微积分上册部分课后习题答案
- 格式:doc
- 大小:18.50 KB
- 文档页数:3
高等数学教材微积分课后答案第一章微积分基本概念1. 第一节课后习题答案1.1 单项选择题1. A2. B3. C4. D5. A1.2 填空题1. 42. 273. 184. 05. 21.3 解答题1. (a) 首先将函数对x求导,得到f'(x) = 6x^2 + 12x - 8。
令f'(x) = 0,解得x = -2和x = 2/3。
然后再带入原函数,得到f(-2) = 0和f(2/3) = -1/27。
因此,函数在x = -2和x = 2/3处取得极值,极大值为0,极小值为-1/27。
(b) 由于f'(x) = 6x^2 + 12x - 8 > 0,说明函数在(-∞, -2)和(2/3, +∞)上为增函数;当-2 < x < 2/3时,f'(x) < 0,说明函数在(-2, 2/3)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, -2)上递增,在(-2, 2/3)上递减,在(2/3, +∞)上递增。
2. 第二节课后习题答案2.1 单项选择题1. C2. A3. D4. B5. C2.2 填空题1. 82. 123. 04. -∞5. +∞2.3 解答题1. (a) 首先求函数的导数,得到f'(x) = 2e^x - 12x。
令f'(x) = 0,解得x = ln6。
然后带入原函数,得到f(ln6) = 4ln6 - 6ln^2(6)。
因此,函数在x = ln6处取得极值。
(b) 由于f'(x) = 2e^x - 12x > 0,说明函数在(-∞, ln6)上为增函数;当x > ln6时,f'(x) < 0,说明函数在(ln6, +∞)上为减函数。
结合图像,可以得到函数的单调性为:在(-∞, ln6)上递增,在(ln6, +∞)上递减。
第二章微分学中值定理1. 第三节课后习题答案1.1 单项选择题1. B2. D3. C4. A5. D1.2 填空题1. 42. 53. π/24. √35. 01.3 解答题1. 根据罗尔定理,首先证明f(x)在区间[0, 1]上连续。
微积分第二版课后习题答案【篇一:微积分(上册)习题参考答案】0.11.(a)是(b)否(c)是(d)否2.(a)否(b)否(c)否(d)是(e)否(f)否(g)是(h)否(i)是1,2,3},{1,2,4},{1,3,4}, 3.f,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{{2,3,4},{1,2,3,4}.4. a?b5. a?b6~15. 略。
16. 证明:先证a-(b-c)?(ab)惹(ac).若x?a(b-c),则x蜗a,x①如果x?c,则x蜗a,②如果x?c,则x?b,所以x?aa-(b-c)?(ab)惹(ac).再证a-(b-c)惹(ac)?a(b-c).若x¢?(ab)惹(ac),则,x¢?ab或x¢吻ac.①如果x¢吻ac,有x¢?c,所以,x¢?bc,又x¢?a,于是x¢?a(b-c) ②如果x¢锨ac,x¢?ab,则有x¢?a,x¢?c,x¢?b,所以,x¢?bc,于是x¢?a(b-c). 因此有(a-b)惹(ac)?a(b-c).综上所述,a-(b-c)=(a-b)惹(ac),证毕. 17~19. 略。
20. cda.21. a?b{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)};禳1镲xx?r,睚2镲铪参考答案禳禳11镲镲,,a?d-1,-,0,1,2,3,?a-c=睚0,-1,-睚镲镲44铪铪禳1镲a=睚-1,-,0,1,2,7.镲4铪xx危r,1x 2}x3,a?b={,a-b={xx?r,2x3}.b-cb-c;(ac),因此有b,也有x?(ab)惹a2={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)};b2={(u,v),(u,v),(v,u),(v,v)}22. a={(x,y,z)}x,y,z危?.0323~25. 略。
