八年级上册数学-全等三角形的判定SSS(教案)
- 格式:doc
- 大小:57.50 KB
- 文档页数:2
11.2.1《三角形全等的判定(SSS)》今天我讲课的题目是《三角形全等的判定》(SSS)。
本节课是人教版《义务教育课程标准实验教科书》八年级上册第十一章第二节第一课时的内容。
1.教材的地位与作用:三角形全等的判定是中学教学重要内容之一,是空间与图形的基础知识。
本节内容是学生在认识三角形的基础上,学习了全等三角形的概念、全等三角形的性质后展开的,是证明线段相等、角相等的重要方法,是今后学习多边形等知识的基础。
本节课是三角形全等的判定的第1课时,将为下节课探索三角形全等的其它判定方法打下坚实的基础;同时为今后探索三角形相似的条件提供很好的模式和方法。
2.教学重点难点2.1教学重点:通过探索三角形全等的“边边边”条件,可以让学生经历和体验知识的形成过程,了解数学研究问题的方法,领会数学思想,获得数学活动的经验。
同时提高探究、发现和创新的能力,因此本节课的教学重点为掌握三角形全等的“边边边”的条件。
2.2教学难点:八年级学生年龄、生理及心理特征还不具备独立系统地推理论证几何问题的能力,思维有局限性,考虑问题还不够全面;在此基础上我确定本节课的教学难点为“三角形全等判定的探索过程”和“三角形全等判定的应用”。
3.教学目标(四维目标)1.知识与技能:掌握三角形全等的"边边边"条件, 能初步应用“边边边”条件判定两个三角形全等。
2.数学思考:经历探索三角形全等判定的过程,体验分类讨论的数学思想,体验用操作、归纳得出数学结论的过程。
3.问题解决:通过探究三角形全等的条件的活动,培养学生合作交流的意识以及发现问题的能力。
让学生学会思考、并注重书写格式的养成。
4.情感态度:通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质。
4.学情分析本节课以全等三角形定义和性质为载体,逐步探究出三角形全等“SSS”的判定方法,它是两个三角形间最简单、最常见的关系。
我所面对的学生是八年级的学生,他们的接受能力比七年级学生强,思维也更加的开阔,但独立解题能力比较差,需要在课堂上进一步的加强与引导,特制订了以下的教法和学法。
12.2《三角形全等的判定SSS》教学设计
一、教材分析
1、地位作用:本节是人教版八年级上册第十二章第二节的第一课时,安排的教学内容为三角形全等的判定中的“三边对应相等的两个三角形全等”。
本节主要探索如何简捷地判定两个三角形全等,为此构建了三角形全等的探索思路。
最后通过作图实验,概括出判定全等的方法-------“边边边”。
“边边边”全等判定方法的探索过程也为其它判定方法的探索提供了思路和策略。
二、目标
1.目标
(1)构建三角形全等条件的探索思路,体会研究几何问题的方法。
(2)探索并理解“边边边”判定方法,会用它证明三角形全等。
(3)会用尺规作一个角等于已知角,了解作图的道理。
2、教学重、难点
教学重点:构建三角形全等条件的探索思路,“边边边”的判定方法。
教学难点:探究三角形全等“边边边”的判定。
“
三、教学准备:多媒体课件、圆规、直尺、剪刀。
、以小组为单位,把剪下的三角形重叠在一起,发
BD=CD。
全等三角形的判定(SSS)教学目标(1)掌握边边边条件的内容;能初步应用边边边条件判定两个三角形全等。
(2)会使用边边边条件证明两个三角全等。
教学重点难点教学重点:能应用边边边条件判定两个三角形全等。
教学难点:探究三角形全等的条件。
(一)知识回顾,提出问题已知△ABC ≌△ A ′B ′ C ′,找出其中相等的边与角:思考:满足这六个条件能够保证△ABC ≌△A ′B ′C ′吗? 师生活动:师提出问题,学生回答。
问题1、当满足一个条件时, △ABC 与△ABC ′全等吗?一个条件(1)一条边(2)一个角师生活动:让学生经历画图的过程后,总结经验。
达成共识:不一定全等。
如下列图:一条边分别相等时:AB C C ′B ′A ′一个角分别相等时:问题2:当满足两个条件时, △ABC 与△A ′B ′C ′全等吗? 两个条件(1)两条边(2)一边一角(3)两个角 师生活动:让学生通过画图、展示交流后得出结论。
达成共识:不一定全等。
如下列图: 两条边分别相等时:两个角分别相等时: AB C4cm45°BCAA ’B ’C ’45° A ’B ’45°65°A BCB ’C ’A ’45°65°9cm5cmA ’B ’C ’9cm5cm AC一边一角分别相等时:问题3:当满足三个条件时, △ABC 与△A ′B ′C ′全等吗?满足三个条件时,又分为几种情况呢?师生活动:让学生交流讨论后、得到以下几种情况。
三个条件(1)三条边(2)两边一角(3)两角一边(4)三个角 师问:我们现在研究第①种情况。
