2019-2020年高考数学一轮总复习第6章不等式推理与证明6.4基本不等式模拟演练课件文
- 格式:ppt
- 大小:1.88 MB
- 文档页数:25
第四节 推理与证明
教 材 回 顾 考 点 突 破
栏目导航
最新考纲考情考向分析
1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.
2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理.
3.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.
4.了解反证法的思考过程和特点.1.以理解类比推理、归纳推理和演绎推理的推理方法为主,常以演绎推理的方法根据几个人的不同说法作出推理判断进行命题.注重培养学生的推理能力.2.直接证明的方法——综合法和分析法,间接证明的方法——反证法,常以立体几何中的证明和不等式的证明为载体加以考查,注重考查学生分析问题、解决问题的能力.在高考中主要以解答题的形式考查,难度中档.
部分
全部部分整体个别一般。
2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理基础热身1.设M=2a(a-2),N=(a+1)(a-3),则有()A.M>NB.M≥NC.M<n< bdsfid="83" p=""></n<>D.M≤N2.[xx·襄阳五中模拟]设a,b∈R,则“a>b”是“|a|>|b|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.若a,b,c∈R,a>b,则下列不等式成立的是()A.<b< bdsfid="92" p=""></b<>B.a2>b2C.>D.a|c|>b|c|4.已知-1≤a≤3,-5<b<3,则a+|b|的取值范围是.< bdsfid="97" p=""></b<3,则a+|b|的取值范围是.<>5.有外表相同,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>c+b,a+c<b,则a,b,c,d由大到小的排列顺序为.< bdsfid="100" p=""></b,则a,b,c,d由大到小的排列顺序为.<> 能力提升6.已知下列四个关系:①若a>b,则ac2>bc2;②若a>b,则<;③若a>b>0,c>d>0,则>;④若a>b>1,c<0,则a cA.1个B.2个C.3个D.4个7.[xx·潮州二模]已知a>b,则下列各式一定正确的是()A.a lg x>b lg xB.ax2>bx2C.a2>b2D.a·2x>b·2x8.[xx·广西玉林质检]已知a=log23,b=,c=log53,则()A.c<a<b< bdsfid="127" p=""></a<b<>B.a<b<c< bdsfid="130" p=""></b<c<>C.b<c<a< bdsfid="133" p=""></c<a<>D.b<a<c< bdsfid="136" p=""></a<c<>9.[xx·南阳一中月考]设a>b>0,x=-,y=-,则x,y的大小关系为()A.x>yB.x<y< bdsfid="143" p=""></y<>C.x=yD.x,y的大小关系不定10.若a<b,d<c,且(c-a)(c-b)0,则a,b,c,d的大小关系是()</b,d<c,且(c-a)(c-b)A.d<a<c<b< bdsfid="153" p=""></a<c<b<>B.a<c<b<d< bdsfid="156" p=""></c<b<d<>C.a<d<b<c< bdsfid="159" p=""></d<b<c<>D.a<d<c<b< bdsfid="162" p=""></d<c<b<>11.[xx·北京东城区二模]据统计,某超市两种蔬菜A,B连续n天的价格(单位:元)分别为a1,a2,a3,…,a n和b1,b2,b3,…,b n.令M={m|a mA.若A?B,B?C,则A?CB.若A?B,B?C同时不成立,则A?C不成立C.A?B,B?A可同时不成立D.A?B,B?A可同时成立12.[xx·南京一模]已知a,b为实数,且a≠b,a<0,则a 2b-(填“>”“<”或“=”).13.[xx·咸阳模拟]已知函数f=ax+b,0<f<2,-1<f<1,则2a-b的取值范围是.< bdsfid="184" p=""></f<2,-1<f<1,则2a-b的取值范围是.<>14.[xx·河南天一大联考]已知实数a∈(-3,1),b∈,,则的取值范围是.难点突破15.(5分)[xx·杭州质检]若实数a,b,c满足对任意实数x,y有3x+4y-5≤ax+by+c≤3x+4y+5,则()A.a+b-c的最小值为2B.a-b+c的最小值为-4C.a+b-c的最大值为4D.a-b+c的最大值为616.(5分)[xx·盐城一模]已知-1≤a+b≤3,2≤a-b≤4,若2a+3b的最大值为m,最小值为n,则m+n= .课时作业(三十四)第34讲一元二次不等式及其解法基础热身1.不等式-x2+3x+10>0的解集为 ()A.(-2,5)B.(-∞,-2)∪(5,+∞)C.(-5,2)D.(-∞,-5)∪(2,+∞)2.