4最大公因数
- 格式:doc
- 大小:475.85 KB
- 文档页数:12
公因数、最大公因数、公倍数和最小公倍数1、掌握最大公因数和最小公倍数的求法;2、会解有关最大公因数和最小公倍数的应用题;【知识点1】最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
【知识点2】最大公因数求法1、列举法先找出两个数的(因数),再找出两个数的(公因数),最后找出二个数的(最大公因数)找8和6的最大公因数8的因数有1、2、4、86的因数有1、2、3、68和6的最大因数数是2。
2、观察法(特殊情况)1)两个数具有倍数关系的,它们的最大公因数就是其中较小的数。
2)两个数是互质数的(互质数就是两个数只有公因数1),它们的最大公因数就是1。
3)两个数不是倍数和互质关系,用小数缩小法案件分解:●两个数具有倍数关系的,它们的最大公因数是其中较小的数。
8和16的最大公因数(8 )4和8的最大公因数(4 )9和3的最大公因数(3 )28和7的最大公因数(7 )●两个数是互质数的(互质数就是两个数只有公因数1),它们的最大公因数就是1。
✧相邻两个自然数(0除外)2和3的最大公因数是(1 )8和9的最大公因数是(1 )99和98的最大公因数是(1 )✧两个不同的质数5和7的最大公因数是(1 )17和29的最大公因数是(1 )11和19的最大公因数是(1 )✧两个互质的合数4和9的最大公因数是(1 )20和49的最大公因数(1 )25和69的最大公因数是(1 )●两个数不是倍数和互质关系,用小数缩小法把较小的数缩小(除以2、3、4……)每次缩小后看得到的商是不是另一个数的因数,直到所得的商是另一个数的因数为止。
18和48的最大公因数先用小数 18÷2=9,9不是48的因数,18÷3=6,6是48的因数,那么18和48的最大公因数6。
16和36的最大公因数16÷2=8,8不是36的因数,16÷4=4,4是36的因数,那么16和36的最大公因数4。
《最大公因数》教案【教学目标】会在集合图中分别表示两个数经历具体的操作活动,认识公因数和最大公因数,1. 知识与技能的因数和它们的公因数,在探究中体会数形结合的数学思想。
2.过程与方法进一步发展初步的推理经历观察、归纳等数学活动,在探索寻找公因数和最大公因数的过程中,能力。
3.情感态度与价值观增强数学意识。
会运用公因数,最大公因数的知识解决简单的实际问题,体验数学与生活的联系,【教学重点】理解公因数和最大公因数的意义。
【教学难点】利用公因数、最大公因数解决简单的实际问题。
【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】多媒体课件。
【课时安排】1课时【教学过程】 :][来源(一)复习导入1.师:同学们,你们还记得因数和倍数、质数和合数的有关知识吗?现在就让老师来考考你们吧!(课件第2张)(1) 一个数的最小因数是(1),最大因数是(它本身)。
(2) 一个数,只有1和它本身2个因数,这样的数叫做(质数),一个数,除了1和它本身两个因数,还有其他的因数,这样的数叫做(合数)。
Z.X.X.K]网科学来源[ 怎样找一个数的因数呢?4...321用这个数依次除以、、、如果商是整数,那么除数和商都是这个数的因数。
2.同学们对因数的知识掌握得非常好,今天我们将继续深入学习因数的有关知识。
(板书课题:最大公因数)【设计意图】.复习旧知,培养学生的迁移能力,为学习新知识做准备。
(二)探究新知1. 探究公因数和最大公因数的特点。
(1)8和12的公有的因数是哪几个?公有的最大因数是多少?(课件第3张演示)】生1:我先找到8的因数和12的因数有哪些,再找这两个数公有的因数,最后看公有的最大因数是多少。
8和12的公有的因数是1,2,4。
公有的最大因数是4生2:也可以这样表示:(课件第4张)8和12公有的最大因数是4。
【设计意图】通过学生自己利用以前学过的因数的知识,找出这两个数的公有的因数和公有的最大因数,培养学生迁移类推的能力。
巧解最大公因数与最小公倍数问题
姓名:
1、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少?
