2015年高考数学三轮复习必做题:立体几何综合题
- 格式:doc
- 大小:948.50 KB
- 文档页数:6
专题十 立体几何1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
三、解答题1. 【2015高考天津,理17】(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,5AC AA ADCD ====,且点M 和N 分别为11C D B D 和的中点.(I)求证://MN 平面ABCD ; (II)求二面角11D AC B --的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长 【答案】(I)见解析; (II)31010; (III) 72-. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,NMC 1B 11DABD 1NM C 1B 1A 1DABCD 1(III)依题意,可设111A E A B λ=u u u r u u u u r ,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+u u u r ,又(0,0,1)n =r为平面ABCD 的一个法向量,由已知得2221cos ,3(1)(2)1NE n NE n NE n λ⋅===⋅-+++u u u r ru u u r r u u u r r ,整理得2430λλ+-=, 又因为[0,1]λ∈,解得72λ=-,所以线段1A E 的长为72 .【考点定位】直线和平面平行和垂直的判定与性质,二面角、直线与平面所成的角,空间向量的应用.4. 【2013天津,理17】如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长. 【答案】(Ⅰ)详见解析;(Ⅱ)217;(Ⅲ)2易得11B C u u u u r =(1,0,-1),CE u u u r =(-1,1,-1),于是11B C u u u u r ·CE u u u r=0,所以B1C1⊥CE.(2)1B C u u u r=(1,-2,-1).设平面B1CE 的法向量m =(x ,y ,z),则10,0,B C CE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即20,0.x y z x y z --=⎧⎨-+-=⎩(3)AE u u u r=(0,1,0),1EC u u u u r =(1,1,1).设EM u u u u r =λ1EC u u u u r =(λ,λ,λ),0≤λ≤1,有AM u u u u r =AE u u u r +EM u u u u r=(λ,λ+1,λ).可取AB u u u r=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM 与平面ADD1A1所成的角,则sin θ=|cos 〈AM u u u u r ,AB u u u r〉|=AM AB AM AB⋅⋅u u u u r u u u r u u u ur u u u r 2222(1)2321λλλλλ=+++⨯++.22321λλ=++,解得13λ=,所以AM 2. (方法二)(1)证明:因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1, 所以CC1⊥B1C1.经计算可得B1E =5,B1C1=2,EC1=3, 从而B1E2=22111B C EC +, 所以在△B1EC1中,B1C1⊥C1E ,又CC1,C1E ⊂平面CC1E ,CC1∩C1E =C1, 所以B1C1⊥平面CC1E ,又CE ⊂平面CC1E ,故B1C1⊥CE.(3)连接D1E ,过点M 作MH ⊥ED1于点H ,可得MH ⊥平面ADD1A1,连接AH ,AM ,则∠MAH 为直线AM 与平面 ADD1A1所成的角.设AM =x ,从而在Rt △AHM 中,有MH =26x ,AH =346x . 在Rt △C1D1E 中,C1D1=1,ED1=2,得EH =123MH x.5. 【2014天津,理17】如图,在四棱锥P ABCD -中,PA ^底面ABCD ,AD AB ^,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.E PDC(Ⅰ)证明:BE DC ^;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为棱PC 上一点,满足BF AC ^,求二面角F AB P --的余弦值. 【答案】(Ⅰ)详见试题分析;(Ⅱ)直线BE 与平面PBD 3;310. 【解析】试题分析:(Ⅰ)可以建立空间直角坐标系,利用向量数量积来证明BE DC ^。
高三必过关题9 立体几何一、填空题例1给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台; ③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直; ④存在每个面都是直角三角形的四面体; ⑤棱台的侧棱延长后交于一点 其中正确命题的序号是________. 【答案】: ③④⑤【提示】考点:空间几何体的结构特征①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②不正确,用平行于棱锥底面的平面去截棱锥,棱锥底面与截面之间的部分才是棱台;③正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的面角都是直二面角;④正确,如正方体AC 1中的四棱锥C 1ABC ,四个面都是直角三角形;⑤正确,由棱台的概念可知.例2给出下列命题:①若平面α内的直线a 与平面β内的直线b 为异面直线,直线c 是α与β的交线,那么直线c 至多与a 、b 中的一条相交;②若直线a 与b 为异面直线,直线b 与c 平行,则直线a 与c 异面; ③一定存在平面α和异面直线a 、b 同时平行; ④若直线a 、b 异面,b 、c 异面,则a 、c 异面 其中正确命题的序号是__________. 【答案】:③【提示】考点:空间两直线的位置关系①错,c 可以与a 、b 均相交;②错,因为a 与c 可能相交;③对,可以将两异面直线a 与b 平移到空间内任意一点处,确定一个平面,该平面可以与a 、b 同时平行,并且这样的平面有无数多个.④错,a 、c 的位置关系可以平行、相交、异面。
例3与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点有 个. 【答案】:无数个【提示】:本题考查了空间想象能力.∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点.例4过正方体1111D C B A ABCD -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作 条. 【答案】:4条【提示】:考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力。
专题24 立体几何中综合问题1.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.2.【2017课标3,理19】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.【答案】(1)证明略;.(2)7【解析】(2)由题设及(1)知,,,OA OB OC 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz-.则()()()()1,0,0,0,3,0,1,0,0,0,0,1A B C D -由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得310,,22E ⎛⎫ ⎪ ⎪⎝⎭.故 ()()311,0,1,2,0,0,1,,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭.设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩0,0,n n 即0,31022x z x y z -+=⎧⎪⎨-++=⎪⎩。