[xx·上饶四校联考]设x∈R,则“0<x<2”是“x2-x-2<="" bdsfid="233" p=""></x<2”是“x2-x-2A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.[xx·淮北一中四模]若(x-1)(x-2)<2,则(x+1)(x-3)的取值范围是()A.(0,3)B.C.D.4.若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是.5.若关于x的不等式ax2-6x+a2<0的解集是(1,m),则m= .能力提升6.如果关于x的不等式x2<ax+b的解集是{x|1<x<="" bdsfid="270" p=""></ax+b的解集是{x|1<xA.-81B.81C.-64D.647.若存在x∈[-2,3],使不等式2x-x2≥a成立,则实数a的取值范围是()A.(-∞,1]B.(-∞,-8]C.[1,+∞)D.[-8,+∞)8.[xx·岳阳质检]设函数f(x)=若不等式xf(x-1)≥a的解集为[3,+∞),则实数a的值为()A.-3B.3C.-1D.19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a 的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.[xx·银川二中一模]已知a1>a2>a3>0,则使得(1-a i x)2<1(i=1,2,3)都成立的x的取值范围是()A.B.C.D.11.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减少耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,则t的取值范围是()A.B.C.D.12.已知函数f(x)=x2-2ax+a2-1,若关于x的不等式f[f(x)]<0的解集为空集,则实数a的取值范围是.13.设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,则x的取值范围是.14.[xx·惠州二调]已知函数f(x)=则不等式f[f(x)]≤3的解集为.难点突破15.(5分)[xx·苏北三市(连云港、徐州、宿迁)三模]已知对于任意的x∈(-∞,1)∪(5,+∞),都有x2-2(a-2)x+a>0,则实数a的取值范围是()A.B.C.D.16.(5分)[xx·湖州、衢州、丽水三市联考]已知函数f=ax2+bx+c(a,b,c∈R),若存在实数a ∈[1,2],对任意x∈[1,2],都有f≤1,则7b+5c的最大值是.课时作业(三十五)第35讲二元一次不等式(组)与简单的线性规划问题基础热身1.(x-2y+1)(x+y-3)<0表示的平面区域为()图K35-12.已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为()A.(-24,7)B.(-∞,-7)∪(24,+∞)C.(-7,24)D.(-∞,-24)∪(7,+∞)3.[xx·阜阳质检]不等式|x|+|3y|-6≤0所对应的平面区域的面积为()A.12B.24C.36D.484.在平面直角坐标系中,不等式组表示的平面区域的形状是.5.[xx·桂林、崇左、百色一模]设x,y满足约束条件则x2+y2的最大值为.能力提升6.已知实数x,y满足约束条件则目标函数z=x-2y的最小值为()A.-1B.1C.3D.77.[xx·南充三诊]若实数x,y满足不等式组则z=2x+y的最大值是()A.B.C.14D.218.设x,y满足约束条件则的最大值为()A.B.2C.D.09.[xx·惠州二模]设关于x,y的不等式组表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,则实数m的取值范围是()A.B.C.D.10.[xx·宁德质检]已知约束条件表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为()A.B.1C.D.11.[xx·大庆实验中学一模]已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域上的一个动点,则·的取值范围是.12.[xx·淮南二模]已知实数x,y满足不等式组若目标函数z=y-mx 取得最大值时有唯一的最优解(1,3),则实数m的取值范围是.13.(15分)[xx·天津河东区二模]制定投资计划时,不仅要考虑可能获得的盈利,还要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划的投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问:投资人对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大?最大盈利额是多少?14.(15分)某人有一套房子,室内面积共计180 m2,拟分隔成两类房间作为旅游客房,大房间每间面积为18 m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15 m2,可住游客3名,每名游客每天住宿费50元.