汉诺塔教材
- 格式:doc
- 大小:274.00 KB
- 文档页数:7
汉诺塔课程设计一、课程目标知识目标:1. 学生能理解汉诺塔的起源、规则及数学原理;2. 学生掌握汉诺塔问题解决的递归思想,并能运用到其他数学问题中;3. 学生能运用数学符号和表达式描述汉诺塔的移动过程。
技能目标:1. 学生能够运用所学知识解决汉诺塔问题,提高逻辑思维和问题解决能力;2. 学生通过合作探究,培养团队协作能力和沟通表达能力;3. 学生学会利用递归思想分析问题,提高数学建模能力。
情感态度价值观目标:1. 学生在探索汉诺塔问题的过程中,培养对数学的兴趣和好奇心,激发学习热情;2. 学生通过解决汉诺塔问题,体验成功的喜悦,增强自信心;3. 学生在合作探究中,学会尊重他人意见,培养包容、谦逊的品质;4. 学生认识到数学在现实生活中的应用,理解数学的价值。
课程性质:本课程为数学学科拓展课程,旨在通过汉诺塔问题的探究,培养学生的逻辑思维、问题解决和团队协作能力。
学生特点:学生处于初中阶段,具有一定的数学基础和逻辑思维能力,对新鲜事物充满好奇心,喜欢探索和挑战。
教学要求:教师需结合学生的特点,设计有趣、富有挑战性的教学活动,引导学生主动参与,充分调动学生的积极性和主动性。
在教学过程中,注重培养学生的逻辑思维、问题解决和团队协作能力,同时关注学生的情感态度价值观的培养。
通过本课程的学习,使学生能够在知识和能力上得到全面提升。
二、教学内容1. 汉诺塔的起源与规则:介绍汉诺塔的背景、发展历程及基本规则,使学生了解汉诺塔问题的历史背景和基本操作。
相关教材章节:数学游戏与趣味数学2. 汉诺塔的数学原理:讲解汉诺塔问题中的递归思想,引导学生发现规律,理解汉诺塔问题背后的数学原理。
相关教材章节:递归与数学问题3. 汉诺塔问题解决方法:教授解决汉诺塔问题的具体方法,如递归法、迭代法等,帮助学生掌握解决问题的技巧。
相关教材章节:算法与程序设计4. 汉诺塔问题拓展与应用:引导学生将汉诺塔问题与其他数学问题相联系,培养学生举一反三的能力。
《汉诺塔游戏》教学设计学习内容:数学游戏“汉诺塔”第一课时学习目标:1.了解汉诺塔游戏的传说以及汉诺塔游戏的基本规则。
2.经历汉诺塔游戏的游玩过程,在“玩”中掌握汉诺塔游戏的基本规则,初步发现游戏中的规律。
3.在收集信息、整理归纳、猜测验证的数学思维过程,发展归纳推理能力和逻辑思维能力。
4.在解决问题的过程中,体会与他人合作获得更多的成功体验。
学习重点:经历汉诺塔游戏的游玩过程,在“玩”中掌握汉诺塔游戏的基本规则,初步发现游戏中的规律。
学习难点:在收集信息、整理归纳、猜测验证的数学思维过程,发展归纳推理能力和逻辑思维能力。
学习过程:课前活动大家喜欢玩游戏么?玩过什么游戏?我为大家带来一位游戏高手,一起来认识一下。
播放录像。
这只黑猩猩聪明吧?它的表现太神奇了!你知道它玩的什么?板书课题:汉诺塔接下来,就让我们一起步入汉诺塔游戏的世界。
一、认识汉诺塔1.关于汉诺塔,你想了解些什么?(规则,来历,玩法……)同学们的问题太棒了!相信上完了这节课,能解决你的许多问题!咱们就从汉诺塔的来历说起。
Ppt播放相关介绍。
2.认识汉诺塔各部分。
到了现代,汉诺塔演变成了这个样子。
出示教具。
咱们一起来认识一下汉诺塔:下面是一个托盘,上面竖着3根柱子,从左到右依次为A柱、B柱、C柱。
A柱是起始柱,游戏开始的时候所有的圆片摆放的位置; C柱是目标柱,游戏结束时,所有的金片都按照顺序排列在上面;B柱是中转柱。
3.了解游戏规则。
大家想不想看一看,老师玩汉诺塔游戏的录像?请你一边看一边想:汉诺塔游戏的规则是什么?出示录像。
谁来说一说,汉诺塔游戏的规则是什么?(1)从一边到另一边板书:1.从A到C (2)一次只能移动一个金片板书:2.一次一片(3)大金片不能放到小金片的上面板书:3.大不压小二、动手实践玩游戏知道了规则,接下来,咱们就开始玩汉诺塔的游戏吧。