【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。
如图1,在直角梯形ABCD中,AD∥BC, ∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1BCDE.(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1BCDE的体积为362,求a的值.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1) 请将字母F,G,H标记在正方体相应的顶点处(不需要说明理由);(2) 判断平面BEG与平面ACH的位置关系,并证明你的结论;(3) 证明:直线DF⊥平面BEG.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为63,求该三棱锥的侧面积.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.如图,三棱锥P ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC =2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E C的中点.和F分别为BC和A(1)求证:EF∥平面A1B1BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.如图,三棱锥PABC中,平面PAC⊥平面ABC,∠ABC=π2,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF//BC.(1)证明:AB⊥平面PFE;(2)若四棱锥PDFBC的体积为7,求线段BC的长.如图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE,BD,BE.(1)证明:DE⊥平面PBC,试判断四面体EBCD是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P-ABCD的体积为V1,四面体EBCD的体积为V2,求V1V2的值.立体几何训练11如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.立体几何训练12如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1) DE∥平面AA1C1C;(2) BC1⊥AB1.立体几何训练13如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.立体几何训练14如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.(1)若D为线段AC的中点,求证:AC⊥平面PDO;(2)求三棱锥PABC体积的最大值;(3)若BC=2,点E在线段PB上,求CE+OE的最小值.。
2014年12月28日高中数学立体几何一.解答题(共30小题)1.(2015•惠州模拟)如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.是菱形,,则∵∴2.(2015•赤峰模拟)如图,在三棱柱ABC﹣A1B1C1中,四边形A1ABB1为菱形,∠A1AB=45°,四边形BCC1B1为矩形,若AC=5,AB=4,BC=3.(1)求证:AB1⊥平面A1BC;(2)求三棱锥C﹣A1B1C1的体积.=,3.(2015•重庆一模)如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB 为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D﹣BCM的体积.DM=5,PC==2=×=2∴4.(2015•开封模拟)如图,四棱锥P﹣ABCD,底面ABCD为直角梯形,BC∥AD,BC⊥CD,BC=CD=AD.(Ⅰ)若E为PD中点,证明:CE∥平面APB;(Ⅱ)若PA=PB,PC=PD,证明:平面APB⊥平面ABCD.EF,因为BC,EF5.(2015•兴国县一模)在长方体ABCD﹣A1B1C1D1中,AA1=AD=2,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长.若不存在,说明理由.平行且等于6.(2014•重庆)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M 为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.BAD=,BM=BAD=,(BM=OBM=OBM=(,ABM===,,即PO=,•OM=V=S PO=7.(2014•辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F、G分别为AC、DC、AD的中点.(Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D﹣BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.=,==8.(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.=9.(2014•湖南)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.,,连ADO==所成角的余弦值为10.(2014•江西)如图,三棱柱ABC﹣A1B1C1中,AA1⊥BC,A1B⊥BB1,(1)求证:A1C⊥CC1;(2)若AB=2,AC=,BC=,问AA1为何值时,三棱柱ABC﹣A1B1C1体积最大,并求此最大值.BC= AO=O==,V==,即h=时棱柱的体积最大,最大值为:11.(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.MD=AC12.(2014•开封二模)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积..,则的面积,故三棱柱的体积13.(2014•安徽)如图,四棱锥P﹣ABCD的底面是边长为8的正方形,四条侧棱长均为2,点G,E,F,H 分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(Ⅰ)证明:GH∥EF;(Ⅱ)若EB=2,求四边形GEFH的面积.∴KB=GK=PO,,PO==S==1814.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.PA=3BC=415.(2014•北京)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(Ⅰ)求证:平面ABE⊥B1BCC1;(Ⅱ)求证:C1F∥平面ABE;(Ⅲ)求三棱锥E﹣ABC的体积.,可求三棱锥AB==16.(2011•江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.,,a,a,﹣,,﹣(﹣,,﹣,a a=(﹣a的法向量=即=,﹣,﹣的距离a=由此可得,边长为V=Sh=××a=17.