装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天才能获得最大的房租收益?难点突破15.(5分)[xx·衡阳二联]集合M={(x,y)|x+y≤1,y≤x,y≥-1},N={(x,y)|(x-2)2+y2=r2,r>0},若M∩N≠?,则r的取值范围为()A.B.C.D.16.(5分)[xx·九江模拟]已知实数x,y满足若z=mx+y的最大值为 3,则实数m的值是()A.-2B.3C.8D.2课时作业(三十六)第36讲基本不等式基础热身1.[xx·北京海淀区一模]若m<n<0,则下列不等式中正确的是()< bdsfid="561" p=""></n<0,则下列不等式中正确的是()<>A.>B.>C.+>2D.m+n>mn2.[xx·青岛质检]已知x>1,y>1,且lg x,2,lg y成等差数列,则x+y 有()A.最小值20B.最小值200C.最大值20D.最大值2003.[xx·赤峰模拟]若函数f=x+(x>2)在x=a处取得最小值,则a=()A.1+B.1+C.3D.44.[xx·天津河东区二模]已知a>0,b>0,且2a+b=4,则的最小值是.5.[xx·成都九校联考]设正数a,b满足a+2b=1,则+的最小值为.能力提升6.[xx·郑州三模]若实数a,b,c均大于0,且(a+c)·(a+b)=6-2,则2a+b+c的最小值为()A.-1B.+1C.2+2D.2-27.[xx·雅安三诊]对一切实数x,不等式x2+a+1≥0恒成立,则实数a的取值范围是() A.B.C.D.8.[xx·乌鲁木齐三模]已知x,y∈R,x2+y2+xy=315,则x2+y2-xy 的最小值是()A.35B.105C.140D.2109.[xx·泉州模拟]已知2a+2b=2c,则a+b-2c的最大值为()A.-2B.-1C.D.-10.[xx·深圳调研]若函数f=x+(m为大于0的常数)在(1,+∞)上的最小值为3,则实数m的值为.11.用一根长为12的钢筋焊接一个正三棱柱形状的广告牌支架,则该三棱柱的侧面积的最大值是.12.[xx·日照三模]已知向量a=(m,1),b=(4-n,2),m>0,n>0,若a∥b,则+的最小值为.13.(15分)[xx·盐城三模]已知a,b,c为正实数,且a+b+c=3,证明: ++≥3.14.(15分)[xx·黄冈中学模拟]某公司生产一批A产品需要原材料500吨,每吨原材料可创造利润12万元.该公司通过设备升级,生产这批A产品所需原材料减少了x(x>0)吨,且每吨原材料创造的利润提高了0.5x%.若将少用的x吨原材料全部用于生产公司新开发的B产品,每吨原材料创造的利润为12a-x万元,其中a>0.(1)若设备升级后生产这批A产品的利润不低于原来生产这批A产品的利润,求x的取值范围;(2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求a的最大值.难点突破15.(5分)[xx·河南豫南六市联考]已知函数f=ax2+bx+c(b>a),对任意的x∈R,f≥0恒成立,则的最小值为()A.3B.2C.1D.016.(5分)[xx·湛江二模]已知a>b,二次不等式ax2+2x+b≥0对于一切实数x恒成立,又存在x0∈R,a+2x0+b=0,则的最小值为.课时作业(三十七)第37讲合情推理与演绎推理基础热身1.[xx·鹰潭一模]用“三段论”推理:任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0.你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的2.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点3.观察图K37-1中各正方形图案,则所有圆点总和S n与n的关系式为()图K37-1A.S n=2n2-2nB.S n=2n2C.S n=4n2-3nD.S n=2n2+2n4.[xx·兰州模拟]观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,….由以上式子可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1= .5.[xx·烟台二模]在正项等差数列中有=成立,则在正项等比数列中,类似的结论为.能力提升6.[xx·郑州一中调研]“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.xx年是“干支纪年法”中的丙申年,那么xx年是“干支纪年法”中的()A.丁酉年B.戊未年C.乙未年D.丁未年7.下面说法正确的是()①数列{a n}的前三项是1,2,3,那么这个数列的通项公式为a n=n;②由平面三角形的性质推测空间四面体的性质,这是一种合情推理;③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适;④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.A.