卤素单质总结
- 格式:doc
- 大小:605.50 KB
- 文档页数:2
卤素单质键能大小卤素单质是指氟(F)、氯(Cl)、溴(Br)、碘(I)和石碳(At)这五个元素,它们在自然界中以单质的形式存在。
卤素单质的键能大小,是一个较为重要的物理化学指标,下面将从化学元素性质、化学键能和实验研究三个方面,对卤素单质的键能进行探究。
一、化学元素性质卤素单质的键能大小与其原子结构有关。
在同一元素周期中,随着原子半径逐渐递增,元素的电子壳层越来越靠近原子核,电负性也会逐渐变弱。
所以,同一元素周期中,原子半径越小的元素电负性越强,其化学键能也会随之增加。
在同一族别中,随着原子序数逐渐增大,原子壳层中的电子数也随之增多。
这意味着,同一族别中,电子层结构相似的元素之间就会存在更强的化学键。
因此,在卤素单质中,键能大小的排列顺序为:F > Cl > Br > I > At。
二、化学键能卤素单质中存在的化学键主要是共价键。
共价键的结合强度取决于许多因素,例如原子半径、电子云结构和电负性的差异等。
在卤素族别中,因为同链原子之间的屏蔽效应,当原子序数增大时,原子的半径也会随之增大,远隔距离的电子对之间的排斥效应也会降低。
这就会使得原子之间结合变得更加牢固。
基于这个因素,同一族别中的元素之间往往比跨族别中的元素之间更容易形成强的共价键。
此外,还存在其他因素,如相互作用力的变化以及离子半径的变化等等。
这些因素有助于解释为什么I、Br、Cl之间相对比F更难形成化学键。
详细观察可以发现,I、Br、Cl之间的共价键强度相对较弱,这与其半径的增加以及化学键的长度有关。
化学键的长度从F到I依次增长,这一点可以解释为什么由F转向I的共价键强度会减弱。
三、实验研究实验研究表明,卤素单质的键能与其物理性质密切相关。
在实验室中,测量卤素单质的蒸发热可以得到键能的近似值。
蒸发热是指卤素单质从液态转变为气态时吸收的热量。
因为这个过程中需要克服分子间的结合力,所以吸收的热量越多,卤素单质的键能就越大。
卤素1.氯气[氯气的物理性质](1)常温下,氯气为黄绿色气体.加压或降温后液化为液氯,进一步加压或降温则变成固态氯.(2)常温下,氯气可溶于水(1体积水溶解2体积氯气).(3)氯气有毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会中毒死亡.因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯气飘进鼻孔.[氯气的化学性质]氯原子在化学反应中很容易获得1个电子.所以,氯气的化学性质非常活泼,是一种强氧化剂.(1)与金属反应:Cu + C12CuCl2实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟.一段时间后,集气瓶内壁附着有棕黄色的固体粉末.向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶解并形成绿色溶液,继续加水,溶液变成蓝色.2Na + Cl22NaCl 实验现象:有白烟产生.说明①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物.其中,变价金属如(Cu、Fe)与氯气反应时呈现高价态(分别生成CuCl2、FeCl3).②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯.③“烟”是固体小颗粒分散到空气中形成的物质.如铜在氯气中燃烧,产生的棕黄色的烟为CuCl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为NaCl晶体小颗粒;等等.(2)与氢气反应H2 + Cl22HCl注意①在不同的条件下,H2与C12均可发生反应,但反应条件不同,反应的现象也不同.点燃时,纯净的H2能在C12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气中形成白雾并有小液滴出现;在强光照射下,H2与C12的混合气体发生爆炸.②物质的燃烧不一定要有氧气参加.任何发光、发热的剧烈的化学反应,都属于燃烧.如金属铜、氢气在氯气中燃烧等.③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物质.要注意“雾”与“烟”的区别.④H2与Cl2反应生成的HCl气体具有刺激性气味,极易溶于水.HCl的水溶液叫氢氯酸,俗称盐酸.(3)与水反应.化学方程式:C12 + H2O =HCl + HClO 离子方程式:Cl2 + H2O =H++ Cl-+ HClO 说明①C12与H2O的反应是一个C12的自身氧化还原反应.其中,Cl2既是氧化剂又是还原剂,H2O只作反应物.②在常温下,1体积水能溶解约2体积的氯气,故新制氯水显黄绿色.同时,溶解于水中的部分C12与H2O反应生成HCl和HClO,因此,新制氯水是一种含有三种分子(C12、HClO、H2O)和四种离子(H+、Cl-、ClO-和水电离产生的少量OH-)的混合物.所以,新制氯水具有下列性质:酸性(H+),漂白作用(含HClO),Cl-的性质,C12的性质.③新制氯水中含有较多的C12、HClO,久置氯水由于C12不断跟H2O反应和HClO不断分解,使溶液中的C12、HClO逐渐减少、HCl逐渐增多,溶液的pH逐渐减小,最后溶液变成了稀盐酸,溶液的pH<7.④C12本身没有漂白作用,真正起漂白作用的是C12与H2O反应生成的HClO.所以干燥的C12不能使干燥的有色布条褪色,而混有水蒸气的C12能使干燥布条褪色,或干燥的C12能使湿布条褪色.⑤注意“氯水”与“液氯”的区别,氯水是混合物,液氯是纯净物.(4)与碱反应.常温下,氯气与碱溶液反应的化学方程式的通式为:氯气+ 可溶碱→金属氯化物+ 次氯酸盐+ 水.重要的反应有:C12 + 2NaOH=NaCl + NaClO + H2O或Cl2 + 2OH-=Cl-+ ClO-+ H2O该反应用于实验室制C12时,多余Cl2的吸收(尾气吸收).2Cl2 + 2Ca(OH)2 =Ca(C1O)2 +CaCl2 + 2H2O说明①Cl2与石灰乳[Ca(OH)2的悬浊液]或消石灰的反应是工业上生产漂粉精或漂白粉的原理.漂粉精和漂白粉是混合物,其主要成分为Ca(ClO)2和CaCl2,有效成分是Ca(C1O)2②次氯酸盐比次氯酸稳定.③漂粉精和漂白粉用于漂白时,通常先跟其他酸反应,如:Ca(ClO)2+2HCl=CaCl2+2HClO④漂粉精和漂白粉露置于潮湿的空气中易变质,所以必须密封保存.有关反应的化学方程式为:Ca(ClO)2 + CO2 + H2O =CaCO3↓+ 2HClO 2HClO2HCl + O2↑由此可见,漂粉精和漂白粉也具有漂白、消毒作用.[氯气的用途]①杀菌消毒;②制盐酸;⑧制漂粉精和漂白粉;④制造氯仿等有机溶剂和各种农药.