信息论与编码-第4章
- 格式:ppt
- 大小:1.04 MB
- 文档页数:45
信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
《信息论与编码》第四章习题解答4.1 计算如下所示离散无记忆信道的容量: 习题4.1图[解] (a )信道概率转移矩阵为−−−−=δεδεεδδε11P , 信道是准对称信道,因此在输入为等概分布时达到信道容量,即5.0)1()0(====X P X P 时达到信道容量。
这时δ5.05.0)0(−==Y P δ==)1(Y Pδ5.05.0)2(−==Y P相应的信道容量为);1();0(Y X I Y X I C ====∑==2)()0|(log)0|(j j p j p j p 0111-ε1-δε δ 00 121-ε-δ εδδ 1-ε-δ1ε0 221 0.5 δ 110.250.25 0.50.50 2 21-ε ε ε 1-ε1ε 11-ε 0 0 223/41/4 111/3 1/31/3 1/43/40 2 311/3 211/31/3 1/31/31/3 1/3 1/31/3 (c)(a)(b) (e)(f)(d)δεεδδδδδεδε5.05.0log log 5.05.01log)1(−++−−−−−=)5.05.0log()1(log )1log()1(δδεεδεδε−−−+−−−−= (b )信道概率转移矩阵为=5.05.0025.025.05.0001P当5.0)2()0(====X P X P ,0)(=X P 时,5.0)0(==Y P ,25.0)1(==Y P ,25.0)2(==Y P1)()0|(log )0|();0(2===∑=j j p j p j p Y X I bit∑===2)()2|(log)2|();2(j j p j p j p Y X I 125.05.0log 5.025.05.0log 5.0=+= bit10);1(≤==Y X I ; 所以满足定理4.2.2条件,由达到信道容量充要条件可知,信道容量C =1 bit/次(c )信道转移概率矩阵为−−−=εεεεεε101001P ,信道是对称信道,当输入为均匀分布时,即31)2()1()0(======X P X P X P 时,达到信道容量。
4.5若将N 个相同的BSC 级联如题图4.5所示,各信道的转移概率矩阵为⎥⎦⎤⎢⎣⎡--p p p p 11。
令Q t =P{X t =0},t=0,1,…,N,且Q 0为已知。
题图 4.5(a)求Q t 的表达式。
(b)证明N →∞时有Q N →1/2,且与Q 0取值无关,从而证明N →∞级联信道的信道容量C N →0,P>0。
解:(a)对于满足X N 为马氏链的串联信道,他们总的信道转移概率矩阵为各个串联信道矩阵的乘积,即P(X N |X 0)= P(X 1|X 0) P(X 2|X 1)……P(X N |X N-1)由已知得,但各信道的转移概率矩阵为⎥⎦⎤⎢⎣⎡--p p p p 11 则两个信道级联的转移概率矩阵为: P 2=⎥⎦⎤⎢⎣⎡--p p p p 11⎥⎦⎤⎢⎣⎡--p p p p 11=()()()()⎥⎦⎤⎢⎣⎡-+---+2222112p 12p 1p p p p p p 三个信道级联的转移概率矩阵为: P 3=()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+33331221211221211221211-2p 2121p p p 四个信道级联的转移概率矩阵为: P 4=()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+44441221211221211221211-2p 2121p p p 以此类推:可得N 个信道级联的转移概率矩阵为:P N =()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+N N N N p p p 1221211221211221211-2p 2121 则Q t =P{X t =0}=()()()()()000121221211122121122121Q p p Q p Q p t t t t -+--=-⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡-+即Q t 的表达式为:Q t =()()012122121Q p p t t -+-- t=0,1,……,N (b) 由(a)可得到:Q N =()()012122121Q p p t t -+-- 由0<p<1,则0<2p<2,-1<2p-1<1,即|2p-1|<1 则21lim =∞→N N Q ,与Q 0取值无关。
第4章无失真信源编码习题及其参考答案4-1 有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F(1)求这些码中哪些是唯一可译码;(2)求哪些码是及时码;(3)对所有唯一可译码求出其平均码长l。
4-2 设信源61261126()1()()()()iis s sXp sp s p s p sP X=⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦∑。
对此次能源进行m元唯一可译编码,其对应的码长为(l1,l2,…,l6)=(1,1,2,3,2,3),求m值的最好下限。
(提示:用kraft不等式)4-3设信源为1234567811111111()248163264128128s s s s s s s sXp X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,编成这样的码:(000,001,010,011,100,101,110,111)。
求(1)信源的符号熵;(2)这种码的编码效率;(3)相应的仙农码和费诺码。
4-4求概率分布为11122(,,,,)3551515信源的二元霍夫曼编码。
讨论此码对于概率分布为11111(,,,,)55555的信源也是最佳二元码。
4-5有两个信源X和Y如下:121234567()0.200.190.180.170.150.100.01X s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦123456789()0.490.140.140.070.070.040.020.020.01Y s s s s s s s s s p Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用二元霍夫曼编码、仙农编码以及费诺编码对信源X 和Y 进行编码,并计算其平均码长和编码效率;(2)从X ,Y 两种不同信源来比较三种编码方法的优缺点。
4-6设二元霍夫曼码为(00,01,10,11)和(0,10,110,111),求出可以编得这样 霍夫曼码的信源的所有概率分布。
4-7设信源为12345678()0.40.20.10.10.050.050.050.05X s s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求其三元霍夫曼编码。