①②B.②③C.③④D.②④8.[xx·临汾一中、忻州一中、长治二中、康杰中学联考]已知[x]表示不大于x的最大整数,设函数f(x)=log2,得到下列结论:结论1:当2<x< bdsfid="827" p=""></x<>结论2:当4<x< bdsfid="831" p=""></x<>结论3:当6<x< bdsfid="835" p=""></x<>……照此规律,结论6为.9.如图K37-2甲所示,在直角三角形ABC中,AC⊥AB,AD⊥BC,D 是垂足,则有AB2=BD·BC,该结论称为射影定理.如图乙所示,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比直角三角形中的射影定理,则有.图K37-2难点突破10.(5分)[xx·郑州、平顶山、濮阳二模]设函数f(0)(x)=sin x,定义f(1)(x)=f'(0)(x),f(2)(x)=f'(1)(x),…,f(n)(x)=f'(n-1)(x),则f(1)(15°)+f(2)(15°)+f(3)(15°)+…+f(xx)(15°)的值是 ()A.B.C.0D.111.(5分)[xx·江南十校二模]某地突发地震后,有甲、乙、丙、丁4个轻型救援队分别从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是A方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是C方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么丁所在方向就不是A方向.有下列判断: ①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是.课时作业(三十八)第38讲直接证明与间接证明基础热身1.[xx·莱芜一中模拟]用反证法证明命题“设a,b为实数,则方程x2+ax+b=0没有实数根”时,应假设()A.方程x2+ax+b=0至多有一个实根B.方程x2+ax+b=0至少有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根2.要证明a2+b2-1-a2b2≤0,只需证明()A.2ab-1-a2b2≤0B.a2+b2-1≤C.-1-a2b2≤0D.(a2-1)(b2-1)≥03.[xx·南昌二模]已知等差数列的前n项和为S n,若S2k+1>0,则一定有()A.a k>0B.S k>0C.a k+1>0D.S k+1>04.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,+<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设≥1.其中正确说法的序号是.能力提升5.[xx·大连模拟]“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是()A.男护士B.女护士C.男医生D.女医生6.[xx·福建师大附中一模]若O为△ABC平面内一点,且满足(-)·(+-2)=0,则△ABC为()A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形7.设A,B,C为锐角三角形ABC的三个内角,M=sin A+sin B+sinC,N=cos A+2cos B,则()A.M<n< bdsfid="997" p=""></n<>B.M=NC.M>ND.M,N大小不确定8.[xx·武汉模拟]已知f=,a≠b,则|f-f|与|a-b|的大小关系为()A.>B.<C.=D.不确定9.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设命题的结论不成立的正确叙述是(填序号).①假设三个角都不大于60°;②假设三个角都大于60°;③假设三个角至多有一个大于60°;④假设三个角至多有两个大于60°.难点突破10.(5分)[xx·山西运城调研]在△ABC中,AC=5,+-=0,则BC+AB=()A.6B.7C.8D.911.(5分)[xx·北京海淀区二模]已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图K38-1所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90°,记T i(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是()A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数图K38-1课时作业(三十九)第39讲数学归纳法基础热身1.用数学归纳法证明“1+a+a2+…+a n+1=(a≠1,n∈N*)”,在验证n=1时,左端所得的项为()A.1B.1+aC.1+a+a2D.1+a+a2+a32.用数学归纳法证明“凸n边形对角线的条数f=”时,第一步应验证()A.n=1成立B.n=2成立C.n=3成立D.n=4成立3.