[次氯酸]①次氯酸(HClO)是一元弱酸(酸性比H2CO3还弱),属于弱电解质,在新制氯水中主要以HClO 分子的形式存在,因此在书写离子方程式时应保留化学式的形式.②HClO不稳定,易分解,光照时分解速率加快.有关的化学方程式为:2HClO =2H++ 2Cl-+ O2↑,因此HClO是一种强氧化剂.③HClO能杀菌.自来水常用氯气杀菌消毒(目前已逐步用C1O2代替).④HClO能使某些染料和有机色素褪色.因此,将Cl2通入石蕊试液中,试液先变红后褪色.[氯气的实验室制法](1)反应原理:实验室中,利用氧化性比C12强的氧化剂[如MnO2、KMnO4、KClO3、Ca(ClO)2等]将浓盐酸中的Cl-氧化来制取C12。
卤素单质的物理性质和化学性质
卤素单质是卤素族元素的标准化学物质,是由该族元素原子结合而成的化合物,包括氟、氯、溴、碘、硫、氯仿和硅;并由地球大气层中氯和氟等元素组成。
卤素单质的物理性质:
1. 大多数卤素单质散热性能良好,具有较高的纯度;
2. 卤素单质的密度较低,溴的密度为
3.12g/cm3,氯为1.99g/cm3,氟为1.69g/cm3,比水低得多;
3. 卤素单质易汽化,摩尔沸点低,具有较高的挥发性,可进入大气气层;
4. 卤素单质大多具有非常好的电介质性质,硫酸盐类具有良好的腐蚀性和分解性,
例如氯仿和氯气;
5. 卤素单质大多无色,有的如溴是无色透明液体,碘是黄色液体,氯具有苦涩的气味,有的如硫的无色气体气味刺鼻,硅的深绿色液体有微厚的油腻感。
卤素单质的化学性质:
1. 卤素单质的稳定性往往较差,反应具有催化作用;
2. 由于卤素单质都具有一定的离子性,所以大多在水溶液中表现出离子溶液,具有
相当高的指令常数;
3. 卤素单质易发生氧化还原反应,氧化性大多由氯高到溴,碘、硫和氯仿更稳定;
4. 卤素单质发生加成、脱水等水解反应,大多具有几乎恒定的临界温度;
5. 卤素单质具有酸性或碱性,受水分解后表现出改变的pH值,比如氯的溶液是碱性的,而硫的溶液是酸性的。
高三化学卤族元素知识总结一、单质的化学性质:⑴与金属反应:M+X2 →MXn2Fe+3Cl2 =2FeCl3 Cu+Cl2 = CuCl2 2Fe+3Br2=2FeBr3 Cu+Br2 = CuBr2Fe+I2=FeI2 ( 2Cu+ I2=2CuI) Fe+S=FeS (2Cu+S=Cu2S)思考:碘与硫的氧化性谁比较强⑵与H2 反应:H2+X2=2HXa.HX生成及稳定性:HF>HCl>HBr>HIb.HX的还原性:HF<HCl<HBr<HIc.HX水溶液的酸性:HF<HCl<HBr<HI(3)与水反应:2F2 + 2H2O = 4HF + O2思考:还原剂、氧化剂各是哪种物质?X2 + H2O = HX + HXO (X=Cl、Br、I)(4)相互间置换:置换能力:F2>Cl2>Br2>I2Cl2+2Br-= Br2 + 2Cl- Cl2+2I-= I2 + 2Cl- Br2+2I-= I2 + 2Br-(I2+S2-= S + 2I -)(卤化氢与活泼卤素间也可置换)(5)其他:最高价含氧酸酸性: HClO4>HBrO4>HIO4X-离子还原性:I- > Br- > Cl- > F- (F-无还原性)二、卤素及其化合物的特殊性1、氟⑴单质氧化性最强;⑵F-无还原性;⑶HF酸腐蚀玻璃;⑷AgF溶于水,CaF2难溶;⑸F元素无正价,⑹氟无含氧酸;⑺HF水溶液呈弱酸性,而HCl,HBr,HI水溶液为强酸性;⑻氢氟酸可存于塑料容器或铅制容器中。