《微积分》上册部分课后习题答案习题五(A)1.求函数 f x ,使 f ′ x x 23 x ,且 f 1 0 .解:f ′ x x 2 5x 6 1 5 f x x3 x 2 6 x C 3 2 1 5 23 f 1 0 6 C 0 C 3 2 6 15 23 f x x3 x 26 x 3 2 6 12.一曲线y f x 过点(0,2),且其上任意点的斜率为x 3e x ,求 f x . 2 1解:f x x 3e x 2 1 2 f x x 3e x C 4 f 0 2 3 C 2 C 1 1 2 f x x 3e x 1 4 ∫ 23.已知f x 的一个原函数为 e x ,求 f ′ xdx . 2 2解:f x e x ′ 2 xe x∫ f ′ xdx 2 f x C 2 xe x C dx4.一质点作直线运动,如果已知其速度为3t 2 sin t ,初始位移为s0 2 ,求s 和t 的函dt数关系.解:S t 3t 2 sin t S t t 3 cos t CS 0 2 1 C 2 C 1 S t t 3 cos t 15.设ln f x′ 1 ,求f x . 1 x2解:ln f x′ 1 ln f x arctan x C11 x2 f x earctan x C1 Cearctan x C gt 0 1 16.求函数f x ,使f ′ x e 2 x 5 且f 0 0 . 1 x 1 x 2 1 1 1解:f x e x 5 f x ln x 1 arcsin x e 2 x 5 x C 1 x 1 x 2 2 1 1 f 0 0 0 0C 0 C 2 2 1 2x 1 f x ln x 1 arcsin x e 5x 2 27.求下列函数的不定积分x x2 ∫ ∫ dt(1)dx (2)x a t 1 x2 1 ∫ ∫x m n(3)x dx (4)dx 2 1 x4 1 1 sin 2 x(5)∫x 2 1 dx (6)∫ sin x cos x dx 1 cos 2 x ∫ ∫ cos 2 x (7)dx (8)dx sin x cos x 1 cos 2 x ∫ sin (10)cos 2 sin 2 x dx ∫ cos 2 x x(9)2 2 dx x cos x 2 cos 2 x 1 2x 1 ∫ sin ∫e e (11)dx (12)dx 2 x cos x 2 x 1 2 × 8x 3 × 5x 2 x 1 5 x 1(13)∫ 8x dx (14)∫ 10 x dx e x x e-x (15)∫ x dx ∫ (16)e x 2 x 1 3x dx 1 x 1 x x 2 1 1 x 2 5 x(17)∫ dx 1 x 1 x (18)∫ x 1 x2 dx 1 x2 1 cos 2 x(19)∫ 1 x4 dx (20)∫ 1 cos 2 x sin2 x dx x3 x 1 x4 x2(21)∫ x 1 x 2 2 dx (22)∫ 1 x 2 dx 1 3 35 ∫ 2 2解:(1)x 2 x 2 dx x 2 x 2 C 3 5 1 d t 1 ∫ 1 2(2). 1 t 1 2 C a a t 1 2 n nm ∫ x m dx m x m C m ≠ n m ≠ 0 nm n ∫(3)x m dx In x C m n dx x C ∫ m0 2(4)1 ∫ x2 1 dx x 2 arctan x C x 2 x 2 1 x 2 1 x3(5)∫ x 1 2 dx 3 x 2 arctan x C sin 2 x cos 2 x 2 sin x cos x sin x cos x 2(6)∫ sin x cos x dx ∫ sin x cos x dx ∫ sin x cos xdx sin x cos x C cos 2 x sin 2 x(7)∫ sin x cos x dx cos x sin xdx ∫ sin x cos x C 1 cos 2 x ∫ 2 cos ∫ cos 1 1 1 x(8)2 dx 2 1 dx tan x C x 2 x 2 2 cos 2 x sin 2 x 1 1(9)∫ sin 2 x cos 2 x dx 2 ∫ sin x cos 2 x dx cot x tan x C cos x 1 1 cos 2 x cos x cos 2 x(10)∫ 2 2 dx 2 2 1dx ∫ 1 1 x sin x sin 2 x C 2 4 cos 2 x sin 2 x cos 2 x sin 2 x ∫ ∫ cos 1(11)2 2 dx 2 2 dx 2 tan x C sin x cos x x ∫(12)e x 1 dx e x x C x 5 x 5(13)2 dx 3 dx 2 x 3 8 C ∫ ∫ 8 5 ln 8 x x(14)2 dx dx ∫ 5 ∫ 1 1 1 2 x 1 5 2 x C 5 2 ln 5 5 ln 2(15)e x dx e x ln x C ∫ 1 x ∫ 2x 3e x 6x(16)e x6 x 2 x 3e x dx e x C ln 2 l ln 3 ln 6 1 x 1 x ∫ ∫ 1(17)dx 2 dx 2 arcsin x C 1 x 2 1 x2 x2 1(18)∫ dx 1 x 2 ln x 5 arcsin x C 5 x 2 1 x 2 ∫ 1(19)dx arcsin x C 1 x2 1 cos 2 x 1 1 ∫ 2 cos ∫ 1 x(20)dx 1dx tan x C 2 x 2 cos 2 x 2 2 x x 2 1 1 1 1 1 ∫ ∫ 1(21)dx 2 x dx ln x arctan x C x 2 1 x 2 x 1 x2 x x 4 1 x 2 1 2 2 x3(22)∫ 1 x 2 d x x 2 2 ∫ 2 1 x dx 3 2 x 2 arctan x C8.用换元积分法计算下列各题. x4(1)∫ x2 dx ∫ (2)3x 28 dx .。
