2012—2018高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)
- 格式:doc
- 大小:4.65 MB
- 文档页数:18
2012~2018高考立体几何真题目录2018高考真题一.选择题(共7小题)1.(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2 2.(2018•新课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.3.(2018•新课标Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54 4.(2018•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8 5.(2018•浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ16.(2018•北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4 7.(2018•全国)若四面体棱长都相等,则相邻两侧面所成的二面角的余弦值为()A.B.C.D.二.填空题(共4小题)8.(2018•江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.9.(2018•天津)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH 的体积为.10.(2018•全国)已知三棱锥O﹣ABC的体积为1,A1、B1、C1分别为OA、OB、OC的中点,则三棱锥O﹣A1B1C1的体积为.11.(2018•全国)长方体ABCD﹣A1B1C1D1,AB=AD=4,AA1=8,E、F、G为AB、A1B1、DD1的中点,H为A1D1上一点,则A1H=1,求异面直线FH与EG所成角的余弦值.三.解答题(共8小题)12.(2018•新课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.13.(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.14.(2018•新课标Ⅲ)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.15.(2018•浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.16.(2018•江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.17.(2018•天津)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.18.(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.19.(2018•北京)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B﹣CD﹣C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.2017高考真题一.选择题(共7小题)1.(2017•新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16 2.(2017•新课标Ⅱ)如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π3.(2017•北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.2 4.(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.5.(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3 6.(2017•浙江)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α7.(2017•全国)正三棱柱ABC﹣A1B1C1各棱长均为1,D为AA1的中点,则四面体A1BCD的体积是()A.B.C.D.二.填空题(共5小题)8.(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.9.(2017•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.10.(2017•山东)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.11.(2017•上海)已知球的体积为36π,则该球主视图的面积等于.12.(2017•上海)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.三.解答题(共8小题)13.(2017•新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.14.(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.15.(2017•北京)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.16.(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.17.(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD ⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.18.(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.19.(2017•天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.20.(2017•上海)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.2016高考真题一.选择题(共10小题)1.(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π2.(2016•新课标Ⅰ)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.3.(2016•新课标Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π4.(2016•新课标Ⅲ)如图,格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.81 5.(2016•新课标Ⅲ)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.6.(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n 7.(2016•北京)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.1 8.(2016•山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π9.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.(2016•全国)正四棱锥的各棱长均为1,则它的体积是()A.B.C.D.二.填空题(共7小题)11.(2016•新课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序)12.(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.13.(2016•浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.14.(2016•天津)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m315.(2016•上海)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于.16.(2016•四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.17.(2016•全国)已知B﹣AC﹣D为直二面角,Rt△ABC≌Rt△ADC,且AB=BC,则异面直线AB与CD所成角的大小为.三.解答题(共9小题)18.(2016•新课标Ⅰ)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(2016•新课标Ⅱ)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.20.(2016•新课标Ⅲ)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.21.(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC 的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.22.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.23.(2016•天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.24.(2016•北京)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(Ⅰ)求证:PD⊥平面PAB;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.25.(2016•山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.26.(2016•四川)如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.2015高考真题一.选择题(共14小题)1.(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛2.(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.83.(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.4.(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π5.(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.6.(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α7.(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π8.(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5 9.(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3B.至多等于4C.等于5D.大于5 10.(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.11.(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面12.(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2 13.(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A .3πB .4πC .2π+4D .3π+414.(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A .B .C .D .二.填空题(共8小题)15.(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .16.(2015•浙江)若a=log 43,则2a +2﹣a = .17.(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=.18.(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.19.(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.20.(2015•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.21.(2015•四川)如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为.22.(2015•全国)A,B,C为球O的球面上三点,AB⊥AC,若球O的表面积为64π,O到AB,AC的距离均为3,则O到平面ABC的距离为.三.解答题(共16小题)23.(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.24.(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.25.(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.26.(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.27.(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.28.(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.29.(2015•天津)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D 的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.30.(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF 的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.31.(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.32.(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M、GH的中点为N.(Ⅰ)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);(Ⅱ)证明:直线MN∥平面BDH;(Ⅲ)求二面角A﹣EG﹣M的余弦值.33.(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.34.(2015•重庆)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.35.(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.36.(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE 的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.37.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ 的体积.38.(2015•福建)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.2014高考真题一.选择题(共17小题)1.(2014•新课标Ⅱ)如图,格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.2.(2014•新课标Ⅰ)如图,格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.43.(2014•浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2 4.