2、氯⑴凡能生成次氯酸的物质均有强氧化性〔Cl2、NaClO、Ca(ClO)2〕;⑵Cl-+Ag+=AgCl↓(白),不溶于稀HNO3;⑶ Cl2为黄绿色气体,新制氯水呈浅黄绿色;⑷HClO4最强酸。
3、溴⑴液溴为棕红色液体,易挥发;⑵腐蚀皮肤、橡胶;⑶保存液溴:密闭,冷暗处,液(水)封,玻璃塞;⑷溴水橙黄色;⑸AgBr见光分解用于照像术;⑹HBr能被浓硫酸氧化,应用浓磷酸制备,用P2O5干燥。
第一节卤素单质概述:卤族元素(X)包括氟氯溴碘砹等六种元素原子结构特点: 原子序数电子层排布电子排布式电子构型相同点:不同点:1.氟元素的发现:1529年德国人Agricola曾描述过: 利用萤石作为矿石的溶剂能使矿石在熔融时更容易流动.1670年从事玻璃加工工业的施万哈德家族发现,萤石与浓硫酸反应生成的气体,能够刻蚀玻璃,可在玻璃上刻蚀图案制成艺术品.18世纪时已制得氢氟酸,并根据它的性质,判断其组成中可能含有一种与氯相似的元素,德国的化学家许村贝克则认为这种元素是元素中最活泼的,要把它从化合物中分离出来是非常困难的.1813年英国化学家戴维曾电解氟化物制氟,但没有成功.后来英国化学家哥尔也用电解法电解氟化氢,但实验时发生了爆炸.显然是产生的少量的氟和氢激烈化合的结果.1886年法国化学家莫瓦桑终于用铂制的U形管,以铂铱合金作电极,用萤石制的螺旋帽盖紧管口并在低温条件下(-23℃),把干燥的氟氢化钾溶于液态氟化氢中作为电解质进行电解,制出了氟气.它遇到单质硅立即着火,与氯化钾反应产生氯气,根据很多化学反应,确证氟有惊人的活泼性.起初把它命名为'氟',即'流动'之意.2.氯元素的发现瑞典化学家Scheele在1771-1774年致力于软锰矿的研究,当时曾把以二氧化锰为主要成分的矿石,浸入盐酸中,立即冒出一种令人窒息的黄绿色气体,并发现它微溶于水,使水略带有酸味;并且有漂白作用,能使蓝石蕊试纸几乎变白,又能漂白花朵和绿叶;另外还能腐蚀金属;在这种气体中昆虫会立即死去.至1810年11月在英国皇家学会上才正式确认上述黄绿色气体是一种新元素,命名为氯,即"绿色"之意.3.溴元素的发现1825年德国海得堡大学学生罗威用氯气去处理家乡的一种矿泉水时,产生了一种红色物质.这种物质可被乙醚提取出来,在蒸去乙醚,得到一种红棕色液体,这就是"溴".与此同时法国学生巴拉尔德研究从海藻中提取碘: 把海藻烧成灰,用热水浸泡后,向所得溶液中通入氯气,经一段时间有碘的紫黑色晶体出现,提取碘后的母液中,总沉有一层深棕色的液体,起初被认为它可能是一种碘的氯化物.以后经多次实验,他用乙醚把母液中深棕色液体萃取出来,再用氢氧化钾处理,得到的化合物与浓硫酸二氧化锰共热后,重新又制得纯净的红棕色有恶臭的流体.它的沸点为47℃;比重为3;蒸汽很象二氧化锰;能和多种金属化合.至1826年这一新元素被命名为溴,即"恶臭"之意.4.碘元素的发现碘是在1811年为从事制硝业的法国人库尔特瓦所发现.当时曾把海藻灰浸渍出的海藻盐汁加热蒸发,首先析出食盐,随后依次结晶出氯化钾和硫酸钾等.但库尔特瓦发现产品不纯,因为海藻灰中含有碳,在烧制过程中碳可使硫酸盐还原成硫化物如硫化钠等,它想用硫酸和硫化钠反应溢出硫化氢,把硫化钠除去,结果很好.但有一此用的硫酸太多了,出现了紫色彩云冉冉升起.并且有一股和氯气相似使人窒息的气味充满全室.紫色蒸汽遇到冷的物体表面,即凝成大片的暗紫色的晶体,这种新的元素到1814年被命名为碘,即"紫色"之意.1.物理性质:在卤素分子内原子间以共价键结合,而在分子间仅存在微弱的分子间作用力,随着分子量的增大,分子的变形性增大,分子间的色散力也逐渐增强.