微积分第三版上册课后练习题含答案微积分是数学的一个分支,它主要研究函数、极限、连续、导数、积分等概念和它们之间的关系。
微积分是自然科学、工程技术和经济管理等领域中不可或缺的数学工具。
本文将介绍微积分第三版上册的课后练习题,以及它们的答案和解析。
章节列表微积分第三版上册共分为12章,分别是:1.函数与极限2.导数及其应用3.曲线图形的相关概念4.定积分5.定积分应用6.不定积分7.不定积分的应用8.微分方程初步9.空间解析几何10.空间直线与平面11.空间曲面12.重积分每一章都包含了大量的练习题,这些题目是对每个章节中理论知识点的考察和巩固,同时也能够帮助读者构建更深入的理解。
练习题样例下面是微积分第三版上册第一章的一组练习题样例:1.1节练习1.求函数$f(x)=\\frac{x-1}{x+1}$在点x0=2处的导数。
2.求极限$\\displaystyle\\lim_{x \\to +\\infty}(\\sqrt{x^2+3x}-\\sqrt{x^2-5})$。
3.求函数$f(x)=\\sqrt{1+x}-1$的二阶导数。
1.2节练习1.求$f(x)=\\frac{1}{x}$的导函数和导数。
2.已知函数f(x)=x3+3x2+1,求它的单调区间和极值点。
3.求函数f(x)=x4−8x2的导函数和导数。
课后练习题答案微积分第三版上册的课后练习题答案可以在教材的补充练习答案中找到,答案涵盖了书中各章节的所有练习题。
下面是上述练习题的答案和解析。
1.1节练习答案1.$f'(2)=\\frac{2}{9}$2.$\\displaystyle\\lim_{x \\to +\\infty}(\\sqrt{x^2+3x}-\\sqrt{x^2-5})=+\\infty$3.$f''(x)=\\frac{1}{4(x+1)^{\\frac{3}{2}}}$1.2节练习答案1.$f'(x)=-\\frac{1}{x^2}$,$f''(x)=\\frac{2}{x^3}$2.f(x)在$(-\\infty,-1)$上单调递减,在$(-1,+\\infty)$上单调递增。
大学数学微积分第二版上册课后练习题含答案前言数学是一门抽象的学科,需要大量的练习才能真正理解和掌握。
微积分作为数学中的基础学科,更是如此。
本文将为大家提供大学数学微积分第二版上册的课后习题及其答案,供大家参考和练习。
课后习题及答案第一章函数与极限习题1.11.计算以下极限:1.$\\lim\\limits_{x\\rightarrow 1}\\frac{x-1}{x^2-1}$2.$\\lim\\limits_{x\\rightarrow 0}\\frac{\\sqrt{1+x}-1}{x}$3.$\\lim\\limits_{x\\rightarrow 0}(\\frac{1}{\\sin{x}}-\\frac{1}{x})$答案:1.$\\frac{1}{2}$2.$\\frac{1}{2}$3.02.求曲线$y=\\frac{1}{x}$与直线y=x在第一象限中形成的夹角。
答案:$\\frac{\\pi}{4}$3.证明:$\\lim\\limits_{x\\rightarrow 0}x\\sin\\frac{1}{x}=0$答案:对任意$\\epsilon>0$,取$\\delta=\\epsilon$,则当$0<|x|<\\delta$时,有$|x\\sin\\frac{1}{x}-0|<|x|<\\delta=\\epsilon$ 习题1.21.求下列函数的导数:1.y=2x3+3x2−4x+12.$y=\\frac{1}{2}x^3-x^2+2x-1$3.$y=\\frac{1}{\\sqrt{x}}+x\\ln{x}$答案:1.y′=6x2+6x−42.$y'=\\frac{3}{2}x^2-2x+2$3.$y'=-\\frac{1}{2x^{\\frac{3}{2}}}+\\ln{x}+1$2.求函数y=xe x在x=1处的导数。
答案:y′=e+13.求f(x)=|x−2|的导函数。
微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。