(2014•北京)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S15.(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣6.(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1] 7.(2014•湖北)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②8.(2014•湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.9.(2014•重庆)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72 10.(2014•湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4 11.(2014•安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.18 12.(2014•江西)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()A.B.C.D.13.(2014•江西)如图,在长方体ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一质点从顶点A射向点E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i﹣1次到第i次反射点之间的线段记为l i(i=2,3,4),l1=AE,将线段l1,l2,l3,l4竖直放置在同一水平线上,则大致的图形是()A.B.C.D.14.(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.15.(2014•福建)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱16.(2014•全国)平面ax+by+z+1=0和x+2y﹣z+3=0互相垂直,且其交线经过点(1,﹣1,2),则a+b=()A.B.C.﹣D.﹣17.(2014•全国)有一块草地为菱形,在菱形的对角线交点处有一根垂直于草地的旗杆,若该菱形面积为240m2,周长为80m,旗杆高8m,则旗杆顶端到菱形边的最短距离为()A.6m B.8m C.10m D.12m二.填空题(共4小题)18.(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.19.(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.20.(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.21.(2014•全国)已知点A,B在球O的球面上,平面AOB截该球面所得圆上的劣弧长为80,∠AOB=120°,则该球的半径为.三.解答题(共17小题)22.(2014•新课标Ⅱ)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.23.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.24.(2014•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.25.(2014•浙江)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.26.(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.27.(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.28.(2014•北京)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC 分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.29.(2014•辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.30.(2014•广东)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.。
2018年全国高考文科数学分类汇编——立体几何1.(北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(C)A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.(北京)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG ∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.3.(江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.4. (江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.5.(全国1卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=,则该圆柱的表面积为:=10π.故选:D.6.(全国1卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()BA.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.7.(全国1卷)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()CA.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1==2.可得BB1==2.所以该长方体的体积为:2×=8.故选:C.8.(全国1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AB=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.9.(全国2卷)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()CA.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),=(﹣2,2,1),=(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ===,sinθ==,∴tanθ=.∴异面直线AE与CD所成角的正切值为.故选:C.10.(全国2卷)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为8π.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.11. (全国2卷)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解答】(1)证明:∵AB=BC=2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=,在△COM中,OM==.S=××=,S△COM==.=V C﹣POM⇒,设点C到平面POM的距离为d.由V P﹣OMC解得d=,∴点C到平面POM的距离为.12.(全国3卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()AA.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.13.(全国3卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:=18.故选:B.14.(全国3卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CD⊥平面AMD,CD⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.15.(上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()CA.4 B.8 C.12 D.16【解答】解:根据正六边形的性质可得D1F1⊥A1F1,C1A1⊥A1F1,D1B1⊥A1B1,E1A1⊥A1B1,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E和D1一样,故有2×6=12,故选:C.16.(上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos .17.(天津)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.18.(天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.19.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()CA.2 B.4 C.6 D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.20.(浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.21.(浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.22.(浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.。
专题6立体几何(2018全国1卷)5. 已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.(2018全国1卷)9. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B. C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.(2018全国1卷)10. 在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.【答案】C【解析】分析:首先画出长方体,利用题中条件,得到,根据,求得,可以确定,之后利用长方体的体积公式详解:在长方体中,连接,根据线面角的定义可知,因为,所以,从而求得,所以该长方体的体积为,故选C.点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.(2018全国2卷)9. 在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.详解:在正方体中,,所以异面直线与所成角为,设正方体边长为, 则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.(2018全国3卷)3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )3.答案:A 解答:根据题意,A 选项符号题意;(2018全国3卷)12.设,,,是同一个半径为4的球的球面上四点,为等边三角形且其面积为体积的最大值为( )A .B .C .D .12.答案:BA B C D ABC ∆D ABC -解答:如图,为等边三角形,点为,,,外接球的球心,为的重心,由,取的中点,∴,∴球心到面的距离为,∴三棱锥体积最大值(2018北京卷)6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4 【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,, 由勾股定理可知:, 则在四棱锥中,直角三角形有:共三个,故选C.ABC ∆O A B C D G ABC ∆ABC S ∆=6AB =BC H sin60AH AB =⋅︒=23AG AH ==O ABC 2d ==D ABC -1(24)3D ABC V -=⨯+=点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解. (2018浙江卷)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 83.答案:C 解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. (2018浙江卷)6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.(2018浙江卷)8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A . θ1≤θ2≤θ3B . θ3≤θ2≤θ1C . θ1≤θ3≤θ2D . θ2≤θ3≤θ18.答案:D 解答作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角,俯视图正视图根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.(2018全国2卷)16. 已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________. 【答案】8π【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以, 所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.(2018天津卷)11. 如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.【答案】【解析】分析:由题意分别求得底面积和高,然后求解其体积即可.详解:如图所示,连结,交于点,很明显平面,则是四棱锥的高,且,,结合四棱锥体积公式可得其体积为:.点睛:本题主要考查棱锥体积的计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力. (2018江苏卷)10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2018全国1卷)18. 如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.【答案】(1)见解析.(2)1.【解析】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=.又,所以.作QE⊥AC,垂足为E,则.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥的体积为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.(2018全国2卷)19. 如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.【答案】解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.(2018江苏卷)15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC . 又因为A 1B ∩BC =B ,A 1B 平面A 1BC ,BC平面A 1BC ,所以AB 1⊥平面A 1BC . 因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. (2018全国3卷)19.(12分)如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点. ⑴证明:平面平面;⑵在线段上是否存在点,使得平面?说明理由.19.答案:见解答解答:(1)∵正方形半圆面, ∴半圆面,∴平面.∵在平面内,∴,又∵是半圆弧上异于的点,∴.又∵,∴平面,∵在平面内,∴平面平面.(2)线段上存在点且为中点,证明如下:连接交于点,连接;在矩形中,是中点,是的中点; ∴,∵在平面内,不在平面内,∴平面.ABCD CD M CD C D AMD ⊥BMC AM P MC ∥PBD ABCD ⊥CMD AD ⊥CMD AD ⊥MCD CM MCD AD CM ⊥M CD ,C D CM MD ⊥AD DM D =I CM ⊥ADM CM BCM BCM ⊥ADM AM P P AM ,BD AC O ,,PD PB PO ABCD O AC P AM //OP MC OP PDB MC PDB //MCPDB(2018北京卷)18. (本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解析】分析:(1)欲证,只需证明即可;(2)先证平面,再证平面P AB⊥平面PCD;(3)取中点,连接,证明,则平面.