数学人教版八年级上册全等三角形判定SSS.2 .1全等三角形的判定sss
- 格式:pptx
- 大小:805.49 KB
- 文档页数:17
八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思教材分析1.掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题;学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
2.培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
学情分析1、学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
2、学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
3、根据学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限。
教学目标(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
教学重点和难点重点:三角形全等条件的探索过程是本节课的重点。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对学生有一定的难度。
教学过程全等形、全等三角角形的概念,对应关系。
判定两个三角形是否全等,至少需要多少个怎样的条件?给定三条定长的线段a.b.c.用这三条线段分别画两个三角形,然后剪下来对照,发现什么问题,多做几次。
八年级数学上册 12.2 三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.2节讲述了三角形全等的判定,这是初中的一个重要知识点。
在这一节中,学生将学习到用“SSS”(Side-Side-Side,即边-边-边)方法判定三角形全等。
通过这一节的学习,学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的基本概念,如三角形的边、角等,并掌握了用“ASA”(Angle-Side-Angle,即角-边-角)和“AAS”(Angle-Angle-Side,即角-角-边)方法判定三角形全等。
因此,学生在理解和掌握用“SSS”方法判定三角形全等时,已经有了相关的基础知识。
三. 说教学目标1.知识与技能:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
2.过程与方法:通过观察、操作、思考、交流等活动,学生能够自主探索用“SSS”方法判定三角形全等的过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与课堂活动,培养合作意识和团队精神,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
2.教学难点:学生能够灵活运用“SSS”方法判定三角形全等,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂活动,培养学生的自主学习能力。
2.教学手段:利用多媒体课件、学具、黑板等,辅助学生直观地理解三角形全等的概念和“SSS”方法。
六. 说教学过程1.导入:通过复习三角形的基本概念和已学的判定方法(ASA和AAS),引导学生进入新的学习内容。
2.自主探究:学生分组合作,利用学具和多媒体课件,观察和操作三角形,自主探索用“SSS”方法判定三角形全等的过程。
“三角形全等的判定——SSS”教学设计人教版义务教育教科书数学八年级上册第十二章第二节第1课时王悦(南充安平中学)一、教学内容及内容解析《三角形全等的判定——SSS》是人教版《义务教育教科书·数学》八年级上册第十二章第二节的第1课时的内容.其主要内容为构建三角形全等条件的探索思路,掌握“边边边”的判定方法.本节课的内容是探索三角形全等条件的第一课时,是在学习了全等三角形的概念、全等三角形的性质后展开的.它不仅是下节课探索三角形全等其他条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供了很好的模式和方法.因此本节课的知识具有承前启后的作用,占有相当重要的地位.根据全等三角形的性质:全等三角形的三条边分别相等、三个角分别相等,并类比“平行线的性质”与“平行线的判定”之间的联系,探索能否从“三条边分别相等、三个角分别相等”六个条件中选择部分条件,简捷地判定两个三角形全等.为此建构了三角形全等条件的探索思路,即从“一个条件”“两个条件”“三个条件”分别进行探究,最后通过动手操作,概括出一种判定方法——“边边边”.该探索过程也为其他判定方法的探索提供了思路.二、教学目标和目标解析教学目标1.构建三角形全等条件的探索思路,体会研究几何问题的方法.2.探索并理解“边边边”判定方法,会用“边边边”判定方法证明三角形全等.3.会用尺规作一个角等于已知角,了解作图的道理.三、教学问题诊断分析探索三角形全等的条件是一个复杂且开放的问题,涉及到“类比”、“分类”等数学思想,对于农村学校八年级的学生来说有一定难度,这方面的知识十分欠缺,需要多做引导,使学生逐步理解这一类数学思想;在探究3中,所运用到的尺规作图虽说有一定基础,但运用较少,学生对这方面的知识也有所欠缺,老师在作图时应共同与学生完成作图.因此本节课的教学重难点分别为:◆教学重点:掌握“边边边”判定三角形全等的方法,灵活运用“边边边”判定方法解题.◆教学难点:构建三角形全等条件的探索思路,运用尺规作图的方法进行证明“SSS”,灵活运用“边边边”判定方法解题.四、教学过程(一)创设情境,引出课题情景展示:小明家衣橱上镶有两块全等的三角形玻璃装饰品,光泽又漂亮,可惜有一天有一块打碎了,妈妈让小明到玻璃店里配一块回来,聪明的同学,小明该测量哪些数据呢?才能使得与原来那块三角形全等.【设计意图】通过学生熟悉的生活实例创设情境便于学生快速进入状态思考,也能让同学感受应用数学的魅力. 引言 1 老师这儿判断三角形全等的方法有很多种.我们先从几千年前的数学家欧几里得那儿感受下如何判断三角形全等 (播放“欧几里得利用剪裁的方法验证全等”的视频).【设计意图】让学生从数学史中领略数学的进步以及魅力,并引导学生学习更多新的方法.引言2怎样不剪下来就能证明全等,就是我们本节课所要学习的方法——三角形全等的判定(SSS).【设计意图】引出课题,揭示三角形全等的判定是判断三角形全等的进一步创新,并能够为生活带来更多便利. (二)体验过程,探究新知1.类比“平行线的判定”,构建探索思路问题1 我们先来回顾一下以前的知识,“两直线平行,内错角相等”这个命题是平行线的什么?“内错角相等,两直线平行”这个命题又是平行线的什么?师生活动: 学生独立思考,举手回答问题,老师及时对问题进行评价.