2、有一个三角形花圃,三边的长度分别是56米,36米,24米。
要在这三条边上等距离栽花,并且每两株花之间的距离尽量大,问一共栽多少株花?
3、插一排红旗共26面,原来每两面之间的距离是4米,现在改为5米.如果起点一面不移动,还可以有几面红旗不移动?
4、文化路小学举行了一次智力竞赛。
参加竞赛的人中,平均每15人有3个人得一等奖,每8人有2个人得二等奖,每12人有4个人得三等奖。
参加这次竞赛的共有94人得奖。
求有多少人参加了这次竞赛?得一、二、三等奖的各有多少人?
5、有一批零件,每12个放一盒,就多出11个,每18个放一盒,就少一个,每15个放一盒,就有7盒各多2个,这些零件总数在300到400之间。
这批零件共有多少个?
巩固练习
姓名:
1、已知某数与24的最大公因数是4,最小公倍数是168,求这个数。
2、一块长方形的土地,长为532米,宽为308米,现在它的四角与四周等距离植树并要求
距离最大,求一共可以植树多少棵?
3、公路上一排电线杆,共25根。
每相邻两根间的距离原来都是45米,现在要改成60米,
可以有几根不需要移动?
4、一筐鸡蛋,3个一盒,最后一盒少2个;5个一盒,最后一盒多1个;7个一盒,最后四
盒各多2个。
这些鸡蛋至少有多少个?
5、甲每秒跑3米,乙每秒跑4米,丙每秒跑5米,他们在600米的环形跑道上从同一起点同时出发,经过多少时间他们又一次在起点同时出发?。
第4讲最大公因数与最小公倍数
【教学内容】
五年级春季精英版,第4讲——最大公因数与最小公倍数。
【教学目标】
知识技能
1.使学生能根据提供的情境探索并掌握求两个数的公因数、最大公因数、公倍数、最小公倍数的方法。
2.使学生从不同的角度找出两个数最大公因数和最小公倍数的的区别和联系,从而培养学生的分析、归纳等思维能力。
数学思考
通过自主探索和小组合作学习,使学生能根据应用题的具体情况选择解题方法,培养学生主动获取知识的能力和习惯。
问题解决
学会用公因数、最大公因数、公倍数、最小公倍数的知识解决简单的实际问题,体验数学与生活的密切联系。
情感态度
1.培养学生的动手操作能力和合作探究问题的习惯。
2.培养学生用不同的方法解决问题的思维方式,渗透在多种方法中选择最简单的方法解决问题。
3.培养学生独立探究的好习惯,并渗透美育。
4.让学生体验到小组协作学习的快乐。
【教学重难点】
教学重点
掌握用最大公因数和最小公倍数解决实际问题的计算方法。
教学难点
区分用最大公因数与最小公倍数解决实际问题数量间的相等关系。
【教学准备】
动画多媒体语言课件。
第一课时教学过程:
第二课时教学过程:
教材及练习题答案附表:例题:
例1:12盏。
例2:60人。
例3:15厘米。
例4:15位同学。
例5:15和90或30和45。
拓展练习:
1.48人
2.9面
3.6块
4.98
5.20:00
6.396或180。
数学公倍数和公因数的知识点数学公倍数和公因数的知识点公倍是指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。
公倍数中最小的,就称为这些整数的最小公倍数,以下是店铺为大家整理的数学公倍数和公因数的知识点,仅供参考,希望能够帮助大家。
数学公倍数和公因数的知识点11、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( ,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
举例:35=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的.数。
举例:15和5,[15,5]=15,(15,5)=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
(详见课本31页内容)数学公倍数和公因数的知识点2一、公因数和最大公因数概念:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。
上课解决方案教案设计教学目标知识与技能1.理解公因数和最大公因数的意义,知道因数、公因数和最大公因数的区别和联系。