当两个三角形满足三边对应相等时,这两个三角形全等吗?设计意图:先提出“全等判定”问题,构建出三角形全等条件的探索路径,然后以问题串的方式表现探究过程,引导学生层层深入地思考问题。
(二)动手操作,感悟新知活动:尺规作图,探究“边边边”判定方法先任意画出一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′= AB ,B ′C ′= BC ,A ′C ′= AC .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?ABCA ’C ’’4cmACB4cm解:画法(1)画线段B ′C ′=BC ;(2)分别以B ′、C ′为圆心,BA 、BC 为半径画弧,两弧交于A ′; (3)连接线段A ′B ′,A ′C′。
《三角形全等的判定(SSS)》优质课教学设计其实是采用相对对称的结构来维持风筝的稳定, 也就是保证风筝的左右一样。
那么我们要怎么证明一个十字风筝和三角风筝左右都一样呢?那就一起来学习今天的课程三角形全等的判定(SSS)。
一起探究一下风筝是不是左右相等的吧。
复习回顾: 全等三角形的性质。
提问1: 还记得什么是全等三角形吗?提问2: 全等三角形具有什么样的性质呢?提问3:若已知△ABC≌△DEF, 会有什么结论?提示1: 能够重合的两个三角形叫全等三角形.提示2:全等三角形的对应边相等, 对应角相等。
提示3:∵△ABC≌△DEF∴ AB=DE ∠A=∠DAC=DF ∠B=∠EBC=EF ∠C=∠F探究新知:因此, 判定两个三角形全等, 除了定义外, 还可以利用这六组条件, 但这两种方法都较为复杂, 我们能否减少条件, 用尽量少的条件进行判定呢?如果只满足这些条件中的一部分, 那么能保证两个三角形全等吗?我们先从最少的条件开始探究。
探究一: (同桌讨论)①只给1条边。
所以, 只确定一条边, 可以画出无数个三角形, 它的形状不定, 所以只满足一条边对应相等, 是不足以证明两个三角形全等的。
这种方式叫做举反例, 即满足条件, 但却发现结论不成立。
②只给1个角类比一个边的方法, 让学生用画图举反例证明。
综上所述, 只满足一个条件, 不足以证明两个三角形全等。
探究二: (分成小组探究)●如果给出两个条件, 有哪几种情况?●有2条边对应相等的两个三角形●有1个角和1条边对应相等的两个三角形●有2个角对应相等的两个三角形分成三个小组, 每个小组探究一个情况。
教师引导学生利用提前准备好的道具——纸棒、尺子、量角器, 用纸棒围成三角形, 此条件下的三角形是否只有一个。
①2条边结论: 有两条边相等不能保证两个三角形全等.②2个角结论: 有两个角相等不能保证两个三角形全等.③1个角1条边结论: 有一个角和一条边相等不能保证两个三角形全等.●思考: 如果只给三个条件能保证两个三角形全等吗?●有3条边对应相等的两个三角形●有1条边和2个角对应相等的两个三角形●有2条边和1个角对应相等的两个三角形●有3个角对应相等的两个三角形猜想: 三条边分别相等的三角形全等.动手实践: 拿出两组分别长4cm, 6cm, 8cm的纸棒。
全等三角形的判定(SSS)教学设计三维目标:1.掌握“边边边”条件的内容,能初步应用“边边边”条件判定两个三角形全等。
2.经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程。
3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。
教学重点:探究三角形全等的条件教学难点:“边边边”判定方法和应用教学过程一、复习巩固引新知1、什么是全等三角形?2、全等三角形有什么性质?__________________________________________________________________________3.已知△ABC ≌△DEF,找出其中相等的边与角。
二、研讨探究得新知如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?1、探究1:给一个条件:给两个条件:归纳1:在两个三角形中,如果只有一个或两个元素对应相等,这两个三角形_____.给三个条件:2、探究2:先任意画出一个△ABC ,再画出一个△A ′B ′C ′ ,使A ′B ′= AB ,B ′C ′ =BC, A ′ C ′ =AC.把画好的△A ′B ′C ′剪下,放到△ABC 上,他们全等吗?作法:(1)画B ′C ′=BC ;(2)分别以B',C'为圆心,线段AB,AC 长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C '。
