高三数学程序框图3
- 格式:pdf
- 大小:806.79 KB
- 文档页数:9
高三数学框图试题1.执行如图所示的程序框图,则输出的结果是()A.14B.15C.16D.17【答案】C【解析】根据程序框图,从到得到,因此将输出. 故选C.【考点】程序框图.2.右图是计算某年级500名学生期末考试(满分为100分)及格率的程序框图,则图中空白框内应填入()A.B.C.D.【答案】D.【解析】通过程序的判断语句可知,表示的是及格的人数,表示的是不及格的人数,∴.【考点】程序框图.3.执行如图所示的程序框图,若输入n的值为4,则输出S的值为 ( )A.5B.6C.7D.8【答案】C【解析】第一次循环后:S=1,i=2第二次循环后:S=2,i=3第三次循环后:S=4,i=4第四次循环后:S=7,i=5,故输出74.定义某种运算,运算原理如右图所示,则式子的值为【答案】13【解析】由算法知:,而【考点】新定义5.阅读右面的程序框图,运行相应的程序,输出的结果为()A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,,因此当时,【考点】循环体流程图6.执行如图所示的程序框图,则输出的k值是.【答案】3.【解析】由程序框图知,输出.【考点】程序框图.7.执行如图所示的程序框图.若输出,则框图中①处可以填入()A.B.C.D.【答案】B【解析】依次循环的结果为:;;;.因为输出,所以可满足,故选.【考点】程序框图.8.执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]【答案】A;【解析】若,则;若,;综上所述.【考点】本题考查算法框图,考查学生的逻辑推理能力.9.如图,运行该程序后输出的值为()A.66B.55C.11D.10【答案】A【解析】由程序框图可以看出,本框图的作用就是计算的值,所以输出的.【考点】程序框图及其应用.10.如果执行框图,输入,则输出的数等于()A.B.C.D.【答案】D【解析】第一次循环,;第二次循环,;第三次循环,;第四次循环,;第五次循环,;此时不满足条件,输出,选D.【考点】算法与框图.11.程序框图如图所示,其输出结果是,则判断框中所填的条件是()A.B.C.D.【答案】B【解析】由题意可知第一次运行后,第二次运行后,第三次运行后,第四次运行后,第五次运行后,此时停止运算,又判断框下方是“是”,故应填.故选B.【考点】算法流程图.12.执行如图所示程序框图.若输入,则输出的值是()A.B.C.D.【答案】C【解析】通过程序循环计算,知道得到的x大于23就结束,即.【考点】考查程序框图.13.执行如图所示的程序框图,输出的S值为()A.1B.C.D.【答案】C【解析】第一次执行循环:,;第二次执行循环:,,满足≥2,结束循环,输出.【考点】本小题考查了对算法程序框图的三种逻辑结构的理解,考查了数据处理能力和算法思想的应用.14.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.【答案】C【解析】;;,输出所以答案选择C【考点】本题考查算法框图的识别,逻辑思维,属于中等难题.15.随机抽取某产品件,测得其长度分别为,如图所示的程序框图输出样本的平均值,则在处理框①中应填入的式子是(注:框图中的赋值符号“=”也可以写成“←”“:=”)A.B.C.D.【答案】D,i=2时,s=,i=3【解析】如图所示的程序框图输出样本的平均值,当i=1时,s=a1时,…,因此,处理框①应填入的式子是,故选D。
恩施高中高考2013年艺术生高三数学 -专题复习-程序框图学习目标:1.明确算法的含义,熟悉算法的三种基本结构:顺序、条件和循环,以及基本的算法语句.2.能熟练运用辗转相除法与更相减损术、秦九韶算法、进位制等典型的算法知识解决同类问题.重点:算法的基本知识与算法对应的程序框图的设计.难点:与算法对应的程序框图的设计及算法程序的编写.要点梳理知识点一:算法与程序框图1.算法的定义:广义的算法是指完成某项工作的方法和步骤,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.四种基本的程序框3.三种基本逻辑结构(1)顺序结构(2)条件结构(3)循环结构要点诠释:1.对于算法的理解不能仅局限于解决数学问题的方法,解决任何问题的方法和步骤都应该是算法.算法具有概括性、抽象性、正确性等特点,要通过具体问题的过程和步骤的分析去体会算法的思想,了解算法的含义.2.在学习程序框图时要掌握各程序框的作用,准确应用三种基本逻辑结构,即顺序结构、条件分支结构、循环结构来画程序框图,准确表达算法.