详解:(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴.(Ⅱ)∵底面为矩形,∴.∵平面平面,∴平面.∴.又,∵平面,∴平面平面.(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.点睛:证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直. (2018江苏卷)25. 如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.(2018浙江卷)19.(15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2(1)证明:AB 1⊥平面A 1B 1C 1(2)求直线AC 1与平面ABB 1所成的角的正弦值 19.解答:(1)∵12AB B B ==,且1B B ⊥平面ABC ,∴1B B AB ⊥,∴1AB =.同理,1AC ===过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC ==且11B G =,∴11B C =在11AB C ∆中,2221111AB B C AC +=, ∴111AB BC ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴11A B =. 在11A B A ∆中,2221111AA AB A B =+, ∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C , ∴1AB ⊥平面111A B C .(2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.C 1B 1A 1CA则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B,1(1C , 设平面1ABB 的一个法向量(,,)n a b c =,则1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =,又∵1AC =,1cos ,13n AC <>==. 由图形可知,直线1AC 与平面1ABB 所成角为锐角,设1AC 与平面1ABB 夹角为α.∴sin α=。
G 立体几何G1 空间几何体的结构9.G1设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围为( )A.(0,2) B.(0,3)C.(1,2) D.(1,3)图1-29.A 如图1-2所示,设AB=a,CD=2,BC=BD=AC=AD=1,则∠ACD=∠BCD=45°,要构造一个四面体,则△ACD与共面BCD不能重合,当△BCD与△ACD重合时,a=0;当A、B、C、D四点共面,且A、B两点在DC的两侧时,在△ABC中,∠ACB=∠ACD+∠BCD=45°+45°=90°,AB =AC2+BC2=2,所以a的取值范围是(0,2).8.G1、G2将正方体(如图1-3①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的左视图为( )图1-3图1-48.B 分析题目中截几何体所得的新的几何体的形状,结合三视图实线和虚线的不同表示可知对应的左视图应该为B.15.G1、G12若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则________(写出所有正确结论的编号).①四面体ABCD每组对棱相互垂直;②四面体ABCD每个面的面积相等;③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.15.②④⑤如图,把四面体ABCD放入长方体中,由长方体中相对面中相互异面的两条面对角线不一定相互垂直可知①错误;由长方体中△ABC≌△ABD≌△DCB≌△DCA,可知四面体ABCD每个面的面积相等,同时四面体ABCD中过同一顶点的三个角之和为一个三角形的三个内角之和,即为180°,故②正确,③错误;长方体中相对面中相互异面的两条面对角线中点的连线相互垂直,故④正确;从四面体ABCD每个顶点出发的三条棱可以移到一个三角形中,作为一个三角形的三条边,故⑤正确.答案为②④⑤.5.G1一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________.5.6π考查圆柱的表面积,利用圆的周长求得圆柱的底面半径.由圆柱的底面周长可得底面圆的半径,2πr=2π,∴r=1,得圆柱的表面积S=2πr2+2πh=2π+4π=6π.19.G1、G11如图1-1,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点,已知∠BAC =π2,AB =2,AC =23,PA =2,求:图1-1(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示). 19.解:(1)S △ABC =12×2×23=23,图1-2三棱锥P -ABC 的体积为V =13S △ABC ×PA =13×23×2=433.(2)取PB 的中点E ,连接DE 、AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2, cos ∠ADE =22+22-22×2×2=34,所以∠ADE =arccos 34.因此,异面直线BC 与AD 所成的角的大小是arccos 34.G2 空间几何体的三视图和直观图10.G2一个几何体的三视图如图1-2所示(单位:m),则该几何体的体积为________m3.图1-210.30 由三视图可得该几何体为两个直四棱柱的组合体,其体积V=3×4×2+12(1+2)×1×4=30.13.G2一个几何体的三视图如图1-3所示,则该几何体的体积为________.图1-313.12+π本小题主要考查三视图和体积公式.解题的突破口为通过观察分析三视图,得出几何体的形状,是解决问题的根本.由三视图可知,几何体是一个长方体与一个圆柱构成的组合体,所以该几何体的体积为V=V长方体+V圆柱=4×3×1+π×12×1=12+π.7.G2如图1-2,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )图1-3A .6B .9C .12D .187.B 根据三视图可知该几何体是三棱锥,其底面是斜边长为6的等腰直角三角形(斜边上的高为3),有一条长为3的侧棱垂直于底面,所以该几何体的体积是V =1×1×6×3×3=9,故选B.3. G2、G7 已知某三棱锥的三视图(单位:cm)如图1-1所示,则该三棱锥的体积是( )A .1 cm 3B .2 cm 3C .3 cm 3D .6 cm 3图1-13.A 本题考查三棱锥的三视图与体积计算公式,考查学生对数据的运算能力和空间想象能力.由三视图可知,该几何体为一个正三棱锥,则V =13Sh =13×12×1×2×3=1.8.G1、G2将正方体(如图1-3①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的左视图为( )图1-3图1-48.B 分析题目中截几何体所得的新的几何体的形状,结合三视图实线和虚线的不同表示可知对应的左视图应该为B.15.G2已知某几何体的三视图如图1-4所示,则该几何体的体积为________.图1-41-515.12 π由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是V=π×22×1×2+π×12×4=12π.7.G2某几何体的三视图如图1-1所示,它的体积为( )图1-1A.72π B.48πC.30π D.24π7.C 根据三观图知该几何体是由半球与圆锥构成,球的半径R=3,圆锥半径R=3,高为4,所以V组合体=V半球+V圆锥=12×43π×33+13π×32×4=30π,所以选择C.4.G2一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A.球B.三棱锥C.正方体D.圆柱4.D 球的三视图大小、形状相同,三棱锥的三视图也可能相同,正方体三种视图也相同,只有D不同.12.G2、G7某几何体的三视图如图1-2所示,则该几何体的体积等于________.图1-212.56 如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其体积为V=Sh=12()2+5×4×4=56.7.G2、G7某三棱锥的三视图如图1-4所示,该三棱锥的表面积是( )图1-4A.28+6 5B.30+6 5C.56+12 5D.60+12 57.B 本题考查三棱锥的三视图与表面积公式.由三视图可知,几何体为一个侧面和底面垂直的三棱锥,如图所示,可知S底面=12×5×4=10, S 后=12×5×4=10, S 左=12×6×25=65,S 右=12×4×5=10,所以S 表=10×3+65=30+6 5.4.G2 某几何体的正视图和侧视图均如图1-1所示,则该几何体的俯视图不可能...是( )图1-14.C 本题考查三视图,意在考查考生三视图的辨析,以及对三视图的理解和掌握.选项A, B, D ,都有可能,选项C 的正视图应该有看不见的虚线,故C 是不可能的.本题由于对三视图的不了解,易错选D ,三视图中看不见的棱应该用虚线标出.7.G2 若一个几何体的三视图如图1-2所示,则此几何体的体积为( ) A.112 B .5 C.92 D .4图1-27.D 该几何体是直六棱柱,由左视图知其高为1,由主视图和俯视图知其底面面积S=(1+3)×1=4,因此其体积为4,故选D.G3 平面的基本性质、空间两条直线G4 空间中的平行关系19.G4、G5如图1-6,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.图1-6(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.19.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)证法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC,又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.证法二:延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°.所以∠CBD=30°.因为△ABD为正三角形.所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点, 因此DM ∥EF .又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .18.G4、G7 如图1-5,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′-MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)图1-518.解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱, 所以M 为AB ′中点,又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,因此MN∥平面A′ACC′.(证法二)取A′B′中点P,连结MP,NP,M、N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′,又MP∩NP=P,因此平面MPN∥平面A′ACC′,而MN⊂平面MPN. 因此MN∥平面A′ACC′.(2)(解法一)连结BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC.又A′N=12B′C′=1,故VA′-MNC =V N-A′MC=12VN-A′BC=12VA′-NBC=16.(解法二)VA′-MNC =V A′-NBC-V M-NBC=12VA′-NBC=16.16.G4、G5、G7如图1-9(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图1-9(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.图1-916.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如下图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以平面DEQ即为平面DEP,由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.16.G4、G5如图1-4,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E 分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.图1-416.证明:(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.5.G4、G5设l是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.B 本题考查了线面、面面平行,线面、面面垂直等简单的立体几何知识,考查学生对书本知识的掌握情况以及空间想象、推理能力.对于选项A,若l∥α,l∥β,则α∥β或平面α与β相交;对于选项B,若l∥α,l⊥β,则α⊥β;对于选项C,若α⊥β,l⊥α,则l∥β或l在平面β内;对于选项D,若α⊥β,l ∥α,则l与β平行、相交或l在平面β内.G5 空间中的垂直关系19.G5如图1-7,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4,现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合于点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.图1-719.解:(1)证明:因为DE⊥EF,CF⊥EF,所以四边形CDEF为矩形,由GD=5,DE=4,得GE=GD2-DE2=3.由GC=42,CF=4,得FG=GC2-CF2=4,所以EF=5.在△EFG中,有EF2=GE2+FG2,所以EG⊥GF,又因为CF⊥EF,CF⊥FG,得,CF⊥平面EFG,所以CF⊥EG,所以EG⊥平面CFG,即平面DEG⊥平面CFG.(2)如图,在平面EGF中,过点G作GH⊥EF于点H,则GH=EG·GFEF=125.因为平面CDEF⊥平面EFG,得GH⊥平面CDEF,V CDEFG =13SCDEF·GH=16.14.G5如图1-4,在正方体ABCD-A1B1C1D1中,M、N分别是棱CD、CC1的中点,则异面直线A1M与DN所成的角的大小是图1-414.90°因为ABCD-A1B1C1D1为正方体,故A1在平面CDD1C1上的射影为D1,即A1M在平面CDD1C1上的射影为D1M,而在正方形CDD1C1中,由tan∠DD1M=tan∠CDN=1 2,可知D1M⊥DN,由三垂线定理可知,A1M⊥DN.20.G5、G6、G10、G11 已知在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点.(1)求异面直线CC 1和AB 的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -B 1的平面角的余弦值.图1-320.解:(1)因AC =BC ,D 为AB 的中点,故CD ⊥AB .又直三棱柱中,CC 1⊥面ABC ,故CC 1⊥CD ,所以异面直线CC 1和AB 的距离为CD =BC 2-BD 2= 5.(2)解法一:由CD ⊥AB ,CD ⊥BB 1,故CD ⊥面A 1ABB 1,从而CD ⊥DA 1,CD ⊥DB 1,故∠A 1DB 1为所求的二面角A 1-CD -B 1的平面角.因A 1D 是A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1,∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A ,因此AA 1AD =A 1B 1AA 1,得AA 21=AD ·A 1B 1=8. 