发现: 。
归纳2:在两个三角形中,如果 ,那么 .(可简写成“边边边”或 “SSS”)几何语言:三、典例精析 例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .四、针对训练如图, C 是BF 的中点,AB =DC,AC=DF 。
求证:△ABC ≌ △DCF 。
F五、用尺规作一个角等于已知角 作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA , OB 于点C 、D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB 。
第1课时用“SSS”判定三角形全等课时目标1.经历探索三角形全等的判定过程,通过减少条件后的图形比较形成几何直观,发展抽象能力.2.通过动手操作理解基本事实:三边分别相等的两个三角形全等,经历验证数学结论的过程,培养抽象概括能力.3.能用尺规作图:作一个角等于已知角;已知三边作三角形,并理解尺规作图的基本原理.学习重点会用“SSS”判定三角形全等.学习难点在探索条件减少的情况下,经历图形比较得到三角形全等的判定方法.课时活动设计问题导入组成三角形的元素有哪些?什么样子的两个三角形是全等三角形?设计意图:从复习上一节课的内容着手,引导学生进一步回顾全等三角形的几何特征.复习回顾结合下图说一说:从数量关系上怎样理解“能够完全重合的两个三角形全等”?设计意图:引导学生从数量关系上刻画全等的特征,为进一步探索全等三角形的判定条件奠定基础.探究新知从三角形全等的概念我们发现,要得到三角形全等需要6个元素对应相等,能不能用较少的边或者角的条件判定三角形全等呢?探究1满足这六个条件中的一个(一边或一角分别相等)或两个(两边,一边一角或两角分别相等),△ABC和△A'B'C'是否全等?根据下面表中给出的△ABC和△A'B'C'边和角的相等条件及对应的图形,判断△ABC和△A'B'C'是否全等,并把结果写在表中.设计意图:给学生探索的空间和时间,充分调动学生探索的热情,让学生经历条件从一个到两个的过程,通过对图形的比较分析两个三角形是否全等,培养学生分类讨论的思想,思维的严谨性,发展几何直观.探究新知探究2满足这六个条件中的三个(三边或三角分别相等),△ABC和△A'B'C'是否全等?问题1:有三个角对应相等的两个三角形是否全等?如图,已知△A'B'C'和△ABC,∠A'=∠A,∠B'=∠B,∠C'=∠C,观察这两个三角形是否全等.解:△A'B'C'和△ABC不全等,即有三个角对应相等的两个三角形不全等.问题2:有三条边对应相等的两个三角形是否全等?先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA(即三边分别相等).把画好的△A'B'C'剪下来,放到△ABC上,它们全等吗?学生先独立思考,再相互交流讨论如何画出△A'B'C',教师及时给予指导,最后给出△A'B'C'的画法.如图,画一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA:1.画B'C'=BC;2.以点B'为圆心,AB长为半径画弧,以点C'为圆心,AC长为半径画弧,两弧交点为点A';3.连接A'B',C'A';△A'B'C'即为所求.教师引导学生将画好的△A'B'C'和△ABC进行对比,得出结论:解:△A'B'C'和△ABC全等,即三边分别相等的两个三角形全等.设计意图:先直观猜想三条边分别相等的两个三角形全等,再引导学生经历尺规作图验证猜想,让学生感悟更理性的数学.归纳总结基本事实一:“边边边”判定方法.三边分别相等的两个三角形全等(简记为“边边边”或“SSS”). 几何语言:在△ABC 和△DEF 中,{AB =DE,BC =EF,CA =FD,∴△ABC ≌△DEF (SSS).设计意图:引导学生将操作验证所得到的结论抽象概括出三角形全等的基本事实一,并尝试用几何语言描述基本事实内容,培养学生抽象概括的能力.拓展应用用三边分别相等判定三角形全等的结论,还可以得到一个用直尺和圆规作一个角等于已知角的方法.已知∠AOB ,求作:∠A'O'B',使∠A'O'B'=∠AOB.解:①作射线O'A';②以点O 为圆心,以任意长为半径作弧,交OA 于点C ,交OB 于点D ; ③以点O'为圆心,以OC 长为半径作弧,交O'A'于点C'; ④以点C'圆心,以CD 长为半径作弧,交③中所画弧于点D'; ⑤经过点D'作射线O'B',∠A'O'B'就是所求的角.设计意图:通过拓展延伸,将新知识与旧知识联系起来,得到新方法,体现了知识之间的联系性.