画程序框图是用基本语句来编程的前提.知识点二:基本算法语句1、输入语句2、输出语句3、赋值语句4、条件语句IF-THEN-ELSE格式IF-THEN格式5、循环语句(1)WHILE语句(2)UNTIL语句要点诠释:基本算法语句是程序设计语言的组成部分,注意各语句的作用,准确理解赋值语句,灵活表达条件语句.计算机能够直接或间接理解的程序语言都包含输入语句、输出语句、赋值语句、条件语句和循环语句等基本算法语句.输入语句、输出语句和赋值语句贯穿于大多数算法的结构中,而算法中的条件结构由条件语句来表述,循环结构由循环语句来实现.学习中要熟练掌握这些基本算法语句.知识点三:算法案例案例1、辗转相除法与更相减损术1.利用辗转相除法求最大公约数的步骤如下:(1)用较大的数m除以较小的数n得到一个商和一个余数;(2)若=0,则n为m,n的最大公约数;若≠0,则用除数n除以余数得到一个商和一个余数;(3)若=0,则为m,n的最大公约数;若≠0,则用除数除以余数得到一个商和一个余数;……依次计算直至=0,此时所得到的即为所求的最大公约数. 2.更相减损术(1)任意给出两个正数;判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.案例2、秦九韶算法用秦九韶算法求一般多项式f(x)=a n x n+a n-1x n-1+….+a1x+a0当x=x0时的值.把n次多项式的求值问题转化成求n个一次多项式的值的问题,即求v1=a n x+a n-1v2=v1x+a n-2v3=v2x+a n-3……..v n=v n-1x+a0的值的过程.案例3、进位制进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值.可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制.现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行计数.要点诠释:我国古代数学发展的主导思想,就是构造“算法”解决实际问题.通过对这些案例的阅读、理解,同学们可以体会它们蕴含的算法及其思想.方法指导1、在理解算法的基础上,掌握算法的基本思想,发展有条理的思考与表达能力,提高逻辑思维能力.会用算法的思想和方法解决实际问题.从熟知的问题出发,体会算法的程序化思想,通过实践,主动思维,经历不断的从具体到抽象,从特殊到一般的抽象概括活动来理解和掌握.2、涉及具体问题的算法时,要根据题目进行选择,以简单、程序短、易于在计算机上执行为原则.3、注意条件语句的两种基本形式及各自的应用范围以及对应的程序框图.条件语句与算法中的条件结构相对应,语句形式较为复杂,要会借助框图写出程序.4、利用循环语句写算法时,要分清步长、变量初值、终值,必须分清循环次数是否确定,若确定,两种语句均可使用,当循环次数不确定时用while语句.5、复习算法案例时,要体会其中蕴含的算法思想,并能利用它解决具体问题.对课本涉及到的几种算法,同学们要在理解的基础上掌握其程序,并深刻体会古代数学中的算法思想.高考真题解析1、2009(广东 理科)随机抽取某产品n 件,测得其长度分别为12,,,n a a a ,则图3所示的程序框图输出的s = ,s 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”) 【解析】s =na a a n+⋅⋅⋅++21;平均数2、2009(广东 文科)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示: 右图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填 ,输出的s=解析:6i ≤, s=126a a a +++3、2009(浙江 理科、文科)某程序框图如图所示,该程序运行后输出的k 的值是 ( ) A .4 B .5 C .6 D .7 答案:A【解析】对于0,1,k s k==∴=,而对于1,3,k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =4、2009(山东理科、文科)执行右边的程序框图,输入的T= .【解析】:按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30答案:30【命题立意】:本题主要考查了循环结构的程序框图,一般都可以反复的进行运算直到满足条件结束,本题中涉及到三个变量,注意每个变量的运行结果和执行情况.5、2009(上海理科)某算法的程序框如右图所示,则输出量y与输入量x满足的关系式是____________________________ .