1.咱们从1个圆片开始研究。
请你拿出学具,在A柱上摆放1个圆片。
其它圆片放在旁边桌上。
课题名称: 梵天的汉诺启示——《汉诺塔》益智器具教学设计教材版本:经典益智器具校本教材《思维潜能开发课程》及《义务教育课程标准实验教科书·数学》(人教版)教学内容:本课选择学校校本教材——《思维潜能开发课程》的第2课及(人教版)五年级上册数学广角益智器具:汉诺塔单人游戏,著名的递归问题,游戏目的是把一根柱子上的N 个环依次移到另一根柱子上,游戏规则要求每次只能移一个环,移动过程中大环不能压小环。
游戏策略是……逆推思维。
趣味等级:★★★★★难度等级:★★★★★教学设计:一、教学设计思路玩是孩子们的天性,在玩中增长智慧,开发智能,玩出名堂,这是我们致力追求的目标。
这节课就是想让学生了解汉诺塔的游戏目的规则,再根据目的规则去探究游戏策略,掌握游戏思路,化难为易,从而渗透一些“递归”的数学思想和方法,同时了解一些汉诺塔的历史传说、算法、类似故事等相关知识,拓展学生的知识面。
使学生在主动地动手、动口、动脑、自主、合作、探究中学会观察,激活顿悟,培养其严密性等思维品质及推理判断等逻辑思维能力,积淀智慧,培养探究学习兴趣和创新能力,努力凸显“乐学高效”的优质课堂愿景。
中国教育科学研究院李嘉骏教授在《开发思维潜能,培养聪明学生》的报告中谈到:在课程改革实施过程中,为顺应现代教育变革的观念和关系,提升教学技艺、探究教学游戏、践行优质课堂,提高教学质量,使学生更聪明,培养新时代需要的合格人才,而努力!我们研究的方向要坚守!目标:追求好的教育,培养聪明的学生!要将劲儿往实处做…让学生变个样!教师变个样!学校变个样!培育自己的特色、树起好标杆![1]1、教材地位作用和内容:编排作用:用学生易于理解的生活实例或经典的数学问题渗透数学思想方法,让学生感受数学与生活的联系。
[2]2、知识的前后联系:3、相关旧知识分析知识的连接点:到五年级,学生已经有了一些逆推思维,比如说减法是加法的逆运算,除法是乘法的逆运算,解决问题时从问题出发一步一步去寻找必要的条件等等,以及学习了运用一些优化思想、对策问题、排列组合法、排除法、不完全归纳法、以小见多法、化难为易法等等数学思想和方法来解决新的数学问题。
有趣的汉诺塔
——思维潜能开发校本教材
河山实验学校小学部时美娟
前言
数学教学游戏(思维潜能开发)课程是按照《优质课堂与现代教学技艺运用的研究》总课题组倡导的“教学游戏”理念,借鉴国内外“思维潜能开发”的有效经验,结合心理学、认知科学和脑科学的最新研究成果,经过本土化再造后, 逐步形成的教学游戏课程的训练体系。
其核心是以“益智”为载体,通过愉悦的探究体验活动,开发学生的思维潜能,促进学生身心健康的全面发展。
教学游戏(思维潜能开发)课程实质上是一种思维潜能开发训练。
它采用课程化的训练体系,试图跳出目前“题型”和“分数”的羁绊,在充满游戏乐趣和紧张思维碰撞的精神活动中挑战固有的思维定势,开发学生的智慧潜能。
它不仅是一种在探索中进行创新思维的学习,还是落实《义务教育阶段数学课程标准2011年版》对“四基、四能”教学要求的一种有效手段。
其目的在于让学生在实践、体验中培养其创新意识、践行能力,团结协作、社会活动等方面的能力及技艺。
河内塔是根据一个传说形成的一个问题:有三根杆子A,B,C。
A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。
要求按下列规则将所有圆盘移至C杆:提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须遵循上述两条规则。
问:如何移?最少要移动多少次?