(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.的高的.求出,,∴的高的.BCD=.=×.18.(2011•福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(Ⅰ)求证:平面PAB⊥平面PAD;(Ⅱ)设AB=AP.(i)若直线PB与平面PCD所成的角为30°,求线段AB的长;(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.=,得的一个法向量为=或19.(2011•扬州模拟)在正方体ABCD﹣A1B1C1D1中,O是AC的中点,E是线段D1O上一点,且D1E=λEO.(1)若λ=1,求异面直线DE与CD1所成角的余弦值;(2)若平面CDE⊥平面CD1O,求λ的值.为单位正交基底建立如图,以,cos=所成角的余弦值为=0=0E•=020.(2014•北京)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F 为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.n,即,|=|,所成的角为可设n,∴)PH=21.(2014•西藏一模)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1(Ⅰ)求证:CD=C1D;(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值;(Ⅲ)求点C到平面B1DP的距离.∴∴,的一个法向量为=⇒=∴x=;的一个法向量为<的平面角的余弦值为)∵的一个法向量为⇒,∴d=22.(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.的方向向量,根据•,求出向量∴,∵=0)∵=,的法向量,得,则=,所成角的正弦值为)∵===上,设λ===•=2,,,)=,得,则的法向量=23.(2014•湖南)如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(Ⅰ)证明:O1O⊥底面ABCD;(Ⅱ)若∠CBA=60°,求二面角C1﹣OB1﹣D的余弦值.OB=OD=,(=的一个法向量,则,即,则,所以,﹣),>|=||=的余弦值为24.(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.为坐标原点,||为单位长度,轴的正方向,的为坐标原点,的方向为||轴的正方向,),,∴,,=,==,可取,=,﹣,<,=25.(2014•广东)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD 于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.PD=DF===,又∴EF=CD=,((,,=,∴,∴=,=(,>=26.(2014•广西)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.E=,DF=,arctan27.(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.,,,,,,,﹣)的法向量=的法向量=CDAM,),,∴,(﹣,,﹣的法向量,∴的法向量,==所成的角(锐角)的余弦值为28.(2014•浙江)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.,BFG==BD=BC=,AC=AD=得;AD=,BAE=BG=,BFG=,二面角的大小为.29.(2014•河东区二模)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD 的中点,PA=2AB=2.(Ⅰ)求四棱锥P﹣ABCD的体积V;(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF;(Ⅲ)求二面角E﹣AC﹣D的大小.∴∴∴∴,又∴30.(2014•河北模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0).(Ⅰ)求证:CD⊥平面ADD1A1;(Ⅱ)若直线AA1与平面AB1C所成角的正弦值为,求k的值.为原点,,,所成角的正弦值为,建立方程,即可求为原点,,的方向为=,的法向量=,得,。
2015年高考真题――立体几何1. [新课标卷1]11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )A. 1B. 2C. 4D. 82.[全国课标2]6. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A.B. C. D.3.[北京卷]7. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ) A. 1B.C.D. 24. [天津卷]10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 .5. [山东卷]9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.B.C.D. 6.[广东卷]6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )81716151111A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7. [重庆卷]5. 某几何体的三视图如图所示,则该几何体的体积为( ) A.123π+ B. 136π C. 73π D. 52π8.[安徽卷]9. 一个四面体的三视图如图所示,则该四面体的表面积是( )A.1B.1+C.2D.9.[江苏卷]9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个. 若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .10.[浙江卷]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm11.[湖南卷]10.某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A.89πB.827πC.21)πD.21)π221112212.[陕西卷]5. 一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB. 4πC. 2π+4D. 3π+313.[湖北卷]5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件14.[新课标1]18.(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I)证明:平面AEC ⊥平面BED ;(II)若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -.15.[全国课标2]19.(本小题满分12分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,分别在A 1B 1, D 1C 1上,A 1E= D 1F=4.过点E,F 的平面α与此长方体的面相交,交线围成一个正方形. (I)在图中画出这个正方形(不必说明画法和理由) (II)求平面α把该长方体分成的两部分体积的比值.22FD C 1A 1C如图,在三棱锥E-ABC 中,平面EAB ⊥平面ABC ,三角形EAB 为等边三角形,AC ⊥ BC,且AC=BC=,O,M 分别为AB,V A 的中点.(I)求证:VB//平面MOC.(II)求证:平面MOC ⊥平面 V AB (III)求三棱锥V-ABC 的体积.17. [天津卷]17.(满分13分) 如图,已知1AA ⊥平面ABC ,11,BB AA AB=AC=3,1BC AA =,1BB =点E ,F 分别是BC ,1AC 的中点, (I )求证:EF 平面11A B BA ; (II )求证:平面1AEA ⊥平面1BCB 。