因此,卤素单质的密度熔点沸点临界温度临界压力和汽化热等物理性质按F-Cl -Br-I的顺序依次增大.常温下状态颜色溶解度气味毒性氟(F2) gas 淡黄色反应(O2,OF2,O3,H2O2)氯(Cl2) 气体黄绿色不大酒精乙醚的混合气或氨水溴(Br2) 液体红棕色不大苯甘油洗涤,再水洗碘(I2) 固体紫黑色不大(价层电子能量) (萃取) (蒸汽毒性依次减弱)2.化学性质:1. 与金属的作用:氟与所有的金属直接化合:氯能与各种金属直接化合,但有些反应需要加热,反应还比较剧烈:2. 与非金属作用:1.与H2化合:( 反应条件,剧烈程度,说明问题)2.与P化合: (强调Cl2反应时的特殊现象及其原因)3. 与水碱的反应F 2 + H2O == HF + O2Cl2 + H2O == HCl + HClOX 2 + H2O === HX + HXO (X= Cl Br I)HClO的性质: (1) 一元弱酸 HClO === H+ + ClO-结构式: H-O-Cl(2) 不稳定性(3) 强氧化性重点介绍其用途漂白作用(实验)氯水的成分: (重点分析微粒的形式)X 2 + 2OH- === X- + XO- + H2O (Br2) (冷碱)Cl2 + 6OH- === 5CI- + ClO3- +3H2O (加热)3I2 + 6OH- == 5I- + IO3- + 3H2O2F2 + 2OH-(2%) = 2F- + OF2+ H2O[漂白粉] 1. 制取原理2. 漂白原理3. 失效过程4. 卤素间的置换反应:重点说明元素的非金属性与单质氧化性的区别和联系以及判断的依据.[问题] 用实验的方法区分氯化钠溴化钠碘化钾三种无色晶体(至少两种方法)?[KI淀粉试纸] : 介绍原理(氧化还原 I2的特性)1.与饱和烃和不饱和烃的反应(除I2外)CH4 + Cl2CH3Cl + HCl(氢可逐步被取代)CH2 = CH2+ Cl2CH2Cl-CH2Cl (加成反应)1.卤素的制备和用途:1.F2的制备: 电解氟氢化钾和氟化氢的混合物(KF.2HF) 373K阳极(石墨): 2F- = F2+ 2e阴极(电解槽): 2H+ + 2e = H2电解电解总反应: 2KHF2 ===== 2KF + H2+ F2用途: (1) 在原子能工业中.用F2将UF4氧化成UF6,然后用气体扩散法使铀的同位素235U和238U分离.(2) 制氟化有机物: 氟里昂-12的CCl2F2(制冷剂) CBr2F2(高效灭火剂)CCl3F用作杀虫剂聚四氟乙烯(高温绝缘垫片,密封套,轴承)全氟烷烃(C7F16)化学惰性(制氟材料)2.氯的制备:实验室制法: (介绍两种方法)工业制法: 电解饱和食盐水.(由学生回忆总结)用途: 盐酸、农药、炸药、有机染料、有机溶剂和化学试剂的制备.漂白纸张、布匹和消毒饮水.合成塑料和橡胶及石油化工方面.处理工业废水(H2S、MCN)3.溴和碘的制备溴离子和碘离子具有较明显的还原性,常用氯来氧化Br-和I-以制备Br2和I2.工业上从海水中制溴: 把盐卤通入氯气置换溴,用空气把溴吹出以碳酸钠吸收,这时溴就歧化生成Br-和BrO3-离子,最后用硫酸酸化,单质溴又从溶液中析出.实验室制法:2NaBr + 3H2SO4+ MnO2=== 2NaHSO4+ MnSO4+ 2H2O + Br22NaI + 3H2SO4+ MnO2=== 2NaHSO4+ MnSO4+ 2H2O + I2(海藻灰中提取I2)2IO3- + 5HSO3- === 5SO42- + H2O + 3H+ + I2实际上: ( IO3- +3HSO3- === I- + 3SO42- + 3H+IO3- + 5I- + 6H+ ==== 3I2+ 3H2O)用途: 汽油抗震添加剂C2H4Br2及军事上的催泪性毒剂. 碘酒用作消毒剂; 碘仿用作防腐剂; 防治和治疗甲状腺肿 ;AgI用于人工降雨.。