从而A 1D =AA 21+AD 2=23,B 1D =A 1D =23, 所以在△A 1DB 1中,由余弦定理得cos ∠A 1DB 1=A 1D 2+DB 21-A 1B 212·A 1D ·DB 1=13.解法二:如下图,过D 作DD 1∥AA 1交A 1B 1于D 1,在直三棱柱中,由(1)知DB ,DC ,DD 1两两垂直,以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →得AB 1→·A 1C →=0,即8-h 2=0,因此h =2 2.图1-4故DA 1→=(-2,0,22),DB 1→=(2,0,22),DC →=(0,5,0). 设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即 ⎩⎪⎨⎪⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1).设平面B 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥DB 1→,即 ⎩⎪⎨⎪⎧5y 2=0,2x 2+22z 2=0,取z 2=-1,得n =(2,0,-1),所以cos 〈m ,n 〉=m·n |m |·|n |=2-12+1·2+1=13.所以二面角A 1-CD -B 1的平面角的余弦值为13.5.G4、G5 设l 是直线,α,β是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥β D .若α⊥β,l ∥α,则l ⊥β5.B 本题考查了线面、面面平行,线面、面面垂直等简单的立体几何知识,考查学生对书本知识的掌握情况以及空间想象、推理能力.对于选项A ,若l ∥α,l ∥β,则α∥β或平面α与β相交;对于选项B ,若l ∥α,l ⊥β,则α⊥β;对于选项C ,若α⊥β,l ⊥α,则l ∥β或l 在平面β内;对于选项D ,若α⊥β,l ∥α,则l 与β平行、相交或l 在平面β内.20.G4、G5、G11 如图1-5,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:(i)EF ∥A 1D 1; (ii)BA 1⊥平面B 1C 1EF ;(2)求BC 1与平面B 1C 1EF 所成的角的正弦值.图1-520.解:(1)证明:(ⅰ)因为C 1B 1∥A 1D 1,C 1B 1⊄平面A 1D 1DA ,所以C 1B 1∥平面A 1D 1DA ,又因为平面B 1C 1EF ∩平面A 1D 1DA =EF , 所以C 1B 1∥EF , 所以A 1D 1∥EF .(ⅱ)因为BB 1⊥平面A 1B 1C 1D 1, 所以BB 1⊥B 1C 1. 又因为B 1C 1⊥B 1A 1, 所以B 1C 1⊥平面ABB 1A 1, 所以B 1C 1⊥BA 1.在矩形ABB 1A 1中,F 是AA 1的中点,tan ∠A 1B 1F =tan ∠AA 1B =22,即∠A 1B 1F =∠AA 1B , 故BA 1⊥B 1F ,所以BA1⊥平面B1C1EF.(2)设BA1与B1F交点为H,连结C1H.由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与面B1C1EF所成的角.在矩形AA1B1B中,AB=2,AA1=2,得BH=4 6 .在直角△BHC1中,BC1=25,BH=46,得sin∠BC1H=BHBC1=3015,所以BC1与平面B1C1EF所成角的正弦值是30 15.17.G5、G11如图1-4,在四棱锥P-ABCD中,底面ABCD是矩形,AD ⊥PD,BC=1,PC=23,PD=CD=2.(1)求异面直线PA与BC所成角的正切值;(2)证明平面PDC⊥平面ABCD;(3)求直线PB与平面ABCD所成角的正弦值.图1-417.解:(1)如图所示,在四棱锥P-ABCD中,因为底面ABCD是矩形,所以AD=BC且AD∥BC,又因为AD⊥PD,故∠PAD为异面直线PA与BC所成的角.在Rt△PDA中,tan∠PAD=PD AD=2.所以,异面直线PA 与BC 所成角的正切值为2.(2)证明:由于底面ABCD 是矩形,故AD ⊥CD ,又由于AD ⊥PD ,CD ∩PD =D ,因此AD ⊥平面PDC ,而AD ⊂平面ABCD ,所以平面PDC ⊥平面ABCD .(3)在平面PDC 内,过点P 作PE ⊥CD 交直线CD 于点E ,连接EB . 由于平面PDC ⊥平面ABCD ,而直线CD 是平面PDC 与平面ABCD 的交线,故PE ⊥平面ABCD .由此得∠PBE 为直线PB 与平面ABCD 所成的角.在△PDC 中,由于PD =CD =2,PC =23,可得∠PCD =30°. 在Rt △PEC 中,PE =PC sin30°= 3.由AD ∥BC ,AD ⊥平面PDC ,得BC ⊥平面PDC ,因此BC ⊥PC . 在Rt △PCB 中,PB =PC 2+BC 2=13.在Rt △PEB 中,sin ∠PBE =PE PB =39.所以直线PB 与平面ABCD 所成角的正弦值为3913.18.G5、G7 直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2.(1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.图1-718.解:(1)证明:如图,连结AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2,∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形, ∴BA 1⊥AB 1,又CA ∩AB 1=A . ∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1, 由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=1S △ABA 1·A 1C 1=1×2×1=2.19.G5、G7 如图1-4,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.图1-419.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.19.G4、G5如图1-6,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.图1-6(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.19.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)证法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.所以MN ∥平面BEC , 又因为△ABD 为正三角形, 所以∠BDN =30°,又CB =CD ,∠BCD =120°, 因此∠CBD =30°, 所以DN ∥BC ,又DN ⊄平面BEC ,BC ⊂平面BEC ,所以DN ∥平面BEC , 又MN ∩DN =N , 故平面DMN ∥平面BEC , 又DM ⊂平面DMN , 所以DM ∥平面BEC . 证法二:延长AD ,BC 交于点F ,连接EF . 因为CB =CD ,∠BCD =120°. 所以∠CBD =30°.因为△ABD 为正三角形.所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点, 因此DM ∥EF .所以DM ∥平面BEC .19.G5、G7 如图1-7,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD .(1)证明:BD ⊥PC ;(2)若AD =4,BC =2,直线PD 与平面PAC 所成的角为30°,求四棱锥P -ABCD 的体积.19.解:(1)证明:因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .图1-8又AC ⊥BD ,PA ,AC 是平面PAC 内的两条相交直线,所以BD ⊥平面PAC . 而PC ⊂平面PAC ,所以BD ⊥PC .(2)设AC 和BD 相交于点O ,连结PO ,由(1)知,BD ⊥平面PAC ,所以∠DPO 是直线PD 和平面PAC 所成的角.从而∠DPO =30°.由BD ⊥平面PAC ,PO ⊂平面PAC 知,BD ⊥PO . 在Rt △POD 中,由∠DPO =30°得PD =2OD .因为四边形ABCD 为等腰梯形,AC ⊥BD ,所以△AOD ,△BOC 均为等腰直角三角形.从而梯形ABCD 的高为12AD +12BC =12×(4+2)=3,于是梯形ABCD的面积S =12×(4+2)×3=9.在等腰直角三角形AOD 中,OD =22AD =22,所以PD =2OD =42,PA =PD 2-AD 2=4.故四棱锥P -ABCD 的体积为V=13×S×PA=13×9×4=12.19.G5、G7某个实心零部件的形状是如图1-7所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2.图1-7(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?19.解:(1)因为四棱柱ABCD-A2B2C2D2的侧面是全等的矩形,所以AA2⊥AB,AA2⊥AD,又因为AB∩AD=A,所以AA2⊥平面ABCD.连接BD,因为BD⊂平面ABCD,所以AA2⊥BD.因为底面ABCD是正方形,所以AC⊥BD.根据棱台的定义可知,BD与B1D1共面.又已知平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,所以B1D1∥BD.于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1,又因为AA2∩AC=A,所以B1D1⊥平面ACC2A2.(2)因为四棱柱ABCD-A2B2C2D2的底面是正方形,侧面是全等的矩形,所以S1=S四棱柱上底面+S四棱柱侧面=(A2B2)2+4AB·AA2=102+4×10×30=1 300(cm2).又因为四棱台A1B1C1D1-ABCD的上、下底面均是正方形,侧面是全等的等腰梯形.所以S2=S四棱台下底面+S四棱台侧面=(A1B1)2+4×12(AB+A1B1)h等腰梯形的高=202+4×12(10+20)132-⎣⎢⎡⎦⎥⎤12-2=1 120(cm2).于是该实心零部件的表面积为S=S1+S2=1 300+1 120=2 420(cm2),故所需加工处理费为0.2S=0.2×2 420=484(元).18.G5、G12如图1-5所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,AD=2,FC=1,求三棱锥E-BCF的体积;(3)证明:EF⊥平面PAB.图1-518.解:(1)由于AB⊥平面PAD,PH⊂平面PAD,故AB⊥PH.又因为PH为△PAD中AD边上的高,故AD⊥PH.∵AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,∴PH⊥平面ABCD.(2)由于PH ⊥平面ABCD ,E 为PB 的中点,PH =1,故E 到平面ABCD 的距离h =12PH =12.又因为AB ∥CD ,AB ⊥AD ,所以AD ⊥CD , 故S △BCF =12·FC ·AD =12·1·2=22.因此V E -BCF =13S △BCF ·h =13·22·12=212.(3)证明:过E 作EG ∥AB 交PA 于G ,连接DG . 由于E 为PB 的中点,所以G 为PA 的中点. 因为DA =DP ,故△DPA 为等腰三角形, 所以DG ⊥PA .∵AB ⊥平面PAD ,DG ⊂平面PAD , ∴AB ⊥DG .又∵AB ∩PA =A ,AB ⊂平面PAB ,PA ⊂平面PAB , ∴DG ⊥平面PAB .又∵GE 綊12AB ,DF 綊12AB ,∴GE 綊DF .所以四边形DFEG 为平行四边形,故DG ∥EF . 于是EF ⊥平面PAB .19.G5、G11 如图1-3,长方体ABCD -A 1B 1C 1D 1中,底面A 1B 1C 1D 1是正方形,O 是BD 的中点,E 是棱AA 1上任意一点.(1)证明:BD⊥EC1;(2)如果AB=2,AE=2,OE⊥EC1,求AA1的长.图1-319.解:(1)证明:连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊆平面ABCD,所以AA1⊥BD.又由AA1∩AC=A,所以BD⊥平面AA1C1C.再由EC1⊆平面AA1C1C知,BD⊥EC.1(2)设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=2 2.故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2. 因为OE⊥EC1,所以OE2+EC21=OC21,即4+(h -2)2+(22)2=h 2+(2)2,解得h =3 2. 所以AA 1的长为3 2.16.G4、G5、G7 如图1-9(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图1-9(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.图1-916.解:(1)证明:因为D ,E 分别为AC ,AB 的中点, 所以DE ∥BC .又因为DE ⊄平面A 1CB , 所以DE ∥平面A 1CB .(2)证明:由已知得AC ⊥BC 且DE ∥BC , 所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC . 而A 1F ⊂平面A 1DC , 所以DE ⊥A 1F . 又因为A 1F ⊥CD , 所以A 1F ⊥平面BCDE , 所以A 1F ⊥BE .(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如下图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP,由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.16.G4、G5如图1-4,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E 分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.图1-416.证明:(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.19.G5、G7、G11如图1-1,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.图1-119.解:方法一:(1)证明:因为底面ABCD为菱形,所以BD⊥AC,又PA ⊥底面ABCD,所以PC⊥BD.设AC ∩BD =F ,连结EF .因为AC =22,PA =2,PE =2EC ,故PC =23,EC =23,FC =2,从而PC FC =6,ACEC= 6. 因为PC FC =ACEC ,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠PAC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面PAB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面PAB ⊥平面PBC . 又平面PAB ∩平面PBC =PB , 故AG ⊥平面PBC ,AG ⊥BC .BC 与平面PAB 内两条相交直线PA ,AG 都垂直,故BC ⊥平面PAB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =PA 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.方法二:(1)以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝ ⎛⎭⎪⎫423,0,23,B (2,-b,0).于是PC →=(22,0,-2),BE →=⎝ ⎛⎭⎪⎫23,b ,23,DE →=⎝ ⎛⎭⎪⎫23,-b ,23,从而PC→·BE →=0,PC→·DE →=0,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP→=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面PAB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC→=0,n ·BE →=0, 即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝ ⎛⎭⎪⎫1,-2b ,2.