典例精讲例1已知:如图,有一个三角形钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:(1)△ABD≌△ACD;(2)∠BAD=∠CAD.证明:(1)∵D是BC的中点,∴BD=DC.在△ABD和△ACD中,∵{AB=AC, BD=CD, AD=AD,∴△ABD≌△ACD(SSS).(2)由(1),得∠BAD=∠CAD.例2如图是一个风筝模型的框架,由DE=DF,EH=FH,就能说明∠DEH=∠DFH.试用你所学的知识说明理由.解:如图,连接DH,在△DEH和△DFH中,{DE =DF,EH =FH,DH =DH,∴△DEH ≌△DFH (SSS). ∴∠DEH =∠DFH.例3 已知:如图,点A ,D ,B ,F 在一条直线上,AC =FE ,BC =DE ,AD =FB. 求证:△ABC ≌△FDE.证明:∵AD =FB ,∴AD +DB =FB +DB ,即AB =FD. 在△ABC 与△FDE 中,{AC =FE,AB =FD,BC =DE,∴△ABC ≌△FDE (SSS).设计意图:设置有层次的例题,让学生在动手解决问题的过程中理解全等三角形判定的基本事实一,培养学生的应用意识.巩固训练1.已知:如图,AB =AD ,CB =CD.求证:△ABC ≌△ADC.证明:在△ABC 和△ADC 中,{AB =AD,CB =CD,AC =AC,∴△ABC ≌△ADC (SSS).2.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF.求证:∠A =∠D.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF. 在△ABC 和△DEF 中,{AB =DE,BC =EF,AC =DF,∴△ABC ≌△DEF (SSS). ∴∠A =∠D.设计意图:通过对具体问题的解决,进一步提高学生解决问题的能力,发展推理能力.课堂小结基本事实一:“边边边”判定方法:三边分别相等的两个三角形全等(简记为“边边边”或“SSS”). 符号语言:在△ABC 和△A'B'C'中,{AB =A'B',BC =B'C',AC =A'C',∴△ABC ≌△A'B'C'(SSS).设计意图:通过对本节课知识的总结归纳,加深学生对全等三角形的“边边边”判定方法的理解和掌握,培养学生归纳总结的能力.课堂8分钟.1.教材第37页练习第1,2题.2.作业.第1课时 用“SSS”判定三角形全等全等三角形的判定(SSS){基本事实:三边分别相等的两个三角形全等应用{证明两个三角形全等作一个角等于已知角教学反思第2课时 用“SAS”判定三角形全等课时目标1.经历作图过程,理解基本事实:两边和它们的夹角分别相等的两个三角形全等,体会数学的逻辑性,培养抽象概括能力.2.通过动手操作,理解两边和其中一边的对角对应相等的两个三角形不一定全等,体会图形的比较,发展几何直观. 学习重点会用“SAS”判定三角形全等. 学习难点理解“两边和其中一边的对角对应相等”不能判定三角形全等. 课时活动设计情境引入如图,三角形的一边被墨迹污染了,小明想画一个与原来完全一样的三角形,他该怎么办呢?请你帮助小明想一个办法,并说明你的理由.问题:三角形有六个要素,我们从这个残损的图形中能得到几个呢?设计意图:通过残损图形引起学生的兴趣,使学生无法确定三角形的三边,引导学生观察分析,继而引导学生分析“SAS”是否能确定唯一的三角形,为学习新课作铺垫.探究新知先任意画出一个△ABC,再画出一个△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A(即使两边和它们的夹角分别相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?学生先独立思考,再互相交流讨论如何画出△A'B'C',教师及时给予指导,最后给出△A'B'C'的画法.如图,画一个△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A:1.画∠DA'E=∠A;2.在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;3.连接B'C'.△A'B'C'即为所求.教师引导学生将画好的△A'B'C'和△ABC进行对比,得出结论.解:△A'B'C'和△ABC全等,即两边及它们的夹角分别相等的两个三角形全等.设计意图:先直观猜想两条边及夹角对应相等的两个三角形全等,再引导学生经历尺规作图验证猜想,让学生感悟更理性的数学.归纳总结基本事实二:“边角边”判定方法.两边和它们的夹角分别相等的两个三角形全等(简记为“边角边”或“SAS”).