2-2x+2 1|,若函数y=f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围______ 6. 已知函数f (x )=|lnx|,g (x )=0 (0<x ≤1);g (x )= |x 2-4|-2 (x >1),则方程|f (x )+g (x )| = 1 实根的个数为______ 7. 已知偶函数f (x )在[0,+∞)上单调递增,则使得f (x )>f (2x -1)成立的x 的取值范围是________ 8. 已知函数f (x )为定义在[2-a ,3]上的偶函数,在[0,3]上单调递减,并且f (-m 2-5a )>f (-m 2+2m -2),则实数m 的取值范围是_________ 9. 已知函数{x f 0 x ,3)42(20x 1x loga =+-+≥+)(<,),(a x a x (a >0且a ≠1),在R 上单调递减,且方程|f (x ) |=2又两个不相等的实数根,则实数a 的取值范围是_____

文本预览
相关文档 最新文档