2015届高考数学 立体几何3(基础及能力训练)131.某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π42.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.223.已知二面角α-l -β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( ) A.14 B.24 C.34 D.124.如图,在正方体ABCD - A 1B 1C 1D 1中,点O 为线段BD 的中点,设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α则sin α的取值范围是( )A.⎣⎢⎡⎦⎥⎤33,1B.⎣⎢⎡⎦⎥⎤63,1C.⎣⎢⎡⎦⎥⎤63,223D.⎣⎢⎡⎦⎥⎤223,1 5.一个几何体的三视图如右图所示(单位:m),则该几何体的体积为________m 3.6.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)7.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A 为PD 的中点.(1)证明:PB ∥平面AEC ; (2)设二面角D -AE -C 为60°,AP =1求三棱锥E -ACD 的体积.8.如图所示,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.9.如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC 于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D -AF -E的余弦值.10.如图所示,四棱柱ABCD -A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.。
1.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.2.【2017课标3,理19】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.3.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点.(Ⅰ)设是上的一点,且,求的大小;(Ⅱ)当,,求二面角的大小.4.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2(I )求证:EG ∥平面ADF ;(II )求二面角O -EF -C 的正弦值;(III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.5.【2015江苏高考,22】(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2,1PA AD AB BC ====(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长6.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.7.【2015高考陕西,理18】(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.(I )证明:CD ⊥平面1C A O ;(II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.8.【2014高考陕西版理第17题】四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.9.【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD ,E 为边AD 的中点,异面直线PA 与CD 所成的角为90°.(Ⅰ)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.10.【2014安徽理20】(本题满分13分)如图,四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD .四边形ABCD 为梯形,BC AD //,且BC AD 2=.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q .(1)证明:Q 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若A A 14=,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小.11.【2014年湖北,卷理9】(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线//1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.12.【2015湖北理19】(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE (Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3,求DC BC的值.13.【2015湖南理19】如图15,已知四棱台1111ABCD A B C D -上、下底面分别是边长为3和6的正方形,16AA =,且1AA ⊥底面ABCD ,点P ,Q 分别在棱1DD ,BC 上.(1)若P 是1DD 的中点,证明:1AB PQ ⊥;(2)若//PQ 平面11ABB A ,二面角P QD A --的余弦值为37,求四面体ADPQ 的体积.14.【2015课标2理19】(本题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF 与平面α所成角的正弦值.15.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.。
2008高考三轮必做的立体几何综合题
1、如图,在四棱锥P ABCD -中,底面ABCD 为矩形,
侧棱PA ⊥底面ABCD
,AB =1BC =,2PA =,
E 为PD 的中点。
(Ⅰ)求直线AC 与PB 所成角的余弦值;
(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,
并求出点N 到AB 和AP 的距离。
解:(Ⅰ)建立如图所示的空间直角坐标系,
则,,,,,A B C D P E 的坐标为(0,0,0)A 、
B
、,0)C 、(0,1,0)D 、
(0,0,2)P 、1
(0,,1)2
E ,
从而).2,0,3(),0,1,3(-==PB AC 设与的夹角为θ,则
,14
7
37
23|
|||cos =
=
⋅=
PB AC θ ∴AC 与PB 所成角的余弦值为
14
7
3。
(Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(,0,)x z ,则
)1,2
1
,(z x --=,由NE ⊥面PAC 可得,
⎪⎩⎪⎨⎧=+-=-⎪⎪⎩
⎪⎪⎨⎧
=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.021
3,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.