2.用区间表示下列函数的定义域:1(1)(2)arcsin(1)lg(lg );1(3).ln(2) y y x x xy x ==-+=-(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1].8. 求下列函数的反函数:22(1)2sin 3,,;(2);66212101,(3)()2(2)1 2.xx y x x y x x f x x x ππ⎡⎤=∈-=⎢⎥+⎣⎦-≤≤⎧=⎨--<≤⎩(2)由221x x y =+得21xy y =-,即2log 1y x y =-.所以函数221xx y =+的反函数为2log (01)1x y x x =<<-. 习题1-21.下列初等函数是由哪些基本初等函数复合而成的? (1) y=; (2) y =sin 3ln x ;(3) y = tan 2x a ; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin xu a =,则y =,再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,x y u v v a ===复合而成的.(4)令23ln (ln )u x =,则ln y u =,再令3l n (l n )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2l n ,,l n,y u u v v w === 3,ln w t t x ==复合而成.3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n nn n n n n nn++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得2lim 0!nn n →∞= 4.利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…; (2) x 1x n +1,n =1,2,…. 证:(1)略。
第一章习题1-11.用区间表示下列不等式的解2(1)9;(2)1;1(3)(1)(2)0;(4)00.011 x x x x x ≤>--+<<<+解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3].(2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞).(3)原不等式的解为21x -<<,用区间表示是(-2,1). (4)原不等式可化为0.0110.0110x x -<+<⎧⎨+≠⎩即 1.010.991x x -<<-⎧⎨≠⎩用区间表示是(-1.01,-1)∪(-1,-0.99). 2.用区间表示下列函数的定义域: 1(1)(2)arcsin(1)lg(lg );1(3).ln(2)y y x x xy x =-=-+=-解 (1)要使函数有意义,必须2010x x ≠⎧⎨-≥⎩即011x x ≠⎧⎨-≤≤⎩所以函数的定义域为[-1,0)∪(0,1].(2)要使函数有意义,必须111lg 00x x x -≤-≤⎧⎪>⎨⎪>⎩即0210x x x ≤≤⎧⎪>⎨⎪>⎩所以函数的定义域是12x <≤,用区间表示就是(1,2].(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1).3.确定下列函数的定义域及求函数值f (0),ff (a )(a 为实数),并作出图形(1)1,0,2,011,12x x y x x x ⎧<⎪⎪=⎨≤<⎪⎪<≤⎩; (2)y=211,12x x x ⎧≤⎪⎨-<<⎪⎩解 (1)函数的定义域(){|0}{|01}{|12}{|112}(,1)(1,2]或D f x x x x x x x x x =<≤<<≤=<<≤=-∞10(0)200,1,()201112a a f ff a aa a ⎧<⎪⎪=⨯===⎨≤<⎪⎪<≤⎩,图1-1 图1-2(2)函数的定义域(){|1}{|12}{|2}(2,2)D f x x x x x x =≤<<=<=-221(0)1,11,()112a f ff a a a ≤===-==-<<⎪⎩4.设1,1()1,1x f x x ⎧≤⎪=⎨->⎪⎩,求f (f (x )).解 当|x |≤1时, f (x )=1, f (f (x ))= f (1)=1;当|x |>1时, f (x )=-1, f (f (x ))= f (-1)=1, 综上所述f (f (x ))=1(x ∈R ).5.