高二数学组合数的两个性质
- 格式:doc
- 大小:197.50 KB
- 文档页数:6
高二数学组合与组合的运用试题答案及解析1. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是()A.B.C.D.【答案】D【解析】至少有两件一等品包括三种情况,第一种是恰有两件一等品,有种方法;第二种是恰有三件一等品,有种方法; 第三种是恰有四件一等品,有种方法;所以共有种方法,答案选D.【考点】排列组合2.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为()A.720B.360C.240D.120【答案】D【解析】圆上有10个点,故无三点共线,因此从中任取三点都能得到一个对应的三角形,因此一共可以画的三角形个数为,注意这里是组合问题,而不是排列问题.【考点】组合应用及转化思想.3.从4名同学中选出3人,参加一项活动,则不同的选方法有种(用数据作答);【答案】4【解析】从4名同学中选出3 人,则不同的选法有种.【考点】组合数.4.已知{1,2}⊆Z⊆{1, 2,3,4,5},满足这个关系式的集合Z共有 ().A.2个B.6个C.4个D.8个【答案】D【解析】由题意知集合Z中的元素1,2必取,另外可从3,4,5中取,可以不取,即取0个,取1个,取2个,取3个,故有个满足这个关系式的集合;故选D.【考点】子集与真子集5.一个口袋里装有4个不同的红球,6个不同的白球,若取出一个红球记2分,取出一个白球记1分,从口袋中取出5个球,使总分低于7分的取法共有多少种?()A.186B.66C.60D.192【答案】B【解析】解:设取x个红球,y个白球,于是:,其中,或因此所求的取法种数是:(种),故选B.【考点】组合数公式.6.某医院有内科医生5名,外科医生6名,现要派4名医生参加赈灾医疗队,如果要求内科医生和外科医生中都有人参加,则有种选法(用数字作答).【答案】310【解析】此题用间接法比较简单,从11人任选4人的方法有,其中只有内科医生的方法,只有外科医生的方法,所以按要求的方法种数为.【考点】组合及组合数的计算7.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.【答案】140【解析】当甲、乙两人都参加时,有C82=28(种)选法;当甲、乙两人中有一人参加时,有C83·C21=112(种)选法.∴不同的挑选方法有28+112=140(种).8.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种________种(结果用数值表示).【答案】7【解析】设餐厅至少还需准备x种不同的素菜.由题意,得C52·Cx2≥200,从而有Cx2≥20.即x(x-1)≥40.∴x的最小值为7.9.已知,则= .【答案】【解析】根据题意,由于,即可知,即可知化简解得为n=2,故答案为2.【考点】组合数公式点评:主要是考查了组合数的性质和公式的运用,属于基础题。
组合数的两个性质教学目的:熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题。
教学重点:组合数的两个性质的理解和应用。
教学难点:利用组合数性质进行一些证明。
教学过程:一、复习回顾:1强调:排列——次序性;组合——无序性. 2.练习1:求证:11--=m n mn C mn C . (本式也可变形为:11--=m n m n nC mC )2:计算:① 310C 和710C ; ② 2637C C -与36C ;③ 511411C C +(此练习的目的为下面学习组合数的两个性质打好基础.)二、新授内容:1.组合数的 性质1:m n n m n C C -=.理解: 一般地,从n 个不同元素中取出m 个元素后,剩下n - m 个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n n m n C C -=.在这里,我们主要体现:“取法”与“剩法”是“一一对应”的思想.证明:∵)!(!!)]!([)!(!m n m n m n n m n n C m n n -=---=- 又 )!(!!m n m n C mn -=∴m n n m n C C -=注:1︒ 我们规定 10=n C2︒ 等式特点:等式两边下标同,上标之和等于下标. 3︒ 此性质作用:当2n m >时,计算m n C 可变为计算mn n C -,能够使运算简化. 例如:20012002C =200120022002-C =12002C =2002.4︒ yn x n C C =y x =⇒或n y x =+2.例4一个口袋内装有大小相同的7个白球和1个黑球.⑴ 从口袋内取出3个球,共有多少种取法?⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法?解:⑴ 5638=C ⑵ 2127=C ⑶ 3537=C 引导学生发现:=38C +27C 37C .