【设计意图】通过回顾已学知识,为下一步类比探索铺垫.追问: 观察一下,平行线的性质以及判定有什么联系吗?师生活动: 学生独立思考后,与同桌交流思想,代表进行发言【设计意图】通过交流引导学生发现性质到判定的内在联系,即互换原有题设和结论,便从性质转换成判定.追问:上节课我们学习了全等三角形的性质,你能猜想出全等三角形的判定吗?师生活动:学生独立思考,举手进行回答,老师并带领学生对给出的猜想进行验证. 【设计意图】引导学生类比平行线的性质和判定,得出全等三角形的判定. 问题2 猜想中需要6个条件才能够得出结论,一定需要6个条件吗?师生活动:学生举手进行回答.若学生回答不上来,老师则进一步进行指导,举一个具体的例子:已知两对角分别相等,能不能证明第三对角分别相等呢?【设计意图】引导学生对三角形全等判定方法条件的探索,运用简捷的条件对三角形全等进行判定. 探究1 观察如图1、2所示的图形,观察△ABC 、△BCD 有什么共同点?师生活动:学生小组合作进行讨论,思想交流.教师在交流过程中对学生进行指导与帮助,指派小组代表上台展示思路以及成果,老师并对成果进行有效评价.【设计意图】学生通过交流,认真分析问题,讨论问题,最终得出满足一个条件不能满足三角形全等 探究2 观察如图3、4、5所示的图形,上述图形中得到两个三角形有什么共同点?师生活动:学生独立思考,举手回答问题,老师及时对回答进行解读与评价.【设计意图】学生通过独立思考,并根据认真分析问题,最终得出满足两个条件不能满足三角形全等.图2图3图4 图5图12.尺规作图,探索“边边边”判定方法探究3 先任意画出一个ABC △.在画一个C B A '''△,使CA A C BC C B AB B A =''=''='',,.把画好的C B A '''△剪下来,放到ABC △上,他们全等吗?师生活动:首先带领学生对“满足三条边分别相等的条件证明全等”的正确性进行判断,借助“三角形的稳定性”辅助判断探究3的正确性.然后师生共同用尺规作图,学生剪图比较图.具体过程如下:(1)师生共同回顾如何用尺规作一条线段等于已知线段,然后引导学生先任意画一个△ABC,然后利用尺规作图的方法作出C B '',使,进而确定了点C B '',的位置;(2)共同探索如何确定A '的位置,并用尺规作图确定其位置;(3)画出C B A '''△,并将其剪下来,放到原三角形;(4)老师并选取几个较为成功的作品上台展示,进一步获得三角形全等的“边边边”判定方法.追问:作图的结果说明了什么?你能用文字语言和符号语言概括吗?师生活动:学生回答问题,并互相补充.教师板书:三边分别相等的两个三角形全等.【设计意图】通过作图、剪图、比较图的过程,感悟基本事实的正确性,锻炼学生的动手操作能力以及归纳概括能力.知识1 三角形全等的判定方法:三边分别相等的两个三角形全等. (1)简称:“边边边”或“SSS ”. (2)判定定理应用格式:(三)应用知识,理解所学例 在如图12,.2-3所示的三角形钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD.BCC B ='')(△中和△在△SSS C B A ABC C AAC C B BC B AAB C B AABC '''≅∴''=''=''='''师生活动:教师引导学生运用图形结合进行思考问题,并利用不同的符号对不同的条件进行标识,然后安排学生独立进行证明过程的书写.【设计意图】运用“边边边”判定方法证明简单的几何问题,感悟判定方法的简捷性,并在细节上揭示判定方法运用的技巧,从而达到例题精做的效果(四)课堂小结,素养提升问题1 探索三角形的条件,基本思路是什么?问题2 “SSS”判定方法有什么作用?(五)布置作业,延伸课外1.教科书习题第1,9题.2.练习册《用SSS判定三角形全等》【设计意图】既巩固本节课的内容,又由课内延伸到课外.使每个学生都能得到不同程度的发展.板书设计:板书设计§三角形全等的判定方法——SSS一、相关定义二、例题学生展示:1.判定方法例12.判定定理应用格式。
初中数学试卷桑水出品三角形全等的判定(SSS,SAS)例1. 如图,AB=AD,BC=CD求证:∠BAC=∠DAC。
DCBA例2. 已知:M是AB的中点,MC=MD,∠CMA=∠DMB.求证:AC=BD.DCBMA例3. 已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD例4. 如图,已知AD=AE,AB=AC.求证:BF=FCA档(巩固专练)1. 如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2. 如图,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3. 在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4. 如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5. 如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=6. 如图,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.67. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD8. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDA9. 如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD=________,•根据_________可得到△AOD≌△COB,从而可以得到AD=_________.10. 如图,已知△ABC中,∠B=∠C,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠________=∠_________(角平分线的定义).在△ABD和△ACD中,∵____________________________,∴△ABD≌△ACD()B档(提升精练)1. 如图,AD=BC,AB=DC. 求证:∠A+∠D=180°2. 如图,AB=AC,BD=CD,求证:∠1=∠2.3. 如图,已知AB=CD,AC=BD,求证:∠A=∠D.4. 如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.5. 已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.6. 如图,已知AB=AD,AC=AE,∠1=∠2,求证∠ADE=∠B.7. 如图,已知AB=AD,若AC平分∠BAD,问AC是否平分∠BCD?为什么?D CBA8. 已知:如图,△ABC中, AD⊥BC 于D,AD=BD, DC=DE,∠C=50°。