判定下列函数的奇偶性: (1) f (x )=21cos xx-; (2)f (x )=(x 2+x )sin x ;(3)f (x )=1e ,0e 1,0x x x x -⎧-≤⎨->⎩解 (1) ∵221()1()()cos()cos x xf x f x x x----===-∴f (x )是偶函数.(2)∵222()[()()]sin()()(sin )()sin ()f x x x x x x x x x x f x -=-+--=--=--≠ 且()()f x f x -≠-, ∴f (x )是非奇非偶函数.(3)当x <0时,-x >0, ()1(1)()e e x x f x f x ---=-=--=-; 当x ≥0时,-x ≤0, ()()11(1)()e e e x x x f x f x ---=-=-=--=-,综上所述, x ∀∈R ,有f (-x )=-f (x ),所以f (x )是奇函数.6.设f (x )在区间(-l ,l )内有定义,试证明:(1) f (-x )+f (x )为偶函数; (2) f (-x ) -f (x )为奇函数. 证 (1)令()()()F x f x f x =-+(,)x l l ∀∈-有()[()]()()()()F x f x f x f x f x F x -=--+-=+-=所以()()()F x f x f x =-+是偶函数;(2)令()()()F x f x f x =--,(,)x l l ∀∈-有()[()]()()()[()()]()F x f x f x f x f x f x f x F x -=----=--=---=-所以()()()F x f x f x =--是奇函数.7. 试证:(1) 两个偶函数的代数和仍为偶函数; (2) 奇函数与偶函数的积是奇函数. 证 (1)设f (x ),g (x )均为偶函数,令()()()F x f x g x =± 则 ()()()()()(F x f x g x f x g x F x-=-±-=±=, 所以()()f x g x ±是偶函数,即两个偶函数的代数和仍为偶函数.(2)设f (x )为奇函数,g (x )为偶函数,令()()()F x f x g x =⋅, 则 ()()()()()(F x f x g x f x g x F x -=-⋅-=-=-, 所以()()f x g x ⋅是奇函数,即奇函数与偶函数之积是奇函数. 8. 求下列函数的反函数:22(1)2sin 3;(2);212101,(3)()2(2)1 2. xxy x y x x f x x x ==+-≤≤⎧=⎨--<≤⎩解 (1)由2sin 3y x =得1arcsin 32y x =所以函数2sin 3y x =的反函数为1arcsin(22)32x y x =-≤≤.(2)由221xxy =+得21x y y=-,即2log 1y x y=-.所以函数221xx y =+的反函数为2log (01)1x y x x =<<-.(3)当01x ≤≤时,由21y x =-得1,112y x y +=-≤≤;当12x <≤时,由22(2)y x =--得22x y =-<≤;于是有1112212y y x y +⎧-≤≤⎪=⎨⎪-<≤⎩,所以函数22101()2(2)12x x f x x x -≤≤⎧=⎨--<≤⎩的反函数是1112()212x x f x x +⎧-≤≤⎪=⎨⎪-<≤⎩.9. 将y 表示成x 的函数,并求定义域:222(1)10,1;(2)ln ,2,sin ;(3)arctan ,().为实数u vy u x y u u v x y u u v a x a ==+======+解 (1)211010u x y +==,定义域为(-∞,+∞);(2) sin ln ln 2ln 2sin ln 2vxy u x ====⋅定义域为(-∞,+∞);(3) arctan arctan arctan y u ===(a 为实数),定义域为(-∞,+∞).习题1-21.下列初等函数是由哪些基本初等函数复合而成的? (1) y=(2) y =sin 3ln x ;(3) y = tan 2xa; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin x u a =,则y =再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,xy u v v a ===复合而成的.(2)令sin ln u x =,则3y u =,再令ln v x =,则sin u v =.因此3sin ln y x =是由基本初等函数3,sin ,ln y u u v v x ===复合而成.(3)令2tan u x =,则u y a =,再令2v x =,则tan u v =,因此2t a n x y a =是由基本初等函数2,tan ,uy a u v v x ===复合而成.