为什么呢?我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.一般地,从121,,,+n a a a Λ这n +1个不同元素中取出m 个元素的组合数是mn C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m -1个元素与1a 组成的,共有1-m nC 个;不含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m 个元素组成的,共有m n C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.3.组合数的 性质2:m n C1+=m n C +1-m n C .证明: )]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n)!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m n mn C 1+= ∴ m n C 1+=mn C +1-m n C .注:1︒ 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.2︒ 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.4.补充例题⑴ 计算:69584737C C C C +++⑵ 求证:n m C 2+=n m C +12-n m C +2-n m C⑶ 解方程:3213113-+=x x C C⑷ 解方程:333222101+-+-+=+x x x x x A C C ⑸ 计算:4434241404C C C C C ++++和554535251505C C C C C C +++++ 推广:nn n n n n n n C C C C C 21210=+++++-Λ5.组合数性质的简单应用: 证明下列等式成立:⑴ (讲解)11321++---=+++++k n k k k k k n k n k n C C C C C C Λ ⑵ (练习)1121++++++=++++k k n k n k k k k k k k C C C C C Λ⑶ )(23210321n n n n nn n n n C C C n nC C C C +++=++++ΛΛ 三、作业: 课堂作业:P 103 1#,2#课外作业:课本习题10.3;5#—8#四、小结:1.组合数的两个性质;2.从特殊到一般的归纳思想.酒钢三中高二数学组。
高二数学必修三组合知识点组合是高二数学必修三中的重要知识点之一,本篇文章将详细介绍组合的概念、性质以及应用。
一、组合的概念在概率论中,组合指的是从一个集合中选取若干个元素组成一个子集。
组合的数量可以用组合数来表示,记作C(n, k),其中n为集合的大小,k为选取的元素个数。
组合数的计算公式为C(n, k) = n! / (k! * (n-k)!),其中"!"表示阶乘运算。
二、组合的性质1. 对称性:C(n, k) = C(n, n-k),即从n个元素中选取k个与选取n-k个的组合数相等。
2. 互补性:C(n, k) + C(n, k+1) = C(n+1, k+1),即从n个元素中选取k个的组合数加上选取k+1个的组合数等于从n+1个元素中选取k+1个的组合数。
3. 递推性:C(n, k) = C(n-1, k-1) + C(n-1, k),即从n个元素中选取k个的组合数等于从n-1个元素中选取k-1个的组合数加上选取k个的组合数。
三、组合的应用1. 排列组合问题:组合数可以用于计算排列组合问题,如从n 个元素中选取k个元素进行排列的方式数目。
2. 概率计算:组合数可用于计算事件发生的概率,如从一副扑克牌中抽取几张牌中包含某个特定的组合的概率。
3. 数学证明:组合数在数学证明中有广泛的应用,可以用于推导和证明各种数学定理。
四、组合的例题解析例题1:某班有10个男生和8个女生,从中选取5个同学参加运动会,其中至少有2个男生。
问有多少种可能的选择方案。
解析:根据题意,我们可以分别计算选取2个男生加上3个女生、3个男生加上2个女生、4个男生加上1个女生、5个男生这四种情况的组合数,然后将它们相加即可得到总的方案数。
例题2:从整数1到10中选取3个数,求这3个数的和为偶数的方案数。
解析:我们可以分别计算奇数个数和偶数个数的选取情况,并将它们相加。
选取奇数个数的情况即从5个奇数中选取3个数的组合数;选取偶数个数的情况即从5个偶数中选取1个数的组合数乘以从5个奇数中选取2个数的组合数。
高二数学组合数的两个性质
组合数的两个性质 教学目的:熟练掌握组合数的计算公式;
掌握组合数的两个性质,
并且能够运用它解决一些简单的应用
问题。
教学重点:组合数的两个性质的理解和应用。
教学难点:利用组合数性质进行一些证明。
教学过程:
一、复习回顾:
1.复习排列和组合的有关内容:
强调:排列——次序性;组合——无序性.