用数学归纳法证明“1+++…+=”时,由n=k到n=k+1,等式左边需要添加的项是()A.B.C.D.4.在数列{a n}中,a1=2,a n+1=(n∈N*),可以猜想数列的通项公式为.5.用数学归纳法证明“1+++…+<2-(n≥2,n∈N*)”时第一步需要验证的不等式为.能力提升6.已知n为正偶数,用数学归纳法证明“1-+-+…+=2++…+”时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n= 时等式成立()A.k+1B.k+2C.2k+2D.2(k+2)7.用数学归纳法证明“1+++…+< bdsfid="1143" p=""><>A.2k-1B.2k-1C.2kD.2k+18.设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k+1成立时,总可推出f(k+1)≥k+2成立.那么,下列说法正确的是()A.若f(1)<2成立,则f(10)<11成立B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k+1成立C.若f(2)<3成立,则f(1)≥2成立D.若f(4)≥5成立,则当k≥4时,均有f(k)≥k+1成立9.设平面内有n(n≥3)条直线,它们任何2条不平行,任何3条不共点,若k条这样的直线把平面分成f个区域,则k+1条直线把平面分成的区域数f(k+1)=f+ .10.用数学归纳法证明“2n>2n2-2n+1对于n≥n0的正整数n均成立”时,第一步证明中的起始值n0应取.11.设f(n)=1-+-+…+,则f(k+1)=f+ .(不用化简)12.用数学归纳法证明“1-+-+…+-=++…+”时,假设n=k时等式成立,则n=k+1时,等式右边为.13.(10分)[xx·山西孝义质检]数列满足a n+5a n+1=36n+18,且a1=4.(1)写出的前3项,并猜想其通项公式;(2)用数学归纳法证明你的猜想.难点突破14.(5分)如果命题P(n∈N*)对n=k(k∈N*)成立,则它对n=k+1也成立,现已知P对n=4不成立,则下列结论中正确的是 ()A.P对任意n∈N*成立B.P对n>4成立C.P对n<4成立D.P对n≤4不成立15.(5分)已知f(m)=1+++…+(m∈N*),用数学归纳法证明f>时,f-f= .课时作业(三十三)1.A[解析] 因为M-N=2a(a-2)-(a+1)(a-3)=a2-2a+3=(a-1)2+2>0,所以M>N,故选A.2.D[解析] 因为“a>b”不能推出“|a|>|b|”成立,且“|a|>|b|”也不能推出“a>b”成立,所以“a>b”是“|a|>|b|”的既不充分也不必要条件.故选D.3.C[解析] 取a=1,b=-1,排除选项A;取a=0,b=-1,排除选项B;取c=0,排除选项D;显然>0,则不等式a>b的两边同时乘,所得不等式仍成立.故选C.4.[-1,8)[解析] 因为-5<b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以< bdsfid="1228" p=""></b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以<>a+|b|的取值范围是[-1,8).5.d>b>a>c [解析] ∵a+b=c+d,a+d>c+b,∴2a>2c,即a>c,∴b<d.∵a+c<b,∴a<b.综上可得< bdsfid="1235" p=""></d.∵a+c<b,∴a<b.综上可得<>d>b>a>c.6.B[解析] c=0时,①错误;a>0>b时,②错误;根据不等式的性质知③正确;根据指数函数的性质可知④正确.故正确的有2个.7.D[解析] A中,当x=1时,不成立;B中,当x=0时,不成立;C中,当a=0,b=-1时,不成立;D 中,因为2x>0,所以a·2x>b·2x成立.故选D.8.A[解析] 由题可知a=log2<a<b.故选a.< bdsfid="1248" p=""><a<b.故选a.<>9.B[解析] ∵x>0,y>0,==<1,∴x<y,故选b.< bdsfid="1252" p=""></y,故选b.<>10.A[解析] ∵a<b,(c-a)(c-b)0,∴a<c<b,且db,结合d<c,知< bdsfid="1258" p=""></c,知<></c<b,且d</b,(c-a)(c-b) d<a<c<b.故选a.< bdsfid="1262" p=""></a<c<b.故选a.<>11.C[解析] 特例法:例如蔬菜A连续10天的价格分别为1,2,3,4,…,10,蔬菜B连续10天的价格分别为10,9,…,1时,A?B,B?A 同时不成立,故选C.12.< [解析] ∵a≠b,a<0,∴a-2b-=<0,∴a<2b-.13. [解析] 由函数的解析式可知0<a+b<2,-1<-a+b< bdsfid="1272" p=""></a+b<2,-1<-a+b<>14.(-24,8)[解析] 当-3<a<="">15.A[解析] 当x=1,y=-1 时,-6≤a-b+c≤4,所以a-b+c的最小值为-6,最大值为4,故B,D 错误;当x=-1,y=-1 时,-12≤-a-b+c≤-2,则2≤a+b-c≤12,所以a+b-c的最小值为2,最大值为12,故A正确,C错误.