因为面PAB ⊥面PBC ,故m ·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP→=(-2,-2,2),cos〈n,DP→〉=n·DP→|n||DP→|=12,〈n,DP→〉=60°.因为PD与平面PBC所成的角和〈n,DP→〉互余,故PD与平面PBC所成的角为30°.G6 三垂线定理20.G5、G6、G10、G11已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(1)求异面直线CC1和AB的距离;(2)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.图1-320.解:(1)因AC=BC,D为AB的中点,故CD⊥AB.又直三棱柱中,CC1⊥面ABC,故CC1⊥CD,所以异面直线CC1和AB的距离为CD=BC2-BD2= 5.(2)解法一:由CD⊥AB,CD⊥BB1,故CD⊥面A1ABB1,从而CD⊥DA1,CD⊥DB1,故∠A1DB1为所求的二面角A1-CD-B1的平面角.因A1D是A1C在面A1ABB1上的射影,又已知AB1⊥A1C,由三垂线定理的逆定理得AB1⊥A1D,从而∠A1AB1,∠A1DA都与∠B1AB互余,因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A,因此AA1AD=A1B1AA1,得AA21=AD·A1B1=8.从而A1D=AA21+AD2=23,B1D=A1D=23,所以在△A1DB1中,由余弦定理得cos ∠A 1DB 1=A 1D 2+DB 21-A 1B 212·A 1D ·DB 1=13.解法二:如下图,过D 作DD 1∥AA 1交A 1B 1于D 1,在直三棱柱中,由(1)知DB ,DC ,DD 1两两垂直,以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ). 由AB 1→⊥A 1C →得AB 1→·A 1C →=0,即8-h 2=0,因此h =2 2.图1-4故DA 1→=(-2,0,22),DB 1→=(2,0,22),DC →=(0,5,0). 设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即 ⎩⎪⎨⎪⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1).设平面B 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥DB 1→,即 ⎩⎪⎨⎪⎧5y 2=0,2x 2+22z 2=0,取z 2=-1,得n =(2,0,-1),所以cos 〈m ,n 〉=m·n |m |·|n |=2-12+1·2+1=13.所以二面角A 1-CD -B 1的平面角的余弦值为13.G7 棱柱与棱锥13.G7 如图1-3所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.图1-313.16 本题考查棱锥的体积公式,考查空间想象力与转化能力,容易题. VA -DED 1=VE -DD 1A =1×1×1×1×1=1.7.G7 如图1-2,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.图1-27.6 本题考查四棱锥体积的求解以及对长方体性质的运用. 解题突破口为寻找四棱锥的高.连AC 交BD 于点O ,因四边形ABCD 为正方形,故AO 为四棱锥A -BB 1D 1D 的高,从而V =13×2×32×322=6.3. G2、G7 已知某三棱锥的三视图(单位:cm)如图1-1所示,则该三棱锥的体积是( )A .1 cm 3B .2 cm 3C .3 cm 3D .6 cm 3图1-13.A 本题考查三棱锥的三视图与体积计算公式,考查学生对数据的运算能力和空间想象能力.由三视图可知,该几何体为一个正三棱锥,则V =13Sh =13×12×1×2×3=1.18.G5、G7 直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2.(1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.图1-718.解:(1)证明:如图,连结AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2,∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形, ∴BA 1⊥AB 1,又CA ∩AB 1=A . ∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1, 由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23.19.G5、G7 如图1-7,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD .(1)证明:BD ⊥PC ;(2)若AD =4,BC =2,直线PD 与平面PAC 所成的角为30°,求四棱锥P -ABCD 的体积.19.解:(1)证明:因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .图1-8又AC ⊥BD ,PA ,AC 是平面PAC 内的两条相交直线,所以BD ⊥平面PAC . 而PC ⊂平面PAC ,所以BD ⊥PC .(2)设AC 和BD 相交于点O ,连结PO ,由(1)知,BD ⊥平面PAC ,所以∠DPO 是直线PD 和平面PAC 所成的角.从而∠DPO =30°.由BD ⊥平面PAC ,PO ⊂平面PAC 知,BD ⊥PO . 在Rt △POD 中,由∠DPO =30°得PD =2OD .因为四边形ABCD 为等腰梯形,AC ⊥BD ,所以△AOD ,△BOC 均为等腰直角三角形.从而梯形ABCD 的高为12AD +12BC =12×(4+2)=3,于是梯形ABCD的面积S=12×(4+2)×3=9.在等腰直角三角形AOD中,OD=22AD=22,所以PD=2OD=42,PA=PD2-AD2=4.故四棱锥P-ABCD的体积为V=13×S×PA=13×9×4=12.19.G5、G7某个实心零部件的形状是如图1-7所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2.图1-7(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?19.解:(1)因为四棱柱ABCD-A2B2C2D2的侧面是全等的矩形,所以AA2⊥AB,AA2⊥AD,又因为AB∩AD=A,所以AA2⊥平面ABCD.连接BD,因为BD⊂平面ABCD,所以AA2⊥BD.因为底面ABCD是正方形,所以AC⊥BD.根据棱台的定义可知,BD与B1D1共面.又已知平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,所以B1D1∥BD.于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1,又因为AA2∩AC=A,所以B1D1⊥平面ACC2A2.(2)因为四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形.所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h 等腰梯形的高=202+4×12(10+20)132-⎣⎢⎡⎦⎥⎤12-2 =1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元).19.G7、G12 如图1-3所示,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 为棱DD 1上的一点.(1)求三棱锥A -MCC 1的体积;(2)当A 1M +MC 取得最小值时,求证:B 1M ⊥平面MAC .图1-319.解:(1)由长方体ABCD -A 1B 1C 1D 1知,AD ⊥平面CDD 1C 1,∴点A 到平面CDD 1C 1的距离等于AD =1, 又S △MCC 1=12CC 1×CD =12×2×1=1,∴VA -MCC 1=13AD ·S △MCC 1=13.(2)将侧面CDD 1C 1绕DD 1逆时针转90°展开,与侧面ADD 1A 1共面(如图),当A1,M,C共线时,A1M+MC取得最小值.由AD=CD=1,AA1=2,得M为DD1中点.连接C1M,在△C1MC中,MC1=2,MC=2,CC1=2.∴CC21=MC21+MC2,得∠CMC1=90°,即CM⊥MC1.又由长方体ABCD-A1B1C1D1知,B1C1⊥平面CDD1C1,∴B1C1⊥CM.又B1C1∩C1M=C1,∴CM⊥平面B1C1M,得CM⊥B1M;同理可证,B1M⊥AM,又AM∩MC=M,∴B1M⊥平面MAC.16.G4、G5、G7如图1-9(1),在Rt△ABC中,∠C=90°,D,E分别为DE的AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1位置,使A1F⊥CD,如图1-9(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.图1-916.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ. 理由如下:如下图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP,由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.7.G2、G7 某三棱锥的三视图如图1-4所示,该三棱锥的表面积是( )图1-4A .28+6 5B .30+6 5C .56+12 5D .60+12 57.B 本题考查三棱锥的三视图与表面积公式.由三视图可知,几何体为一个侧面和底面垂直的三棱锥,如图所示,可知S 底面=12×5×4=10, S 后=12×5×4=10,S 左=12×6×25=65,S 右=12×4×5=10,所以S 表=10×3+65=30+6 5.12.G2、G7 某几何体的三视图如图1-2所示,则该几何体的体积等于________.图1-212.56 如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其体积为V=Sh=12()2+5×4×4=56.19.G5、G7、G11如图1-1,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.图1-119.解:方法一:(1)证明:因为底面ABCD为菱形,所以BD⊥AC,又PA ⊥底面ABCD,所以PC⊥BD.设AC ∩BD =F ,连结EF .因为AC =22,PA =2,PE =2EC ,故PC =23,EC =23,FC =2,从而PC FC =6,ACEC= 6. 因为PC FC =ACEC ,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠PAC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面PAB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面PAB ⊥平面PBC . 又平面PAB ∩平面PBC =PB , 故AG ⊥平面PBC ,AG ⊥BC .BC 与平面PAB 内两条相交直线PA ,AG 都垂直,故BC ⊥平面PAB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =PA 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.方法二:(1)以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空。
2018年全国卷文数(新课标1)立体几何5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】D【解析】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,可得:,解得,则该圆柱的表面积为:.故选:D.利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是基本知识的考查.9.某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. B. C. 3 D. 2【答案】B【解析】解:由题意可知几何体是圆柱,底面周长16,高为2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:.故选:B.判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.10.在长方体中,,与平面所成的角为,则该长方体的体积为A. 8B.C.D.【答案】C【解析】解:长方体中,,与平面所成的角为,即,可得.可得.所以该长方体的体积为:.故选:C.画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.18.如图,在平行四边形ABCM中,,,以AC为折痕将折起,使点M到达点D的位置,且.证明:平面平面ABC;为线段AD上一点,P为线段BC上一点,且,求三棱锥的体积.【答案】解:证明:在平行四边形ABCM中,,,又且,面ADC,面ABC,平面平面ABC;,,,,由得,又,面ABC,三棱锥的体积.【解析】可得,且,即可得面ADC,平面平面ABC;首先证明面ABC,再根据,可得三棱锥的高,求出三角形ABP的面积即可求得三棱锥的体积.本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.。
3.(2014浙江文) 设m 、A.若n m ⊥,α//n ,则m C.若β⊥m ,β⊥n ,n1A.12π π12(2012广东文)某几何体的三视图如图 72π ()B ()A 13.(2013广东文)某三棱锥的三视图如图所示,则该三棱锥的体积是(1侧视图正视图21.23D .1 一几何体的三视图如右所示,则该几何体的体积为(A .168π+B .88π+ 【答案】A18、(2016年天津)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为(ABCD平面ABB平面A)32(B(A)20π(C)28π(D)32π22、(2016年全国III卷),粗实现画出的是某多面体的三视图,则该多面体的表面积为( B(A)18365+已知某几何体的三视图如图所示,则该几何体的体积为26. (2017·全国Ⅲ文)已知圆柱的高为A.60 B.30 C.20 D.1029.(2017·全国Ⅰ文)已知三棱锥SABC的所有顶点都在球面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球1.【答案】36π【解析】如图,连接OA,OB.由SA=AC31.(2012新标文)如图,三棱柱ABC A中点。
PABCD中,AB∥CD,且∠由(1)知,AB⊥平面设AB=x,则由已知可得∥平面(I)求证:AP BEF,,22AC OE AC MD OE ∴, ,从而四边形MDEO 为平行四边形,则DE MO .A MC MO ⊂A MC ,所以直线平面1A MC ,使得直线DE 平面1A MC .CD ,AB AD ⊥,CD 的中点,求证:37.(2012江苏)如图,在直三棱柱BE=2x =3×2AC BE=66x =. AE=EC=ED=6.的面积均为5. 3+25. 43.(2017·全国Ⅱ文)如图,=2AD(1)证明:直线BC ∥平面PAD ;(2)若△PCD 27,求四棱锥2.(1)证明 在平面ABCD 内,因为∠BAD =∠又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面=2AD =2x =3x =14x 27,所以2×2x ×14x 27,解得2 3.所以四棱锥PABCD 的体积V =13×+×23=4 3.11AA A =1A F A ='=HD H =OH O'⊥OD平面的面积196963.2=⨯⨯=S平面PAB(1)求证:PA⊥BD; (2) (3)当PA∥平面BDE时,求三棱锥(1)证明因为PA⊥AB,PA⊥(2)证明因为AB=BC,D是求证:(1)EF∥平面ABC;证明(1)在平面ABD内,因为所以EF∥平面ABC.,,∴OA=B AD==,∴OH=的距离为,∴三棱柱的高。