2.练习
1:求证:1
1--=
m n m n
C m
n C
. (本式也可变形为:
11
--=m n m n nC mC )
2:计算:① 3
10
C 和710
C ; ② 2
637
C C
-与36
C ;③
511
411
C C +
(此练习的目的为下面学习组合数
的两个性质打好基础.)
二、新授内容
:
1
m n n
m
n
C C
-=.
理解: 一般地,从n 个不同元素中取出
m 个元素后,剩下n - m 个元素.因
为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素
的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n n
m
n
C C
-=.在这里,
我们主要体现:“取法”与“剩法”是“一一对应”的思想. 证明:∵)!
(!!
)]!([)!(!m n m n m n n m n n C
m
n n
-=
---=
-
又 )!
(!!m n m n C
m n
-=
∴m n n
m n
C C
-=
注:1︒ 我们规定 1
0=n
C
2︒ 等式特点:等式两边下标同,上标之和等于下标.
3︒ 此性质作用:当2
n m >时,计算m
n
C 可变为
计算m n n
C -,能够使运算简化.
例如:20012002
C =200120022002
-C
=12002
C =2002.
4︒ y n x n C C =y
x =⇒或n y x =+
2.例4一个口袋内装有大小相同的7个白球和1个黑球.
⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法?
解:⑴ 56
3
8
=C
⑵ 21
27
=C
⑶ 35
37
=C
引导学生发现:=38
C
+27C 3
7
C .为什么呢?
我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.
一般地,从1
2
1
,,,+n a a a Λ这n +1个不同元素中取
出m 个元素的组合数是m n C 1
+,这些组合可以分为
两类:一类含有元素1
a ,一类不含有1
a .含有1
a 的
组合是从1
3
2
,,,+n a a a Λ这n 个元素中取出m -1个元
素与1
a 组成的,共有1
-m n
C 个;不含有1
a 的组合是从
1
32,,,+n a a a Λ这n 个元素中取出m 个元素组成的,
共有m n
C 个.根据分类计数原理,可以得到组合
数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.
3
=m n
C +1-m n
C .
证明: )]!
1([)!1(!
)!(!!1---+
-=
+-m n m n m n m n C C
m n m n
)!1(!!)1(!+-++-=m n m
m n m n n )!1(!!)1(+-++-=m n m n m m
n )!
1(!)!1(+-+=m n m n m n C 1
+=
∴ m n C 1
+=m n
C +1-m n
C .
注:1︒ 公式特征:下标相同而上标差1
的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数. 2︒ 此性质的作用:恒等变形,简化
运算.在今后学习“二项式定理”时,我们会看到它的主要应用. 4.补充例题 ⑴ 计算:6
9
58473
7
C C C C
+++
⑵ 求证:n m C 2
+=n m
C +12-n m
C +2-n m
C
⑶ 解方程:3213
113-+=x x C C
⑷ 解方程:3
33
22210
1+-+-+=
+x x x x x A C C
⑸ 计算:44
34241404C C C C C
++++和55
4535251505
C C C C C C
+++++
推广:n
n n n n n n n
C C C C C
21210
=+++++-Λ
5.组合数性质的简单应用: 证明下列等式成立: ⑴ (讲解)11321
++---=+++++k n
k k k k k n k n k n C C C C C C Λ
⑵ (练习)11
21++++++=++++k k n k n k k k k k k k
C C C C C Λ
⑶ )(2
3210321
n
n n n n
n n n n
C C C n nC C C C
+++=
++++ΛΛ
三、作业
: 课堂作业:P 103 1#,2# 课外作业:课本习题10.3;5#—8#
四、小结
:1.组合数的两个性质;
2.从特殊到一般的归纳思想.
酒钢三中高二数学组。