0,0x z z x z x AC NE AP NE 化简得即 ∴⎪⎩
⎪⎨⎧==163
z x
即N 点的坐标为)1,0,63(
,从而N 点到AB 和AP
的距离分别为。
2、如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中
14,2,3,1AB BC CC BE ====。
(Ⅰ)求BF 的长;
(Ⅱ)求点C 到平面1AEC F 的距离。
解:(I )建立如图所示的空间直角坐标系,则(0,0,0)D ,
(2,4,0)B ,1(2,0,0),(0,4,0),(2,4,1),(0,4,3)A C E C 设(0,0,)F z
∵1AEC F 为平行四边形,
(II )设1n 为平面1AEC F 的法向量,
)1,,(,11y x n ADF n =故可设不垂直于平面显然
⎪⎩
⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即
111),3,0,0(n CC CC 与设又=的夹角为α,则 .33
33
4116
1
133|
|||cos 1111=++
⨯=
⋅=
n CC α ∴C 到平面1AEC F 的距离为.11
33
4333343cos ||1=⨯
==αCC d 3、如图,已知正三棱柱ABC —111C B A 的底面边长是2,D 是侧棱1CC 的中点,直线AD 与侧面11BB C C 所成的角为45.
11,
,(2,0,)(2,0,2),2.(0,0,2).(2,4,2).
||26,AEC F AF EC z z F EF BF BF ∴∴=-=-∴=∴∴=--=由为平行四边形由得于是即的长为110,04102020
0,n AE x y x y n AF ⎧⋅=⨯+⨯+=⎧⎪⎨⎨-⨯+⨯+=⋅=⎩⎪⎩由得
(Ⅰ)求此正三棱柱的侧棱长; (Ⅱ) 求二面角C BD A --的大小; (Ⅲ)求点C 到平面ABD 的距离.
解:(Ⅰ)设正三棱柱ABC —111C B A 的侧棱长为x .取BC 中点E ,连AE .
ABC ∆ 是正三角形,AE BC ∴⊥.
又底面ABC ⊥侧面11BB C C ,且交线为BC .
AE ∴⊥侧面11BB C C .
连ED ,则直线AD 与侧面11BB C C 所成的角为45ADE ∠=. 在AED Rt ∆
中,tan 45AE
ED
=
=
,解得x =
∴
此正三棱柱的侧棱长为
注:也可用向量法求侧棱长.
(Ⅱ)解法1:过E 作EF BD ⊥于F ,连AF ,
⊥AE 侧面,11C C BB ∴AF BD ⊥.
AFE ∴∠为二面角C BD A --的平面角.
在BEF Rt ∆中,sin EF BE EBF =∠,又
1,sin 3CD BE EBF BD =∠=
==,
∴3EF =.
又AE
∴在AEF Rt ∆中,tan 3AE
AFE EF
∠=
=. 故二面角C BD A --的大小为arctan 3. 解法2:(向量法,见后)
(Ⅲ)解法1:由(Ⅱ)可知,⊥BD 平面AEF ,∴平面AEF ⊥平面ABD ,且交线为AF ,
∴过E 作EG AF ⊥于G ,则EG ⊥平面ABD .