符号语言:在△ABC 和△A'B'C'中,{AB =A'B',∠A =∠A',AC =A'C',∴△ABC ≌△A'B'C'(SAS).设计意图:引导学生将操作验证所得到的结论抽象概括出三角形全等的基本事实二,并尝试用几何语言描述基本事实内容,培养学生抽象概括能力.典例精讲例1 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?证明:在△ACB 与△DCE 中,{CA =CD,∠1=∠2,CB =CE,∴△ACB ≌△DCE (SAS).∴AB =DE. 即DE 的长就是A ,B 的距离.例2 如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?解:图中的△ABC 与△ABD 满足两边和其中一边的对角分别相等,即AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.设计意图:通过对实际问题的解决,给学生探索的空间和时间,让学生经历直观感知,在熟练应用全等三角形“边角边”判定方法的基础上,理解两边及其中一边的对角对应相等的两个三角形不一定全等,发展学生的几何直观,培养理性精神和抽象概括能力.巩固训练1.下列条件中,不能证明△ABC≌△DEF的是(C)A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DFD.BC=EF,∠C=∠F,AC=DF追问画一画:请画出满足C选项的两个不全等的三角形.解:如图所示.2.已知:如图,BC∥EF,BC=BE,AB=FB,∠1=∠2,若∠1=60°,求∠C的度数.解:∵∠1=∠2,∴∠1+∠ABE=∠2+∠ABE,即∠ABC=∠FBE.在△ABC和△FBE中,{BC=BE,∠ABC=∠FBE, AB=FB,∴△ABC≌△FBE(SAS).∴∠C=∠BEF.∵EF∥BC,∴∠BEF=∠1=60°, ∴∠C=60°.设计意图:通过对具体问题的解决,特别是再次经历画一画的过程,让学生加深对两边及夹角与两边及其中一边对角与两三角形全等的关系的理解.而第2题,在旋转的背景下应用基本事实二对三角形全等进行证明,并应用全等三角形的性质得到角的大小,使学生在知识的综合应用过程中加深对全等的理解,进一步培养学生的几何直观与应用意识.课堂小结基本事实二“边角边”判定方法:两边和它们的夹角分别相等的两个三角形全等(简记为“边角边”或“SAS”).符号语言:在△ABC和△A'B'C'中,{AB=A'B',∠A=∠A', AC=A'C',∴△ABC≌△A'B'C'(SAS).设计意图:通过对本节课知识的总结归纳,加深学生对全等三角形的“边角边”判定方法的理解和掌握,培养学生归纳总结的能力.课堂8分钟.1.教材第39页练习第1,2题,第43,44页习题12.2第2,10题.2.作业.教学反思第3课时用“ASA”或“AAS”判定三角形全等课时目标1.经历作图过程,理解基本事实:两角和它们的夹边分别相等的两个三角形全等,体会数学的逻辑性,培养抽象概括能力.2.经历用“角角边”判定两三角形全等的证明过程,发展推理能力.学习重点会用“ASA”“AAS”判定三角形全等.学习难点选择恰当的方法判定两个三角形全等.课时活动设计复习回顾判定三角形全等的方法:设计意图:通过复习,体现数学的逻辑关系,让学生感悟知识间的联系,为新知识的探索奠定基础.探究新知先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即两角和它们的夹边分别相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?学生先独立思考,再互相交流讨论如何画出△A'B'C',教师及时给予指导,最后给出△A'B'C'的画法.如图,画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B:1.画A'B'=AB;2.在A'B'的同旁画∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E交于点C'.△A'B'C'即为所求.教师引导学生将画好的△A'B'C'和△ABC进行对比,得出结论.解:△A'B'C'和△ABC全等,即两角及它们的夹边分别相等的两个三角形全等.设计意图:先直观猜想两角及它们的夹边分别相等的两个三角形全等,再引导学生经历尺规作图验证猜想,让学生感悟更理性的数学.归纳总结基本事实三:两角和它们的夹边分别相等的两个三角形全等(可简记为“角边角”或“ASA”).符号语言:在△ABC和△A'B'C'中,{∠A=∠A', AB=A'B',∠B=∠B',∴△ABC≌△A'B'C'(ASA).