化学卤素单质知识点总结化学卤素是化学元素周期表中第17族元素,包括氟(F)、氯(Cl)、溴(Br)、碘(I)和石碱金(At)。
这些元素在自然界中以单质的形式存在,具有一系列重要的化学性质和应用。
下面将对化学卤素单质的知识点进行总结。
1. 物理性质化学卤素单质的物理性质与它们的周期表位置有关。
氟是一种非金属气体,是地壳中第13位丰度最高的元素,可以溶解于水中。
氯是一种黄绿色有刺激性气味的气体,可以溶解于水中并形成盐酸。
溴是一种深红色液体,在室温下易挥发,能够溶解于水。
碘是一种具有金属光泽的固体,可以升华为紫色的蒸气。
石碱金是一种放射性元素,目前只能通过人工合成获得。
2. 化学性质化学卤素单质具有一系列典型的化学性质。
它们都具有非金属的性质,通常具有较强的还原性和较大的电负性。
氟是化学活性最强的元素之一,能够和大多数元素形成化合物。
氯也是一种非常活跃的元素,可以与许多金属发生置换反应。
溴具有相对较强的还原性,与许多金属反应形成溴化物。
碘在化学反应中通常表现为一种氧化剂。
石碱金是一种非常不稳定的放射性元素,目前只通过人工合成获得。
3. 化合物化学卤素单质可以形成许多化合物,其中最著名的就是卤化物。
氟化物、氯化物、溴化物和碘化物都是重要的化学品,广泛应用于化工、医药和其他领域。
另外,卤素还可以形成一系列含氧化物、硫化物等化合物,具有重要的应用价值。
4. 应用化学卤素单质在工业和生活中具有广泛的应用。
氯化铁是一种重要的氧化剂,常用于催化和有机合成。
氯胺酮是一种常用的镇静剂,广泛应用于医药领域。
氟化物广泛用于制备源胶、聚四氟乙烯、合成农药和消毒剂。
碘化物被用于制造感光材料和药品。
石碱金则在核能领域具有重要的应用价值。
5. 环境影响化学卤素单质在环境中具有一定的毒性和污染性。
例如氟化物对植物和动物都具有一定的毒性,过量的氯化物会对水体生态系统造成破坏,而溴化物和碘化物的排放会对大气和水质造成污染。
因此,对化学卤素单质的生产、使用和处理需要进行严格的管理,以减少对环境的影响。
卤素单质的性质卤族元素指周期系ⅦA族元素。
包括氟(F)、氯(Cl)、溴(Br)、碘(I)、砹(At),简称卤素。
它们在自然界都以典型的盐类存在,是成盐元素。
卤族元素的单质都是双原子分子,它们的物理性质的改变都是很有规律的,随着分子量的增大,卤素分子间的色散力逐渐增强,颜色变深,它们的熔点、沸点、密度、原子体积也依次递增。
卤素都有氧化性,氟单质的氧化性最强。
卤族元素和金属元素构成大量无机盐,此外,在有机合成等领域也发挥着重要的作用。
卤素的化学性质都很相似,它们的最外电子层上都有7个电子,有取得一个电子形成稳定的八隅体结构的卤离子的倾向,因此卤素都有氧化性,原子半径越小,氧化性越强,因此氟是单质中氧化性最强者。
除F外,卤素的氧化态为+1、+3、+5、+7,与典型的金属形成离子化合物,其他卤化物则为共价化合物。
卤素与氢结合成卤化氢,溶于水生成氢卤酸。
卤素之间形成的化合物称为互卤化物,如ClF3、ICl。
卤素还能形成多种价态的含氧酸,如HClO、HClO2、HClO3、HClO4。