故选A.16.2[解析] 设2a+3b=x(a+b)+y(a-b),则解得因为-≤(a+b)≤,-2≤-(a-b)≤-1,所以-≤(a+b)-(a-b)≤,即-≤2a+3b≤,所以m+n=2.课时作业(三十四)1.A[解析] 由x2-3x-10<0,解得-2<x<5.< bdsfid="1289" p=""></x<5.<>2.A[解析] 由x2-x-2<0,得-1<x<2,故选a.< bdsfid="1293" p=""></x<2,故选a.<>3.C[解析] 由(x-1)(x-2)<2,解得0<x< bdsfid="1297" p=""></x<>4.(-∞,-6]∪[2,+∞)[解析] 由已知得方程x2-ax-a+3=0有实数根,即Δ=a2+4(a-3)≥0,故a≥2或a≤-6.5.2[解析] 由题意知,a≠0,方程ax2-6x+a2=0的根为1,m,且m>1,则所以m=2.6.B[解析] 不等式x2<ax+b可化为x2-ax-b<0,其解集是{x|1<x</ax+b可化为x2-ax-b<0,其解集是{x|1<x7.A[解析] 设f(x)=2x-x2,则当x∈[-2,3]时,f(x)=-(x-1)2+1∈[-8,1],因为存在x∈[-2,3],使不等式2x-x2≥a成立,所以a≤f(x)max,所以a≤1,故选A.8.B[解析] 由题意知3是方程xf(x-1)=a的一个根,则a=3f(3-1)=3×(2-1)=3,故选B.9.A[解析] 令g(x)=x2-4x-2,x∈(1,4),易得g(x)<-2.< bdsfid="1317" p=""><-2.<>10.B[解析] 由题意有(1-a i x)2<1?x2-2a i x<0?xx-<0,所以不等式的解集为0,.又0<<<,所以x的取值范围为0,,故选B.11.B[解析] 由题意知征收耕地占用税后每年损失耕地为20-t万亩,则税收收入为20-t×24 000×t%万元,由题意有20-t×24 000×t%≥9000,整理得t2-8t+15≤0,解得3≤t≤5,∴当耕地占用税税率为3%~5%时,既可减少耕地损失又可保证此项税收一年不少于9000万元.∴t的取值范围是3≤t≤5,故选B.12.(-∞,-2][解析] f(x)=x2-2ax+a2-1=[x-(a+1)][x-(a-1)],则f(x)<0?a-1<x<a+1,则f[f(x)]<0?a-1<f(x)< bdsfid="1327" p=""></x<a+1,则f[f(x)]<0?a-1<f(x)<>13.,[解析] 记f(m)=mx2-2x-m+1=(x2-1)m+1-2x(|m|≤2),则f(m)<0恒成立等价于解得<x<.< bdsfid="1334" p=""></x<.<>14. [解析] 由题意,f[f(x)]≤3,则f(x)≥0或∴f(x)≥-3,∴x<0或∴x≤.15.B[解析] 设f(x)=x2-2(a-2)x+a,当Δ=4(a-2)2-4a<0,即1<a0对x∈R恒成立.当Δ=0时,a=1或a=4,当a=1时,f=0,不合题意;当a=4时,f(2)=0,符合题意.当Δ>0时,</a需满足即即4<a≤5.综上,实数a的取值范围是(1,5].< bdsfid="1345" p=""></a≤5.综上,实数a的取值范围是(1,5].<>16.-6[解析] 因为x∈[1,2],所以ax2+bx+c≤1等价于a≤,由题意知存在a∈[1,2],使得不等式a≤对任意x∈[1,2]恒成立,所以≥1,即x2+bx+c-1≤0对x∈[1,2]恒成立,所以即所以7b+5c=3(b+c)+2(2b+c)≤-6,即7b+5c的最大值为-6.课时作业(三十五)1.C[解析] 原不等式等价于不等式组或分别画出两个不等式组所表示的平面区域(图略),观察可知选C.2.C[解析] ∵点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,∴(-9+2-a)(12+12-a)<0,即(a+7)(a-24)<0,解得-7<a<24,故选 c.< bdsfid="1358" p=""></a<24,故选c.<>3.B[解析] 如图,不等式+-6≤0所对应的平面区域为一个菱形及其内部,菱形的对角线长分别为12,4,所以其面积为×12×4=24,故选B.4.正方形[解析] 不等式组表示的平面区域由四条直线x=1,x=-1,y=2,y=4围成,其形状为正方形.5.5[解析] 由约束条件作出可行域如图所示,由得得A(2,-1).由图可知x2+y2的最大值为22+(-1)2=5,故答案为5.6.B[解析] 由约束条件作出可行域如图所示,目标函数z=x-2y可化为y=x-z,其中-z表示斜率为的直线在y轴上的截距,通过平移可知,当直线经过点A(3,1)时-z取到最大值,即z 取得最小值,最小值为1.故选B.7.B[解析] 作出可行域如图所示,目标函数z=2x+y可化为y=-2x+z,其中z表示斜率为-2的直线在y轴上的截距,由图可知,当直线过点A,时z取得最大值,故选B.8.A[解析] 作出不等式组表示的平面区域如图中阴影部分所示,又表示区域内的点与原点连线的斜率,由图知,==,故选A.。