A
B
D
1
A 1
B 1
C E
F G
H
I
在AEF Rt ∆
中,AE EF
EG AF
⨯=
==
. E 为BC 中点,∴点C 到平面ABD
的距离为210EG =
. 解法2:(思路)取AB 中点H ,连CH 和DH ,由,C
A C
B =D
A D
B =,易得平面ABD ⊥
平面CHD ,且交线为DH .过点C 作CI DH ⊥于I ,则CI 的长为点C 到平面ABD 的距离.
解法3:(思路)等体积变换:由C ABD A BCD V V --=可求. 解法4:(向量法,见后) 题(Ⅱ)、(Ⅲ)的向量解法:
(Ⅱ)解法2:如图,建立空间直角坐标系
则(0,1,0),(0,1,0),(A B C D -设
1(,,)n x y z =为平面ABD 的法向量.
由⎪⎩⎪⎨⎧=⋅=⋅0
,
021AD n n 得0
y y ⎧=⎪
-+=取1(6,).n =- …………6分 又平面BCD 的一个法向量2(0,0,1).n = …………7分
∴10
10
1)3()6(1)1,0,0()1,3,6(,cos 222212121=+-+-⨯⋅--=
⋅>=<n n n n n n . 结合图形可知,二面角C BD A --的大小为arccos
10
. (Ⅲ)解法4:由(Ⅱ)解法2,1(6,),n =-(0,1CA =-
∴点C 到平面ABD 的距离d =2
221)3()6()1,3,6()3,1,0(+-+---⋅-==
10
30
2.
1
4. 一个几何体的三视图如右图所示,其中正视图和侧视 图是腰长为6的两个全等的等腰直角三角形.
(Ⅰ)请画出该几何体的直观图,并求出它的体积; (Ⅱ)用多少个这样的几何体可以拼成一个棱长为
6的正方体ABCD —A 1B 1C 1D 1? 如何组拼?试证明你的结论; (Ⅲ)在(Ⅱ)的情形下,设正方体ABCD —A 1B 1C 1D 1 的棱CC 1的中点为E, 求平面AB 1E 与平面ABC 所成二面 角的余弦值.
解:(Ⅰ)该几何体的直观图如图1所示,它是有一条 侧棱垂直于底面的四棱锥. 其中底面ABCD 是边长为6的 正方形,高为CC 1=6,故所求体积是
72663
12
=⨯⨯=V
(Ⅱ)依题意,正方体的体积是原四棱锥体积的3倍, 故用3个这样的四棱锥可以拼成一个棱长为6的正方体, 其拼法如图2所示.
证明:∵面ABCD 、面ABB 1A 1、面AA 1D 1D 为全等的 正方形,于是
D D AA C A ABB C ABCD C V V V 1111111---== 故所拼图形成立.
(Ⅲ)方法一:设B 1E ,BC 的延长线交于点G , 连结GA ,在底面ABC 内作BH ⊥AG ,垂足为H , 连结HB 1,则B 1H ⊥AG ,故∠B 1HB 为平面AB 1E 与 平面ABC 所成二面角或其补角的平面角. 在Rt △ABG 中,180=AG ,则
5
12180
126=
⨯=
BH ,5
182
121=
+=
BB BH H B ,
3
2
cos 11==
∠HB HB HB B ,故平面AB 1E 与平面ABC 所成二面角的余弦值为32±.-
方法二:以C 为原点,CD 、CB 、CC 1所在直线分别为x 、y 、z
轴建立直角坐标系(如
正视图
侧视图
俯视图 B
C D
C 1
图1
A B
C D
D 1
A 1
B 1
C 1 图2
图3),∵正方体棱长为6,则E (0,0,3),B 1(0,6,6),A (6
设向量n=(x ,y ,z ),满足n ⊥1EB ,n ⊥1AB ,
于是⎩⎨⎧=+-=+066036z x z y ,解得⎪⎩
⎪⎨⎧-==z y z
x 21.
取z=2,得n=(2,-1,2). 又=1BB (0,0,6),3
2
1812|
|||,cos 111==
>=
<BB n BB 故平面AB 1E 与平面ABC 所成二面角的余弦值为3
2±.。