答案:2,12,1x xyx x⎧≤=⎨->⎩6、2009(宁夏、海南文科)如果执行右边的程序框图,输入2,0.5x h=-=,那么输出的各个数的和等于(A)3 (B) 3.5 (C) 4 (D)4.5 执行过程:x=-2,h=0.5 x<0 x=-2,y=0x=x+hx=-1.5,y=0x=-1,y=0x=-0.5,y=0x=0 x<1x=0,y=0 x=x+hx=0.5,y=0.5x=1,x不小于1 x=1,y=1x=x+hx=1.5,y=1x=2,y=1结束7、2009(宁夏、海南 理科) 2009(辽宁 文科、理科) (10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
高三数学框图试题1.执行如图所示的程序框图,若输入的的值为1,则输出的的值为()A.5B.3C.2D.1【答案】B【解析】这是一个循环结构,循环的结果依次为:.最后输出.【考点】程序框图.2.执行如图所示的程序框图,则输出的结果是()A.14B.15C.16D.17【答案】C【解析】根据程序框图,从到得到,因此将输出. 故选C.【考点】程序框图.3.若下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是( )A.B.C.D.【答案】D【解析】第一次循环,;第二次循环,;第三次循环,;第四次循环,,结束循环,输出,因此【考点】循环结构流程图4.阅读右图的程序框图,则输出S=( )A.14B.20C.30D.55【答案】C【解析】运行程序框图如下:故选C【考点】程序框图5.李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______【答案】方案三【解析】方案一:所用时间为.方案二:所用时间为.方案三:所用时间为.所以所用时间最少的方案是方案三.【考点】流程图6.阅读右面的程序框图,运行相应的程序,输出的结果为()A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,,因此当时,【考点】循环体流程图7.某程序框图如图所示,现在输入下列四个函数,则可以输出函数是()A.B.C.D.【答案】B【解析】本题要从程序框图中发现函数的性质,第一个判断框说明是奇函数,第二个判断框说明方程有实解,即函数的图象与轴有交点,因此我们首先判断四个函数的奇偶性,可利用等式来判断,三个函数是奇函数,又,即或,从而,同样,因此两个函数图象与都无交点,只有中,,此函数图象与轴是相交的,因此选B.【考点】函数的奇偶性与函数的值域.8.下图是某算法的流程图,其输出值是 .【答案】.【解析】第一次循环,,不成立,执行第二次循环;,不成立,执行第三次循环;第三次循环,,不成立,执行第四次循环;第四次循环,,成立,跳出循环体,输出的值为.【考点】算法与程序框图9.阅读如图的程序框图,若输出的的值等于,那么在程序框图中判断框内应填写的条件是()A.?B.?C.?D.?【答案】A【解析】读懂框图可知求满足的值,易得所以.【考点】考查算法与框图.10.阅读程序框图(如图所示),若输入,,,则输出的数是.【答案】【解析】程序框图的功能是:输出中最大的数,∵,,,所以输出的数为.【考点】程序框图.11.某程序框图如图所示,该程序运行后输出的的值是()A.B.C.D.【答案】A【解析】第一步 ;第二步 ;第三步,第四步【考点】程序框图12.给出下面的程序框图,则输出的结果为_________.【答案】【解析】解:k=1,S=0+=,满足条件k≤5,执行循环,k=2,S=+,满足条件k≤5,执行循环,k=3,S=,满足条件k≤5,执行循环,k=4,S=,满足条件k≤5,执行循环,k=5,S=,满足条件k≤5,执行循环,k=6,S=,不满足条件k≤5,退出循环,输出S=故答案为:【考点】当型循环点评:本题主要考查了循环结构中的当型循环,以及程序框图,解题的关键是弄清循环次数,属于基础题13.如果右边程序框图的输出结果是10,那么在判断框中①表示的“条件”应该是()A.i≥3B.i≥4C.i≥5D.i≥6【答案】C【解析】第一执行,,第二执行,,第三次执行,,第四次执行,,因为输出结果为10,所以应填.选C.【考点】循环结构点评:本题考查循环结构,已知运算规则与最后运算结果,求运算次数的一个题,是算法中一种常见的题型.14.已知,由如右程序框图输出的为A.B.C.D. 0【答案】B【解析】因为,由程序框图,M<N,S=M=ln2,故选B。