立体几何热点一 平行、垂直关系的证明与体积的计算以空间几何体(主要是柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制,主要考查公理4及线、面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.【例1】如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积.(1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BE .又BD ∩BE =B ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,BG ⊂平面ABCD ,得BE ⊥BG ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E -ACD 的体积V 三棱锥E -ACD =13×12·AC ·GD ·BE =624x 3=63,故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E -ACD 的侧面积为3+2 5.【类题通法】第一步:由线面垂直的性质,得AC⊥BE.第二步:根据线面、面面垂直的判定定理,得平面AEC⊥平面BED.第三步:由体积公式计算底面菱形的边长.第四步:计算各个侧面三角形的面积,得出结论.第五步:查看关键点,检验反思,规范步骤.【对点训练】在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.(1)证明因为O,M分别为AB,VA的中点,所以OM∥VB,又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)解在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1,所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥C-VAB的体积等于13OC·S△VAB=33.又因为三棱锥V-ABC与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为3 3.热点二平面图形折叠成空间几何体先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.【例2】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD 上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′-ABCFE的体积.(1)证明由已知得AC⊥BD,AD=CD,又由AE=CF得AEAD=CFCD,故AC∥EF,由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′.(2)解由EF∥AC得OHDO=AEAD=14.由AB=5,AC=6得DO=BO=AB2-AO2=4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(22)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′-ABCFE的体积V=13×694×22=2322.【类题通法】(1)①利用AC与EF平行,转化为证明EF与HD′垂直;②求五棱锥的体积需先求棱锥的高及底面的面积,结合图形特征可以发现OD′是棱锥的高,而底面的面积可以利用菱形ABCD与△DEF面积的差求解,这样就将问题转化为证明OD′与底面垂直以及求△DEF的面积问题了.(2)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.【对点训练】如图1所示,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2所示.(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(2)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图所示,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.热点三线、面位置关系中的开放存在性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型.【例3】如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.(1)证明如图所示,连接AC,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点.所以对角线AC经过点F,又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面P AD.(2)解存在满足要求的点G.证明如下:在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC,因为底面ABCD是边长为a的正方形,所以CD⊥AD.又侧面PAD⊥底面ABCD,CD⊂平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG,EG.因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD⊂平面PDC,所以平面EFG⊥平面PDC.【类题通法】(1)在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.(2)第(2)问是探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.【对点训练】如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC?若存在,求SE∶EC;若不存在,试说明理由.(1)证明连接BD,设AC交BD于点O,连接SO,由题意得四棱锥S-ABCD是正四棱锥,所以SO⊥AC.在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD,因为SD⊂平面SBD,所以AC⊥SD.(2)解在棱SC上存在一点E,使得BE∥平面P AC.连接OP.设正方形ABCD的边长为a,则SC=SD=2a.由SD⊥平面P AC得SD⊥PC,易求得PD=2a 4.故可在SP上取一点N,使得PN=PD.过点N作PC的平行线与SC交于点E,连接BE,BN.在△BDN中,易得BN∥PO,又因为NE∥PC,NE⊂平面BNE,BN⊂平面BNE,BN∩NE=N,PO⊂平面PAC,PC⊂平面PAC,PO∩PC=P,所以平面BEN∥平面P AC,所以BE∥平面P AC. 因为SN∶NP=2∶1,所以SE∶EC=2∶1.。
2012~2018立体几何文科真题目录2018高考真题 (1)一.选择题 (1)二.填空题 (7)三.解答题 (11)2017高考真题 (22)一.选择题 (22)二.填空题 (29)三.解答题 (33)2016高考真题 (48)一.选择题 (48)二.填空题 (53)三.解答题 (55)2015高考真题 (70)一.选择题 (70)二.填空题 (78)三.解答题 (81)2014高考真题 (104)一.选择题 (104)二.填空题 (115)三.解答题 (120)2013高考真题 (144)一.选择题 (144)二.填空题 (154)三.解答题 (162)2012高考真题 (185)一.选择题 (185)二.填空题 (195)三.解答题 (201)2018高考真题一.选择题(共9小题)1.(2018•新课标Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12√2πB.12πC.8√2πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=√2,则该圆柱的表面积为:π⋅(√2)2×2+2√2π×2√2=12π.故选:B.2.(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2√17B.2√5C.3D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:√22+42=2√5.故选:B.3.(2018•新课标Ⅰ)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6√2C.8√2D.8√3【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1=ABtan30°=2√3.可得BB1=√(2√3)2−22=2√2.所以该长方体的体积为:2×2×2√2=8√2.故选:C.4.(2018•新课标Ⅰ)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.√22B.√32C.√52D.√72【解答】解以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1棱长为2,则A (2,0,0),E (0,2,1),D (0,0,0),C (0,2,0),AE →=(﹣2,2,1),CD →=(0,﹣2,0),设异面直线AE 与CD 所成角为θ,则cosθ=|AE →⋅CD →||AE →|⋅|CD →|=√9⋅2=23, sinθ=√1−(23)2=√53, ∴tanθ=√52. ∴异面直线AE 与CD 所成角的正切值为√52. 故选:C .5.(2018•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A.2B.4C.6D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=12(1+2)⋅2⋅2=6.故选:C.6.(2018•浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1=SNNE =SNOM,tanθ3=SOOM,SN≥SO,∴θ1≥θ3,又sinθ3=SOSM ,sinθ2=SOSE,SE≥SM,∴θ3≥θ2.故选:D.7.(2018•新课标Ⅰ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.8.(2018•新课标Ⅰ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9√3,则三棱锥D﹣ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√3【解答】解:△ABC为等边三角形且面积为9√3,可得√34×AB2=9√3,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C=23×√32×6=2√3,OO′=√42−(2√3)2=2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:13×√34×63=18√3.故选:B.9.(2018•北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=√5,CD=√5,PC=3,PD=2√2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.二.填空题(共5小题)10.(2018•新课标Ⅰ)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为8π.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:12SA 2=8,解得SA=4,SA 与圆锥底面所成角为30°.可得圆锥的底面半径为:2√3,圆锥的高为:2, 则该圆锥的体积为:V=13×π×(2√3)2×2=8π. 故答案为:8π.11.(2018•江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 43 .【解答】解:正方体的棱长为2,中间四边形的边长为:√2,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×13×√2×√2×1=43. 故答案为:43.12.(2018•天津)如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,则四棱锥A 1﹣BB 1D 1D 的体积为 13.【解答】解:由题意可知四棱锥A 1﹣BB 1D 1D 的底面是矩形,边长:1和√2,四棱锥的高:12A 1C 1=√22.则四棱锥A 1﹣BB 1D 1D 的体积为:13×1×√2×√22=13.故答案为:13.13.(2018•全国)已知三棱锥O ﹣ABC 的体积为1,A 1、B 1、C 1分别为OA 、OB 、OC 的中点,则三棱锥O ﹣A 1B 1C 1的体积为 18.【解答】解:如图,∵A 1、B 1、C 1分别为OA 、OB 、OC 的中点,∴△A 1B 1C 1∽△ABC ,则S △A 1B 1C 1=14S △ABC ,过O 作OG ⊥平面ABC ,交平面A 1B 1C 1于G 1,则OG 1=12OG .∴V 三棱锥O−A 1B 1C 1=13S △A 1B 1C 1⋅OG 1=18×13S △ABC ⋅OG=18V O−ABC =18. 故答案为:18.14.(2018•全国)长方体ABCD ﹣A 1B 1C 1D 1,AB=AD=4,AA 1=8,E 、F 、G 为AB 、A 1B 1、DD 1的中点,H 为A 1D 1上一点,则A 1H=1,求异面直线FH 与EG 所成角的余弦值4√515.【解答】解:∵长方体ABCD ﹣A 1B 1C 1D 1,AB=AD=4,AA 1=8, E 、F 、G 为AB 、A 1B 1、DD 1的中点, H 为A 1D 1上一点,则A 1H=1,∴以D 为原点,DA 为x 国,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, F (4,2,8),H (3,0,8),E (4,2,0), G (0,0,4),FH →=(﹣1,﹣2,0),EG →=(﹣4,﹣2,4), 设异面直线FH 与EG 所成角为θ, 则cosθ=|FH →⋅EG →||FH →|⋅|EG →|=√5⋅√36=4√515. 故答案为:4√515.三.解答题(共9小题)15.(2018•新课标Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3√2,∴BP=DQ=23DA=2√2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V=13S△ABP×13DC=13×23S△ABC×13DC=13×23×12×3×3×13×3=1.16.(2018•新课标Ⅰ)如图,在三棱锥P﹣ABC中,AB=BC=2√2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解答】(1)证明:∵AB=BC=2√2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=√PA2−AO2=2√3,在△COM中,OM=√OC2+CM2−2OC⋅CMcos450=2√5 3.S△POM=12×PO×OM=12×2√3×2√53=2√153,S△COM=12×23×S△ABC=43.设点C到平面POM的距离为d.由V P﹣OMC =V C﹣POM⇒13×S△POM⋅d=13×S △OCM ×PO ,解得d=4√55,∴点C 到平面POM 的距离为4√55.17.(2018•浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅰ)求直线AC 1与平面ABB 1所成的角的正弦值.【解答】(I )证明:∵A 1A ⊥平面ABC ,B 1B ⊥平面ABC , ∴AA 1∥BB 1,∵AA 1=4,BB 1=2,AB=2,∴A 1B 1=√(AB)2+(AA 1−BB 1)2=2√2,又AB 1=√AB 2+BB 12=2√2,∴AA 12=AB 12+A 1B 12, ∴AB 1⊥A 1B 1,同理可得:AB 1⊥B 1C 1, 又A 1B 1∩B 1C 1=B 1, ∴AB 1⊥平面A 1B 1C 1.