目录
1 基本介绍
2 历史传说
3 相似问题
4 concreteHAM
4.1 在分析⑵之前
4.2 讨论问题⑵,
4.3 算法介绍
5 汉诺塔问题的程序实现
5.1 汉诺塔问题的递归实现
5.2 汉诺塔问题的非递归实现
5.3 汉诺塔问题的递归Java语言实现
5.4 汉诺塔问题的递归pascal语言实现
5.5 汉诺塔问题的递归易语言实现
5.6 汉诺塔问题的递归VB实现
•汉诺塔游戏
•汉诺塔递归算法
•汉诺塔问题
•汉诺塔玩法
一、基本介绍
读一读:
汉诺塔是由三根杆子A,B,C组成的。
A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。
要求按下列规则将所有圆盘移至C杆:每次只能移动一个圆盘;大盘不能叠在小盘上面。
提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须尊循上述两条规则。
问:如何移?最少要移动多少次?汉诺塔是根据一个传说形成的一个问题:
有三根杆子A,B,C。
A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。
要求按下列规则将所有圆盘移至C杆:
每次只能移动一个圆盘;
大盘不能叠在小盘上面。
提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须遵循上述两条规则。
问:如何移?最少要移动多少次?
二、历史传说
关于《汉诺塔》有一个动人的故
一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。
印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。
不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。
僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。
这需要多少次移动呢?这里需要递归的方法。
假设有n片,移动次数是f(n).显然f⑴=1,f⑵=3,f⑶=7,且f(k+1)=2*f(k)+1。
此后不难证明f(n)=2^n-1。
n=64时,f(64)= 2^64-1=18446744073709551615假如每秒钟一次,共需多长时间呢?一个平年365天有 31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下,18446744073709551615/31556952=584554049253.855年这表明移完这些金片需要5845亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。
真的过了5845亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。
三、相似问题
读一读:
和汉诺塔故事相似的,还有另外一个印度传说:舍罕王打算奖赏国际象棋的发明人──宰相西萨·班·达依尔。
国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里赏给我一粒麦子,在第2个小格里给2粒,第3个小格给4粒,以后每一小格都比前一小格加一倍。
请您把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧!”国王觉得这个要求太容易满足了,就命令给他这些麦粒。
当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求。
那么,宰相要求得到的麦粒到底有多少呢?总数为
1+2+2*2 + … +63*63+64*64-1
和移完汉诺塔的次数一样。
我们已经知道这个数字有多么大了。
人们估计,全世界两千年也难以生产这么多麦子!
四、算法介绍
《汉诺塔》的玩法很简单,认真读
一读你就会玩了。
想一想你读出了什
其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n –1(有兴趣的可以自己证明试试看)。
后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。
首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;若n为奇数,按顺时针方向依次摆放 A C B。
⑴按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
⑵接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。
即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。
这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。
⑶反复进行⑴⑵操作,最后就能按规定完成汉诺塔的移动。
所以结果非常简单,就是按照移动规则向一个方向移动金片:
如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C
让我们运用算法来玩一玩吧!
让我们用好这些算法。
放
开玩吧!记得及时记录自己的
新发现呀!
两两合作,探索汉诺塔的趣味性、竞技性与蕴含的智慧。
四、文明道德:
教师适时介入以下情形:同伴之间出现矛盾,游戏终止,予以调控;个别学生不得要领,情绪低落,给予点拨;提醒注意观察对方的操作失误,及时记录。
我们既是对手,更是
切磋技艺的朋友!
我的新招——提升技艺的小窍门
五、思考和练习:
1.说一说,黑白棋给了我哪些启迪、感悟和收获?
2.想一想,这些启迪、感悟和收获可以用于解决学习中的哪些问题?可以用于解决生活中的哪些问题?。