设计意图:引导学生将操作验证所得到的结论抽象概括出三角形全等的基本事实三,并尝试用几何语言描述基本事实三的内容,培养学生抽象概括的能力.典例精讲例如图,小明不慎将一块三角形玻璃打碎为三块,他只带其中的一块碎片到商店去,就可以配一块与原来一样的三角形玻璃吗?如果可以,带哪块去合适?你能说明其中的理由吗?解:可以.带1号去.理由:如图,1号有完整的两角与夹边,根据“ASA”可以作出与原三角形全等的三角形.设计意图:设计有生活情境的数学问题,通过解决实际问题,激发学生的兴趣.探究新知已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B',BC=B'C'.求证:△ABC≌△A'B'C'.证明:在△ABC中,∠A+∠B+∠C=180°,∴∠C=180°-∠A-∠B.同理∠C'=180°-∠A'-∠B'.又∵∠A=∠A',∠B=∠B',∴∠C=C'.在△ABC和△A'B'C'中,{∠B=∠B', BC=B'C',∠C=∠C',∴△ABC≌△A'B'C'(ASA).设计意图:通过对具体问题的解决,基于“ASA”的基本事实推理得出“AAS”,提高学生解决问题的能力,发展推理能力.归纳总结判定定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(简记为“角角边”或“AAS”).几何语言:在△ABC 和△A'B'C'中,{∠A =∠A',∠C =∠C',CB =C'B',∴△ABC ≌△A'B'C'(AAS).设计意图:培养学生概括总结的能力,有利于进一步巩固新知识.拓展应用1.已知:如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.证明:在△ABE 与△ACD 中,{∠A =∠A,AB =AC,∠B =∠C,∴△ABE ≌△ACD (ASA). ∴AD =AE.2.已知:如图,在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为D ,E.(1)求证:△BDA ≌△AEC.(2)线段BD ,CE ,DE 有怎样的数量关系?请说明理由.(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠CEA =90°.∵∠BAC =90°,∴∠BAD +∠CAE =90°.∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD.在△BDA和△AEC中,{∠ABD=∠CAE,∠ADB=∠CEA, AB=AC,∴△BDA≌△AEC(AAS).(2)解:DE=BD+CE.理由:∵△BDA≌△AEC,∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.设计意图:学生归纳得到全等三角形的判定定理后,通过解决具体问题加深对定理的应用和理解,同时对全等的模型有一个初步的认识,发展学生的几何直观.课堂小结1.基本事实三:两角和它们的夹边分别相等的两个三角形全等(可简记为“角边角”或“ASA”).几何语言:在△ABC和△A'B'C'中,{∠A=∠A', AB=A'B',∠B=∠B',∴△ABC≌△A'B'C'(ASA).2.两角分别相等且其中一组等角的对边相等的两个三角形全等(简记为“角角边”或“AAS”).几何语言:在△ABC和△A'B'C'中,{∠A=∠A',∠C=∠C', CB=C'B',∴△ABC≌△A'B'C'(AAS).设计意图:通过对本节课知识的总结归纳,加深学生对全等三角形的“角边角”以及“角角边”判定方法的理解和掌握,培养学生归纳总结的能力.课堂8分钟.1.教材第44,45页习题12.2第5,6,11,12题.2.作业.教学反思第4课时用“HL”判定直角三角形全等课时目标1.经历探索直角三角形全等的判定方法的过程,感悟具有传递性的数学逻辑,发展几何直观.2.应用恰当的方法判定两直角三角形全等.学习重点会用“HL”判定直角三角形全等.学习难点探索直角三角形全等的判定方法.课时活动设计复习回顾引导学生思考,判定三角形全等的方法有哪些?两边和其中一边的对角相等设计意图:通过复习,体现数学的逻辑关系,让学生感悟知识间的联系,为新知识的探索奠定基础.问题导入已知Rt△ABC和Rt△A'B'C',BC=B'C',补充条件后Rt△ABC≌Rt△A'B'C',依据是.追问:若补充条件AB=A'B',两个直角三角形是否全等?请作图验证.设计意图:创设开放性的问题,培养学生思维的发散性,通过追问,引发学生思考斜边与直角边对应相等的两个直角三角形是否全等.探究新知先任意画一个Rt△ABC,使∠C=90°,再画一个Rt△A'B'C',使∠C'=90°,B'C'=BC,A'B'=AB,然后把画好的Rt△A'B'C'剪下来放到Rt△ABC上,它们全等吗?