(4)令23ln (ln )u x =,则ln y u =,再令3ln(ln )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2ln ,,ln ,y u u v v w ===3,ln w t t x ==复合而成.2.设f (x )的定义域为[0,1],分别求下列函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a ),(a >0); (4) f (e x +1).解 (1)由f (x )的定义域为[0,1]得0≤x 2≤1,于是-1≤x ≤1,所以f (x 2)的定义域为[-1,1].(2)由f (x )的定义域为[0,1]得0≤sin x ≤1,于是2k π≤x ≤(2k +1)π,k ∈z ,所以f (sin x )的定义域为[2k π,(2k +1) π], k ∈Z .(3)由f (x )的定义域为[0,1]得0≤x+a ≤1即-a ≤x ≤1-a 所以f (x+a )的定义域为[-a ,1-a ]. (4)由f (x )的定义域为[0,1]得0≤e x +1≤1,解此不等式得x ≤-1,所以f (e x +1)的定义域为(-∞,-1]. 3. 求下列函数的表达式:(1) 设ϕ(sin x )=cos 2x +sin x +5,求ϕ(x ); (2) 设g (x -1)=x 2+x +1,求g (x ); (3) 设1()f x x +=x 2+21x,求f (x ).解 (1)法一:令sin t x =,则222cos 1sin 1x x t =-=-,代入函数式,得:22()156t t t t t ϕ=-++=+-,即 2()6x x x ϕ=++.法二:将函数的表达式变形得:22(sin )(1sin )sin 56sin sin x x x x x ϕ=-++=+-令sin t x =,得 2()6t t t ϕ=+-,即 2()6x x x ϕ=+-.(2)法一:令1t x =-,则1x t =+,将其代入函数式,得22()(1)(1)133g t t t t t =++++=++即 2()33g x x x =++.法二:将函数表达式变形,得22(1)(21)(33)3(1)3(1)3g x x x x x x -=-++-+=-+-+令1x t -=,得 2()33g t t t =++, 即 2()33g x x x =++.(3)法一:令1x t x+=,两边平方得22212x t x++=即22212x t x+=-,将其代入函数式,得2()2f t t =-,即2()2f x x =-.法二:将函数表达式变形,得222111222f x x x x x x ⎛⎫⎛⎫⎛⎫=-=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令1x t x+=,得2()2f t t =-,即2()2f x x =-.4.设f (x )为奇函数,证明:若f (x )在x =0有定义,则f (0)=0.证 ∵f (x )为奇函数,且f (x )在x =0处有定义,∴ (0)(0)f f -=-又(0)(0)f f -=于是(0)(0)f f =- 即2(0)0,(0)0f f =∴=.5.证明:狄利克雷函数是周期函数,任何一个正有理数均是它的周期,但无最小正周期. 证 狄利克雷函数1,,()0,当为有理数时当为无理数时.x D x x ⎧=⎨⎩设T 是任一正有理数, x ∀∈R ,当x 为有理数时,x+T 为有理数,于是()1D x T +=,又()1D x =,所以()()D x T D x +=; 当x 为无理数时,x+T 为无理数,于是()0D x T +=,又()0D x =,所以()()D x T D x +=. 综上所述, x ∀∈R 有()()D x T D x +=,所以()D x 是周期函数,任何一个正有理数均是它的周期,又设P 是任一无理数, x P ∃=-∈R ,使()(0)1D x P P +==,而()0D x =,故()()D x P D x +≠,即无理数不是()D x 的周期;因为不存在最小的正有理数,所以()D x 无最小正周期.习题1-31.设销售商品的总收入是销售量x 的二次函数,已知x =0,2,4时,总收入分别是0,6,8,试确定总收入函数TR(x ).解 设2()TR x ax bx c =++,由已知(0)0,(2)6,(4)8TR TR TR === 即 04261648c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 1240a b c ⎧=-⎪⎪⎨=⎪⎪=⎩所以总收入函数21()42TR x x x =-+.2.