卤素单质都很稳定,除了I2以外,卤素分子在高温时都很难分解。
卤素及其化合物的用途非常广泛。
例如,我们每天都要食用的食盐,主要就是由氯元素与钠元素组成的氯化物。
卤素单质的毒性,从F开始依次降低。
从F到At,其氢化物的酸性依次增强。
但氢化物的稳定性呈递减趋势。
氧化性:F>Cl2>Br2>I>At2,但还原性相反。
2氟氟气常温下为淡黄色的气体,有剧毒。
与水反应立即生成氢氟酸和氧气并发生燃烧,同时能使容器破裂,量多时有爆炸的危险。
氟、氟化氢和氢氟酸对玻璃有较强的腐蚀性。
氟是氧化性最强的元素,只能呈-1价。
单质氟与盐溶液的反应,都是先与水反应,生成的氢氟酸再与盐的反应,通入碱中可能导致爆炸。
水溶液氢氟酸是一种弱酸。
但却是稳定性、腐蚀性最强的氢卤酸,如果皮肤不慎粘到,将一直腐蚀到骨髓。
化学性质活泼,能与几乎所有元素发生反应(除氦、氖)。
卤素
卤族元素
[卤族元素]简称卤素.包括氟(F)、氯(C1)、溴(Br)、碘(I)和放射性元素砹(At).在自然界中卤素无游离态,都是以化合态的形式存在.
说明(1)实验室里,通常在盛溴的试剂瓶中加水(即“水封”),以减少溴的挥发.
(2)固态物质不经液态而直接变成气态的现象,叫做升华.升华是一种物理变化.利用碘易升华的性质,可用来分离、提纯单质碘.
(3)Br2、I2较难溶于水而易溶于如汽油、苯、四氯化碳、酒精等有机溶剂中.医疗上用的碘酒,就是碘(溶质)的酒精(溶剂)溶液.利用与水互不相溶的有机溶剂可将Br2、I2从溴水、碘水中提取出来(这个过程叫做萃取).
[卤素单质的化学性质]
①2F2 + 2H2O =4HF + O2(置换反应)
注意:将F2通入某物质的水溶液中,F2先跟H2O反应.如将F2通入NaCl的水溶液中,同样发生上述反应,等等.
②X2 + H2O = HX + HXO (X=C1、Br、I).
(4)卤素单质间的置换反应.
2NaBr + C12(新制、饱和) = 2NaCl + Br22Br-+ C12 = 2C1-+ Br2
说明加入CCl4并振荡后,液体分层.上层为含有NaCl的水层,无色;下层为溶有Br2的CCl4层,显橙色.
2NaI + C12(新制、饱和) =2NaCl + I22I-+ Cl2 =2C1-+ I2
说明①加入CCl4并振荡后,液体分层.上层为含有NaI的水层,无色;下层为溶有I2的CCl4层,显紫红色.
②将反应后的溶液加热蒸干灼烧,生成的I2升华,故残留的固体为NaCl(C12足量时)或NaCl 和NaI的混合物(C12不足量时).
2NaI + Br2 =2NaBr + I22I-+ Br2 =2Br-+ I2
说明①加入CCl4并振荡后,液体分层.上层为含有NaBr的水层,无色,下层为溶有I2的CCl4层,显紫红色.
②将反应后的溶液加热蒸干灼烧,生成的I2升华,故残留的固体为NaBr(Br2足量时)或NaBr 和NaI(Br2不足量时).
F2 + NaX(熔融) =2NaF + X2(X=C1、Br、I)
注意将F2通入含Cl-、Br-或I-的水溶液中,不是发生卤素间的置换反应,而是F2与H2O反应.
(5)碘单质(I2)的化学特性.I2 + 淀粉溶液→蓝色溶液
说明①利用碘遇淀粉变蓝的特性,可用来检验I2的存在.
②只有单质碘(I2)遇淀粉才显蓝色,其他价态的碘无此性质.例如,向NaI溶液中滴加淀粉,溶液颜色无变化.若再滴加新制氯水,因有I2被置换出来,则此时溶液显蓝色.。