2.掌握求两个数的最大公因数的方法,会选择合适的方法求两个数的最大公因数。
过程与方法经历认识最大公因数和求最大公因数的过程,体会知识迁移、推理判断的学习方法。
情感、态度与价值观在学习活动中体会数学知识之间的密切联系,激发求知欲望,培养合作意识与探索精神,养成善于观察、勤于思考的良好学习习惯。
重点难点重点:理解公因数和最大公因数的意义,能正确求出两个数的最大公因数。
难点:掌握求两个数的最大公因数的方法。
课前准备教师准备卡片PPT课件学生准备练习本教学过程板块一复习旧知,游戏引入活动1生活引入,铺垫新知1.评评小明的行为。
班级发了两条新毛巾,小明拿一条放在自己的书桌里,留着自己用。
同学发现了,批评他,他不服说:“我又没拿家里去,放在这不也在班级里吗?”2.指名汇报。
生:小明的行为是不对的,班级的毛巾是公有的东西,是供大家使用的,小明放在自己的书桌里,只供自己使用,不让别人用,是自私的行为。
3.评价。
生:我也要给小明提意见,班级的东西是公共财产,是公用的,不能放在自己那供自己使用,应放在班级卫生角供大家使用。
4.提问:我们班级有公共东西,你知道社区、公园、街道等地方有哪些公共设施是公用的吗?生:垃圾箱、公用雨伞、共享单车、花、公用的健身器材……这些公共设施是公有的,是供大家使用的,不是自己的,不能占为己有。
生活中,东西有公用的,在数学领域,是否存在着“公有”的知识呢?活动2感受“公有”教师出示一组卡片,让学生说一说卡片上各数的因数有哪些。
你是怎样找出来的?预设生1:8的因数有1、2、4、8。
12的因数有1、2、3、4、6、12。
18的因数有1、2、3、6、9、18。
24的因数有1、2、3、4、6、8、12、24。
36的因数有1、2、3、4、6、9、12、18、36。
生2:我发现这组卡片上各数的因数中有“公有”的,即各数的因数有相同的。
人教版最大公因数教案(优选8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!人教版最大公因数教案(优选8篇)人教版最大公因数教案(1)教学内容:第45—46页。
最大公因数专项训练题一、求两个数的最大公因数1. 求12 和18 的最大公因数。
-解析:分别列出12 和18 的因数。
12 的因数有1、2、3、4、6、12;18 的因数有1、2、3、6、9、18。
它们的公因数有1、2、3、6,所以最大公因数是6。
2. 求24 和36 的最大公因数。
-解析:24 的因数有1、2、3、4、6、8、12、24;36 的因数有1、2、3、4、6、9、12、18、36。
公因数有1、2、3、4、6、12,最大公因数是12。
3. 求15 和25 的最大公因数。
-解析:15 的因数是1、3、5、15;25 的因数是1、5、25。
公因数是1、5,最大公因数是5。
4. 求32 和48 的最大公因数。
-解析:32 的因数有1、2、4、8、16、32;48 的因数有1、2、3、4、6、8、12、16、24、48。
公因数有1、2、4、8、16,最大公因数是16。
5. 求45 和60 的最大公因数。
-解析:45 的因数有1、3、5、9、15、45;60 的因数有1、2、3、4、5、6、10、12、15、20、30、60。
公因数有1、3、5、15,最大公因数是15。
二、应用最大公因数解决问题1. 把一张长48 厘米、宽36 厘米的长方形纸剪成同样大小的正方形,且没有剩余,正方形的边长最长是多少厘米?-解析:求48 和36 的最大公因数,即为正方形的最长边长。
48 和36 的最大公因数是12,所以正方形的边长最长是12 厘米。
2. 有两根铁丝,一根长42 米,另一根长63 米。
现在要把它们剪成同样长的小段,且没有剩余,每小段最长是多少米?-解析:求42 和63 的最大公因数。
42 的因数有1、2、3、6、7、14、21、42;63 的因数有1、3、7、9、21、63。
它们的最大公因数是21,所以每小段最长是21 米。
3. 用96 朵红花和72 朵黄花做成花束,如果每个花束里的红花和黄花的朵数都相同,那么每个花束里最少有几朵花?-解析:先求96 和72 的最大公因数,为24。