设某厂生产某种产品1000吨,定价为130元/吨,当一次售出700吨以内时,按原价出售;若一次成交超过700吨时,超过700吨的部分按原价的9折出售,试将总收入表示成销售量的函数.解 设销售量为x ,实际每吨售价为P 元,由题设可得P 与x 间函数关系为1307001177001000x P x ≤⎧=⎨<≤⎩,总收入 130700()130700(700)1177001000TR x x x x x ≤⎧=⎨⨯+-⨯<≤⎩,即 130700()91001177001000TR x x x xx ≤⎧=⎨+<≤⎩.3. 已知需求函数为105Q P =-,成本函数为C =50+2Q ,P 、Q 分别表示价格和销售量.写出利润L 与销售量Q 的关系,并求平均利润.解 由题设知总收入2()105QR Q PQ Q ==-,则总利润 ()221()()()8505021055Q L Q R Q C Q Q Q Q Q ⎛⎫=-=-=--+- ⎪⎝⎭, 平均利润 ()150()85L Q AL Q Q QQ==--.4. 已知需求函数Q d 和供给函数Q s ,分别为Q d =100233P -,Q s =-20+10P ,求相应的市场均衡价格.解 当d s Q Q =时供需平衡,由d s Q Q =得1002201033P P -=-+,解得5P =所以市场均衡价格5P =.。
1微积分答案 第一章 函数一、1.B; 2.D; 3.A; 4.C; 5.D二、1.1cos -x 或22sin2x ;2.100010-<⎧⎪=⎨⎪>⎩x x x 或()f x ; 3.4,-1;4.y =[0,1];5.1(1)2y x =-. 三、1. (1)[1,2)(2,4)D =⋃; (2)[3,2][3,4]D =--⋃. 2.(1)102,1y u u x ==+ ;(2)1,sin ,u y e u v v x===;(3) 2arctan ,ln ,1y u u v v x===+.3. 211,12,()12400,44ab C C x x x ====++ ()1400124c x C x x x==++.4. (1)90010090(100)0.011001600751600x P x x x <≤⎧⎪=--⋅<<⎨⎪≥⎩;(3)L=21000(元). (2)2300100(60)310.011001600151600x x L P x x xx x x ≤≤⎧⎪=-=-<<⎨⎪≥⎩;四、略.第二章 极限与连续(一)一、1.C ; 2. D ; 3.C ; 4.B ; 5.C 二、1. -2; 2. 不存在; 3. 14; 4. 1; 5.ab e .三、 1、(1)4; (2)25; (3)1; (4)5; (5)2.2、(1)3; (2)0; (3)2; (4)5e -; (5)2e-.3、11,2=-=-αβ 4、利用夹逼定理:11←<<→四、略。
第二章 极限与连续(二)一、1. D ; 2. C ; 3. B ; 4. C ; 5. B 二、1、0; 2、-2; 3、0; 4、2; 5、0,1x x ==-.2三、1、(1)1=x 是可去间断点;2=x 是连续点.(2)=xk π是第二类间断点(无穷间断点); 2=+x k ππ是可去间断点.(3)0=x 是可去间断点. (4)1x =是跳跃间断点.2、1()011⎧<⎪==⎨⎪->⎩x x f x x x x ,1=±x是跳跃间断点.3、(1)0;(2)cos α;(3)1; (4)0;(5)12.四、略。
《微积分》上册部分课后习题答案
习题五(A)1.求函数 f x ,使 f ′ x x 23 x ,且 f 1 0 .解:
f ′ x x 2 5x 6 1 5 f x x3 x 2 6 x C 3 2 1 5 23 f 1 0 6 C 0 C 3 2 6 1
5 23 f x x3 x 2
6 x 3 2 6 12.一曲线y f x 过点(0,2),且其上任意点的斜率为x 3e x ,求 f x . 2 1解:f x x 3e x 2 1 2 f x x 3e x C 4 f 0 2 3 C 2 C 1 1 2 f x x 3e x 1 4 ∫ 23.已知f x 的一个原函数为 e x ,求 f ′ xdx . 2 2解:f x e x ′ 2 xe x∫ f ′ xdx 2 f x C 2 xe x C dx4.一质点作直线运动,如果已知其速度为3t 2 sin t ,初始位移为s0 2 ,求s 和t 的函dt数关系.解:S t 3t 2 sin t S t t 3 cos t CS 0 2 1 C 2 C 1 S t t 3 cos t 15.设ln f x′ 1 ,求f x . 1 x2解:ln f x′ 1 ln f x arctan x C1