学生先独立思考,再互相交流讨论如何画出△A'B'C',教师及时给予指导,最后给出△A'B'C'的画法.如图,画一个Rt △A'B'C',使∠C'=90°,B'C'=BC ,A'B'=AB : 1.画∠MC'N =90°;2.在射线C'M 上取B'C'=BC ;3.以点B'为圆心,AB 长为半径画弧,交射线C'N 于点A';4.连接A'B'. Rt △A'B'C'即为所求.教师引导学生将画好的Rt △A'B'C'和Rt △ABC 进行对比,得出结论. 解:Rt △A'B'C'和Rt △ABC 全等,即斜边和一条直角边分别相等的两个直角三角形全等.设计意图:先直观猜想斜边和一条直角边分别相等的两个直角三角形全等,再引导学生经历尺规作图验证猜想,让学生感悟更理性的数学.重复性的动手操作,让学生感悟全等探索的一致性与合理性.归纳总结基本事实四:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt △ABC 和Rt △A'B'C'中,{AB =A'B',BC =B'C',∴Rt △ABC ≌Rt △A'B'C'(HL).设计意图:引导学生将操作验证所得到的结论抽象概括出直角三角形全等的基本事实四,并尝试用几何语言描述基本事实四的内容,培养学生抽象概括的能力.典例精讲例1 如图,C 是路段AB 的中点,两人从点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D ,E 两地.DA ⊥AB ,EB ⊥AB.D ,E 与路段AB 的距离相等吗?为什么?解:D ,E 与路段AB 的距离相等. 理由:∵C 是路段AB 的中点, ∴AC =CB.∵两人从点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D ,E 两地,∴DC =EC.∵DA ⊥AB ,EB ⊥AB , ∴∠A =∠B =90°.在Rt △ACD 和Rt △BCE 中,{AC =CB,CD =CE,∴Rt △ACD ≌Rt △BCE (HL). ∴AD =BE.例2 已知:如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF.求证:AE =DF.证明:∵AE ⊥BC ,DF ⊥BC , ∴∠DFC =∠AEB =90°. 又∵CE =BF ,∴CE -EF =BF -EF ,即CF =BE. 在Rt △DFC 和Rt △AEB 中,{CF =BE,DC =AB,∴Rt △DFC ≌Rt △AEB (HL). ∴AE =DF.设计意图:通过例题的讲解,让学生更加深刻地理解全等直角三角形“HL”的判定方法,培养学生的应用意识.巩固训练1.已知:如图,AC ⊥BC ,BD ⊥AD ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C =∠D =90°.在Rt △ABC 和Rt △BAD 中, ∵{AB =BA,AC =BD,∴Rt △ABC ≌Rt △BAD (HL). ∴BC =AD.2. 已知:如图,AC ,BD 相交于点E ,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AD =BC.求证:AC =BD.解:如图,连接线段AB. 证明:∵AC ⊥BC ,BD ⊥AD , ∴∠D =∠C =90°.在Rt △ADB 和Rt △BCA 中,{AB =BA,AD =BC,∴Rt △ADB ≌Rt △BCA (HL).∴AC =BD.3.已知:如图,在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF.求证:Rt △ABE ≌Rt △CBF.证明:∵∠ABC =90°,∴在Rt △ABE 和Rt △CBF 中,{AE =CF,AB =CB,∴Rt △ABE ≌Rt △CBF (HL).设计意图:通过设计有层次的问题,提高学生对定理的应用和理解,培养学生的应用意识,发展学生的几何直观,提升学生的几何思维能力.课堂小结直角三角形全等的判定方法:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).符号语言:在Rt △ABC 和Rt △A'B'C'中,{AB =A'B',BC =B'C',∴Rt △ABC ≌Rt △A'B'C'(HL).设计意图:通过对本节课知识的总结归纳,加深学生对全等直角三角形“斜边、直角边”的判定方法的理解和掌握,培养学生归纳总结的能力.课堂8分钟.1.教材第44页习题12.2第7,8题. 2.作业.教学反思。