1 x
2 f x earctan x C1 Cearctan x C gt 0 1 16.求函数f x ,使
f ′ x e 2 x 5 且f 0 0 . 1 x 1 x 2 1 1 1解:f x e x 5 f x ln x 1 arcsin x e 2 x 5 x C 1 x 1 x 2 2 1 1 f 0 0 0 0C 0 C 2 2 1 2x 1 f x ln x 1 arcsin x e 5x 2 27.求下列函数的不定积分x x2 ∫ ∫ dt(1)dx (2)x a t 1 x2 1 ∫ ∫x m n(3)x dx (4)dx 2 1 x4 1 1 sin 2 x(5)∫x 2 1 dx (6)∫ sin x cos x dx 1 cos 2 x ∫ ∫ cos 2 x (7)dx (8)dx sin x cos x 1 cos 2 x ∫ sin (10)cos 2 sin 2 x dx ∫ cos 2 x x(9)2 2 dx x cos x 2 cos 2 x 1 2x 1 ∫ sin ∫e e (11)dx (12)dx 2 x cos x 2 x 1 2 × 8x 3 × 5x 2 x 1 5 x 1(13)∫ 8x dx (14)∫ 10 x dx e x x e-x (15)∫ x dx ∫ (16)e x 2 x 1 3x dx 1 x 1 x x 2 1 1 x 2 5 x(17)∫ dx 1 x 1 x (18)∫ x 1 x2 dx 1 x2 1 cos 2 x(19)∫ 1 x4 dx (20)∫ 1 cos 2 x sin
2 x dx x
3 x 1 x
4 x2(21)∫ x 1 x 2 2 dx (22)∫ 1 x 2 dx 1 3 3
5 ∫ 2 2解:(1)x 2 x 2 dx x 2 x 2 C 3 5 1 d t 1 ∫ 1 2(2). 1 t 1 2 C a a t 1 2 n nm ∫ x m dx m x m C m ≠ n m ≠ 0 nm n ∫(3)x m dx In x C m n dx x C ∫ m0 2(4)1 ∫ x2 1 dx x 2 arctan x C x 2 x 2 1 x 2 1 x3(5)∫ x 1 2 dx 3 x 2 arctan x C sin 2 x cos 2 x 2 sin x cos x sin x cos x 2(6)∫ sin x cos x dx ∫ sin x cos x dx ∫ sin x cos xdx sin x cos x C cos 2 x sin 2 x(7)∫ sin x cos x dx cos x sin xdx ∫ sin x cos x C 1 cos 2 x ∫ 2 cos ∫ cos 1 1 1 x(8)2 dx 2 1 dx tan x C x 2 x 2 2 cos 2 x sin 2 x 1 1(9)∫ sin 2 x cos 2 x dx 2 ∫ sin x cos 2 x dx cot x tan x C cos x 1 1 cos 2 x cos x cos 2 x(10)∫ 2 2 dx 2 2 1dx ∫ 1 1 x sin x sin 2 x C 2 4 cos 2 x sin 2 x cos 2 x sin 2 x ∫ ∫ cos 1(11)2 2 dx 2 2 dx 2 tan x C sin x cos x x ∫(12)e x 1 dx e x x C x 5 x 5(13)2 dx 3 dx 2 x 3 8 C ∫ ∫ 8 5 ln 8 x x(14)2 dx dx ∫ 5 ∫ 1 1 1 2 x 1 5 2 x C 5 2 ln 5 5 ln 2(15)e x dx e x ln x C ∫ 1 x ∫ 2x 3e x 6x(16)e x
6 x 2 x 3e x dx e x C ln 2 l ln 3 ln 6 1 x 1 x ∫ ∫ 1(17)dx 2 dx 2 arcsin x C 1 x 2 1 x2 x2 1(18)∫ dx 1 x 2 ln x 5 arcsin x C 5 x 2 1 x 2 ∫ 1(19)dx arcsin x C 1 x2 1 cos 2 x 1 1 ∫ 2 cos ∫ 1 x(20)dx 1dx tan x C 2 x 2 cos 2 x 2 2 x x 2 1 1 1 1 1 ∫ ∫ 1(21)dx 2 x dx ln x arctan x C x 2 1 x 2 x 1 x2 x x 4 1 x 2 1 2 2 x3(22)∫ 1 x 2 dx x 2 2 ∫ 2 1 x dx 3 2 x 2 arctan x C8.用换元积分法计算下列各题. x4(1)∫ x2 dx ∫ (2)3x 28 dx .。