(II )解:取AC 中点O ,过O 作平面ABC 的垂线OD ,交A 1C 1于D , ∵AB=BC ,∴OB ⊥OC ,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=√3,以O 为原点,以OB ,OC ,OD 所在直线为坐标轴建立空间直角坐标系如图所示:则A (0,﹣√3,0),B (1,0,0),B 1(1,0,2),C 1(0,√3,1), ∴AB →=(1,√3,0),BB 1→=(0,0,2),AC 1→=(0,2√3,1), 设平面ABB 1的法向量为n →=(x ,y ,z ),则{n →⋅AB →=0n →⋅BB 1→=0, ∴{x +√3y =02z =0,令y=1可得n →=(﹣√3,1,0),∴cos <n →,AC 1→>=n →⋅AC 1→|n →||AC 1→|=√32×√13=√3913. 设直线AC 1与平面ABB 1所成的角为θ,则sinθ=|cos <n →,AC 1→>|=√3913. ∴直线AC 1与平面ABB 1所成的角的正弦值为√3913.18.(2018•江苏)在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC .【解答】证明:(1)平行六面体ABCD ﹣A 1B 1C 1D 1中,AB ∥A 1B 1,AB ∥A 1B 1,AB ⊄平面A 1B 1C ,A 1B 1⊂∥平面A 1B 1C ⇒AB ∥平面A 1B 1C ;(2)在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB ,⇒四边形ABB 1A 1是菱形,⊥AB 1⊥A 1B .在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1⇒AB 1⊥BC . ∴{AB 1⊥A 1B ,AB 1⊥BC A 1B ∩BC =B A 1B ⊂面A 1BC ,BC ⊂面A 1BC⇒AB 1⊥面A 1BC ,且AB 1⊂平面ABB 1A 1⇒平面ABB 1A 1⊥平面A 1BC .19.(2018•江苏)如图,在正三棱柱ABC ﹣A 1B 1C 1中,AB=AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【解答】解:如图,在正三棱柱ABC ﹣A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB , 故以{OB →,OC →,OO 1→}为基底, 建立空间直角坐标系O ﹣xyz ,∵AB=AA 1=2,A (0,﹣1,0),B (√3,0,0), C (0,1,0),A 1(0,﹣1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP →=(−√32,−12,2),AC 1→=(0,2,2).|cos <BP →,AC 1→>|=|BP →⋅AC 1→||BP →|⋅|AC 1→|=√5×2√2=3√1020. ∴异面直线BP 与AC 1所成角的余弦值为:3√1020;(2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ →=(√32,32,0),AC 1→=(0,2,2),CC 1→=(0,0,2),设平面AQC 1的一个法向量为n →=(x ,y ,z ),由{AQ →⋅n →=√32x +32y =0AC 1→⋅n →=2y +2z =0,可取n →=(√3,﹣1,1),设直线CC 1与平面AQC 1所成角的正弦值为θ,sinθ=|cos <CC 1→,n →>|=|CC 1→⋅n →||CC 1→|⋅|n →|=√5×2=√55,∴直线CC 1与平面AQC 1所成角的正弦值为√55.20.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD ̂所在平面垂直,M 是CD̂上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD ̂所在平面垂直,所以AD ⊥半圆弦CD̂所在平面,CM ⊂半圆弦CD ̂所在平面, ∴CM ⊥AD ,M 是CD̂上异于C ,D 的点.∴CM ⊥DM ,DM ∩AD=D ,∴CM ⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ; (2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得MC ∥OP ,MC ⊄平面BDP ,OP ⊂平面BDP , 所以MC ∥平面PBD .21.(2018•上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA 、OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.【解答】解:(1)∵圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4,∴圆锥的体积V=13×π×r 2×ℎ=13×π×22×√42−22=8√3π3.(2)∵PO=4,OA ,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,∴以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴, 建立空间直角坐标系,P (0,0,4),A (2,0,0),B (0,2,0), M (1,1,0),O (0,0,0), PM →=(1,1,﹣4),OB →=(0,2,0), 设异面直线PM 与OB 所成的角为θ, 则cosθ=|PM →⋅OB →||PM →|⋅|OB →|=√18⋅2=√26. ∴θ=arccos√26. ∴异面直线PM 与OB 所成的角的为arccos√26.22.(2018•北京)如图,在四棱锥P ﹣ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA=PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅰ)求证:平面PAB ⊥平面PCD ;(Ⅰ)求证:EF ∥平面PCD .【解答】证明:(Ⅰ)PA=PD ,E 为AD 的中点,可得PE ⊥AD ,底面ABCD 为矩形,可得BC ∥AD ,则PE ⊥BC ;(Ⅰ)由于平面PAB 和平面PCD 有一个公共点P ,且AB ∥CD ,在平面PAB 内过P 作直线PG ∥AB ,可得PG ∥CD ,即有平面PAB ∩平面PCD=PG ,由平面PAD ⊥平面ABCD ,又AB ⊥AD ,可得AB ⊥平面PAD ,即有AB ⊥PA ,PA ⊥PG ;同理可得CD ⊥PD ,即有PD ⊥PG ,可得∠APD 为平面PAB 和平面PCD 的平面角,由PA ⊥PD ,可得平面PAB ⊥平面PCD ;(Ⅰ)取PC 的中点H ,连接DH ,FH ,在三角形PCD 中,FH 为中位线,可得FH ∥BC ,FH=12BC , 由DE ∥BC ,DE=12BC ,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.23.(2018•天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2√3,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅰ)求异面直线BC与MD所成角的余弦值;(Ⅰ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅰ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=√AD2+AM2=√13,∵AD⊥平面ABC,故AD⊥AC,在Rt △DAN 中,AN=1,故DN=√AD 2+AN 2=√13,在等腰三角形DMN 中,MN=1,可得cos ∠DMN=12MN DM =√1326. ∴异面直线BC 与MD 所成角的余弦值为√1326; (Ⅰ)解:连接CM ,∵△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM=√3,又∵平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,则∠CDM 为直线CD 与平面ABD 所成角.在Rt △CAD 中,CD=√AC 2+AD 2=4,在Rt △CMD 中,sin ∠CDM=CM CD =√34. ∴直线CD 与平面ABD 所成角的正弦值为√34.2017高考真题一.选择题(共8小题)1.(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.2.(2017•新课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A .90πB .63πC .42πD .36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣12•π•32×6=63π, 故选:B .3.(2017•新课标Ⅰ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r=√12−(12)2=√32,∴该圆柱的体积:V=Sh=π×(√32)2×1=3π4. 故选:B .4.(2017•新课标Ⅰ)在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC【解答】解:法一:连B 1C ,由题意得BC 1⊥B 1C ,∵A 1B 1⊥平面B 1BCC 1,且BC 1⊂平面B 1BCC 1,∴A 1B 1⊥BC 1,∵A 1B 1∩B 1C=B 1,∴BC 1⊥平面A 1ECB 1,∵A 1E ⊂平面A 1ECB 1,∴A 1E ⊥BC 1.故选:C .法二:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为2,则A 1(2,0,2),E (0,1,0),B (2,2,0),D (0,0,0),C 1(0,2,2),A (2,0,0),C (0,2,0),A 1E →=(﹣2,1,﹣2),DC 1→=(0,2,2),BD →=(﹣2,﹣2,0),BC 1→=(﹣2,0,2),AC →=(﹣2,2,0),∵A 1E →•DC 1→=﹣2,A 1E →⋅BD →=2,A 1E →⋅BC 1→=0,A 1E →⋅AC →=6, ∴A 1E ⊥BC 1.故选:C .5.(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1D.3π2+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为12×13×π×12×3+13×12×√2×√2×3=π2+1,故选:A.6.(2017•浙江)如图,已知正四面体D ﹣ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为AB 、BC 、CA 上的点,AP=PB ,BQ QC =CR RA=2,分别记二面角D ﹣PR ﹣Q ,D ﹣PQ ﹣R ,D ﹣QR ﹣P 的平面角为α、β、γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC 的中心为O . 不妨设OP=3.则O (0,0,0),P (0,﹣3,0),C (0,6,0),D (0,0,6√2),B (3√3,﹣3,0).Q (√3,3,0),R (−2√3,0,0),PR →=(−2√3,3,0),PD →=(0,3,6√2),PQ →=(√3,6,0),QR →=(−3√3,−3,0), QD →=(−√3,−3,6√2).设平面PDR 的法向量为n →=(x ,y ,z ),则{n →⋅PR →=0n →⋅PD →=0,可得{−2√3x +3y =03y +6√2z =0, 可得n →=(√6,2√2,−1),取平面ABC 的法向量m →=(0,0,1).则cos <m →,n →>=m →⋅n →|m →||n →|=√15,取α=arccos √15. 同理可得:β=arccos√681.γ=arccos √2√95. ∵√15>√2√95>√681. ∴α<γ<β.解法二:如图所示,连接OP ,OQ ,OR ,过点O 分别作垂线:OE ⊥PR ,OF ⊥PQ ,OG ⊥QR ,垂足分别为E ,F ,G ,连接DE ,DF ,DG .设OD=h .则tanα=OD OE .同理可得:tanβ=OD OF ,tanγ=OD OG .由已知可得:OE >OG >OF .∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B .7.(2017•北京)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60B.30C.20D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积=13×12×5×3×4=10.故选:D.8.(2017•全国)正三棱柱ABC﹣A1B1C1各棱长均为1,D为AA1的中点,则四面体A1BCD的体积是()A.√34B.√38C.√312D.√324【解答】解:如图,∵ABC﹣A1B1C1为正三棱柱,∴底面ABC为正三角形,侧面BB1C1C为正方形,V A1BCD =V ABC−A1B1C1−V A1−BB1C1C﹣V D﹣ABC=12×1×√32×1−13×1×√32−13×12×1×√32×12=√324.故选:D .二.填空题(共7小题)9.(2017•新课标Ⅰ)已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为 36π .【解答】解:三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r ,可得13×12×2r ×r ×r =9,解得r=3.球O 的表面积为:4πr 2=36π. 故答案为:36π.10.(2017•新课标Ⅰ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 14π .【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为:12√32+22+12=√142.则球O 的表面积为:4×(√142)2π=14π.故答案为:14π.11.(2017•江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是 32.【解答】解:设球的半径为R ,则球的体积为:43πR 3,圆柱的体积为:πR 2•2R=2πR 3.则V 1V 2=2πR 34πR 33=32. 故答案为:32.12.(2017•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为9π2.【解答】解:设正方体的棱长为a , ∵这个正方体的表面积为18, ∴6a 2=18,则a 2=3,即a=√3,∵一个正方体的所有顶点在一个球面上, ∴正方体的体对角线等于球的直径, 即√3a=2R ,即R=32,则球的体积V=43π•(32)3=9π2;故答案为:9π2.13.(2017•上海)已知球的体积为36π,则该球主视图的面积等于 9π .【解答】解:球的体积为36π,设球的半径为R ,可得43πR 3=36π,可得R=3,该球主视图为半径为3的圆, 可得面积为πR 2=9π. 故答案为:9π.14.(2017•上海)如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标是 (﹣4,3,2) .【解答】解:如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点, 过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系, ∵DB 1→的坐标为(4,3,2),∴A (4,0,0),C 1(0,3,2), ∴AC 1→=(−4,3,2). 故答案为:(﹣4,3,2).15.(2017•山东)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 2+π2.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V 1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V 2=14×π×12×1=π4,则该几何体的体积V=V 1+2V 1=2+π2,故答案为:2+π2.三.解答题(共11小题)16.(2017•新课标Ⅰ)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P ﹣ABCD 中,∠BAP=∠CDP=90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD=P ,∴AB ⊥平面PAD ,∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .解:(2)设PA=PD=AB=DC=a ,取AD 中点O ,连结PO , ∵PA=PD=AB=DC ,∠APD=90°,平面PAB ⊥平面PAD , ∴PO ⊥底面ABCD ,且AD=√a 2+a 2=√2a ,PO=√22a , ∵四棱锥P ﹣ABCD 的体积为83,由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =13×S 四边形ABCD ×PO=13×AB ×AD ×PO =13×a ×√2a ×√22a =13a 3=83, 解得a=2,∴PA=PD=AB=DC=2,AD=BC=2√2,PO=√2,∴PB=PC=√4+4=2√2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=12×PA×PD+12×PA×AB+12×PD×DC+12×BC×√PB2−(BC2)2=12×2×2+12×2×2+12×2×2+12×2√2×√8−2=6+2√3.17.(2017•新课标Ⅰ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2√7,求四棱锥P﹣ABCD的体积.【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面PAD,BC⊄平面PAD,∴直线BC∥平面PAD;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.设AD=2x,则AB=BC=x,CD=√2x,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=√22x ,PO=√3x ,PE=√PO 2+OE 2=√7x √2, △PCD 面积为2√7,可得:12PE ⋅CD =2√7,即:12×√7√2x ⋅√2x =2√7,解得x=2,PO=2√3.则V P ﹣ABCD =13×12(BC +AD )×AB ×PO=13×12×(2+4)×2×2√3=4√3.18.(2017•新课标Ⅰ)如图四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB=BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.【解答】证明:(1)取AC 中点O ,连结DO 、BO , ∵△ABC 是正三角形,AD=CD , ∴DO ⊥AC ,BO ⊥AC ,∵DO ∩BO=O ,∴AC ⊥平面BDO , ∵BD ⊂平面BDO ,∴AC ⊥BD .解:(2)法一:连结OE ,由(1)知AC ⊥平面OBD , ∵OE ⊂平面OBD ,∴OE ⊥AC ,设AD=CD=√2,则OC=OA=1,EC=EA , ∵AE ⊥CE ,AC=2,∴EC 2+EA 2=AC 2, ∴EC=EA=√2=CD ,∴E 是线段AC 垂直平分线上的点,∴EC=EA=CD=√2, 由余弦定理得:cos ∠CBD=BC 2+BD 2−CD 22BC⋅BD =BC 2+BE 2−CE 22BC⋅BE,即4+4−22×2×2=4+BE 2−22×2×BE,解得BE=1或BE=2, ∵BE <<BD=2,∴BE=1,∴BE=ED ,∵四面体ABCE 与四面体ACDE 的高都是点A 到平面BCD 的高h , ∵BE=ED ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1.法二:设AD=CD=√2,则AC=AB=BC=BD=2,AO=CO=DO=1, ∴BO=√4−1=√3,∴BO 2+DO 2=BD 2,∴BO ⊥DO ,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系, 则C (﹣1,0,0),D (0,0,1),B (0,√3,0),A (1,0,0),设E (a ,b ,c ),DE →=λDB →,(0≤λ≤1),则(a ,b ,c ﹣1)=λ(0,√3,﹣1),解得E (0,√3λ,1﹣λ),∴CE →=(1,√3λ,1−λ),AE →=(﹣1,√3λ,1−λ), ∵AE ⊥EC ,∴AE →⋅CE →=﹣1+3λ2+(1﹣λ)2=0,由λ∈[0,1],解得λ=12,∴DE=BE ,∵四面体ABCE 与四面体ACDE 的高都是点A 到平面BCD 的高h , ∵DE=BE ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1.19.(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊄平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.20.(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅰ的高均为32cm,容器Ⅰ的底面对角线AC的长为10√7cm,容器Ⅰ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅰ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅰ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴AN AM =NP MC ,AN 40=1230,得AN=16cm . ∴玻璃棒l 没入水中部分的长度为16cm .(2)设玻璃棒在GG 1上的点为M ,玻璃棒与水面的交点为N , 在平面E 1EGG 1中,过点N 作NP ⊥EG ,交EG 于点P , 过点E 作EQ ⊥E 1G 1,交E 1G 1于点Q ,∵EFGH ﹣E 1F 1G 1H 1为正四棱台,∴EE 1=GG 1,EG ∥E 1G 1, EG ≠E 1G 1,∴EE 1G 1G 为等腰梯形,画出平面E 1EGG 1的平面图, ∵E 1G 1=62cm ,EG=14cm ,EQ=32cm ,NP=12cm , ∴E 1Q=24cm ,由勾股定理得:E 1E=40cm ,∴sin ∠EE 1G 1=45,sin ∠EGM=sin ∠EE 1G 1=45,cos ∠EGM=﹣35,根据正弦定理得:EM sin∠EGM =EG sin∠EMG ,∴sin ∠EMG=725,cos ∠EMG=2425,∴sin ∠GEM=sin (∠EGM +∠EMG )=sin ∠EGMcos ∠EMG +cos ∠EGMsin ∠EMG=35,∴EN=NP sin∠GEM =1235=20cm .∴玻璃棒l 没入水中部分的长度为20cm .21.(2017•江苏)如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB=AD=2,AA 1=√3,∠BAD=120°. (1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B ﹣A 1D ﹣A 的正弦值.【解答】解:在平面ABCD 内,过A 作Ax ⊥AD , ∵AA 1⊥平面ABCD ,AD 、Ax ⊂平面ABCD , ∴AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系.∵AB=AD=2,AA 1=√3,∠BAD=120°,∴A (0,0,0),B (√3,−1,0),C (√3,1,0), D (0,2,0),A 1(0,0,√3),C 1(√3,1,√3).A 1B →=(√3,−1,−√3),AC 1→=(√3,1,√3),DB→=(√3,−3,0),DA 1→=(0,−2,√3).(1)∵cos <A 1B →,AC 1→>=A 1B →⋅AC 1→|A 1B →||AC 1→|=√7×√7=−17. ∴异面直线A 1B 与AC 1所成角的余弦值为17;(2)设平面BA 1D 的一个法向量为n →=(x ,y ,z),由{n →⋅DB →=0n →⋅DA 1→=0,得{√3x −3y =0−2y +√3z =0,取x=√3,得n →=(√3,1,2√33); 取平面A 1AD 的一个法向量为m →=(1,0,0).∴cos <m →,n →>=m →⋅n→|m →||n →|=√31×√3+1+3=34. ∴二面角B ﹣A 1D ﹣A 的余弦值为34,则二面角B ﹣A 1D ﹣A 的正弦值为√1−(34)2=√74.22.(2017•浙江)如图,已知四棱锥P ﹣ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC=AD=2DC=2CB ,E 为PD 的中点. (Ⅰ)证明:CE ∥平面PAB ;(Ⅰ)求直线CE 与平面PBC 所成角的正弦值.【解答】证明:(Ⅰ)取AD 的中点F ,连结EF ,CF , ∵E 为PD 的中点,∴EF ∥PA ,在四边形ABCD 中,BC ∥AD ,AD=2DC=2CB ,F 为中点, ∴CF ∥AB ,∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅰ)连结BF ,过F 作FM ⊥PB 于M,连结PF , ∵PA=PD ,∴PF ⊥AD ,推导出四边形BCDF 为矩形,∴BF ⊥AD , ∴AD ⊥平面PBF ,又AD ∥BC , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC=CB=1,由PC=AD=2DC=2CB ,得AD=PC=2, ∴PB=√PC 2−BC 2=√4−1=√3,BF=PF=1,∴MF=12,又BC ⊥平面PBF ,∴BC ⊥MF ,∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF=12,D 到平面PBC 的距离应该和MF 平行且相等,为12,E 为PD 中点,E 到平面PBC 的垂足也为垂足所在线段的中点,即中位线,∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2, 由余弦定理得CE=√2,设直线CE 与平面PBC 所成角为θ,则sinθ=14CE =√28.23.(2017•天津)如图,在四棱锥P ﹣ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅰ)求证:PD ⊥平面PBC ;(Ⅰ)求直线AB 与平面PBC 所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=2+PD2=√5,故cos∠DAP=ADAP=√55.所以,异面直线AP与BC所成角的余弦值为√5 5.证明:(Ⅰ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅰ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得sin∠DFP=PDDF=√55.所以,直线AB与平面PBC所成角的正弦值为√5 5.24.(2017•北京)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD ⊂平面BDE ,可得平面BDE ⊥平面PAC ;(3)PA ∥平面BDE ,PA ⊂平面PAC , 且平面PAC ∩平面BDE=DE , 可得PA ∥DE , 又D 为AC 的中点,可得E 为PC 的中点,且DE=12PA=1,由PA ⊥平面ABC , 可得DE ⊥平面ABC ,可得S △BDC =12S △ABC =12×12×2×2=1,则三棱锥E ﹣BCD 的体积为13DE•S △BDC =13×1×1=13.25.(2017•上海)如图,直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC ﹣A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小.【解答】解:(1)∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. ∴三棱柱ABC ﹣A 1B 1C 1的体积: V=S △ABC ×AA 1=12×AB ×AC ×AA 1 =12×4×2×5=20. (2)连结AM ,∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5,M 是BC 中点,∴AA 1⊥底面ABC ,AM=12BC =12√16+4=√5,∴∠A 1MA 是直线A 1M 与平面ABC 所成角,tan ∠A 1MA=AA 1AM =√5=√5,∴直线A 1M 与平面ABC 所成角的大小为arctan √5.26.(2017•山东)由四棱柱ABCD ﹣A 1B 1C 1D 1截去三棱锥C 1﹣B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:A 1O ∥平面B 1CD 1;(Ⅰ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【解答】证明:(Ⅰ)取B1D1中点G,连结A1G、CG,∵四边形ABCD为正方形,O为AC与BD 的交点,OC,∴四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,A1G∥=∴四边形OCGA1是平行四边形,∴A1O∥CG,∵A1O⊄平面B1CD1,CG⊂平面B1CD1,∴A1O∥平面B1CD1.B1D1,(Ⅰ)四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,BD∥=∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥A1E,∵四边形ABCD为正方形,O为AC与BD 的交点,∴AO⊥BD,∵M是OD的中点,E为AD的中点,∴EM⊥BD,∵A1E∩EM=E,∴BD⊥平面A1EM,∵BD∥B1D1,∴B1D1⊥平面A1EM,∵B1D1⊂平面B1CD1,∴平面A1EM⊥平面B1CD1.2016高考真题一.选择题(共8小题)1.(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π【解答】解:由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图:可得:78×43πR 3=28π3,R=2.它的表面积是:78×4π•22+34×π⋅22=17π. 故选:A .2.(2016•新课标Ⅰ)平面α过正方体ABCD ﹣A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为( )A .√32B .√22C .√33D .13【解答】解:如图:α∥平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABA 1B 1=n , 可知:n ∥CD 1,m ∥B 1D 1,∵△CB 1D 1是正三角形.m 、n 所成角就是∠CD 1B 1=60°.。
2018年全国高考文科数学分类汇编----立体几何1.在某四棱锥的三视图中,侧面中直角三角形的个数为3个。
解决方法是通过对应的直观图,得出三角形PCD不是直角三角形,同时通过计算得出侧面中有三个直角三角形,分别为△PAB,△PBC和△PAD。
2.在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,E,F分别为AD,PB的中点。
需要证明PE⊥BC,平面PAB⊥平面PCD和EF∥平面PCD。
证明过程中,需要利用几何图形的性质,如平面PAD⊥平面ABCD,底面ABCD为矩形,可得BC∥AD等。
3.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为4/3.解决方法是通过计算正方体中间四边形的边长,然后计算出棱锥的高和棱长,最后通过公式计算出多面体的体积。
4.在平行六面体ABCD-A1B1C1D1中,需要证明AB∥平面A1B1C和平面ABB1A1⊥平面A1BC。
证明过程中,需要利用平行六面体的性质,如AB∥A1B1等。
在平行四边形ABCM中,由XXX可知∠ABC=∠ACB,又∠XXX°,所以∠ABM=∠CBM,即BM=CM,所以四边形ABB1M和四边形CC1BM是菱形,进而可得AB1⊥XXX,AC1⊥CM,所以AB1∥AC1,又因为XXX⊥AC,所以AB1⊥AC,即AB1是平面ABC的法线,同理可得AD是平面ACD的法线,所以平面ACD⊥平面ABC。
2)若BM=2,求AD的长度。
因为AB=AC=3,所以BC=3,又因为BM=2,所以MC=1,由勾股定理可得AM=√8,又因为AB⊥DA,所以AD=√AB^2+BD^2,又因为ABCD是平行四边形,所以BD=AC=3,所以AD=√18,即AD=3√2.题目:求直线AC1与平面ABB1所成角的正弦值。
解答:I)证明:因为A1A垂直于平面ABC,B1B垂直于平面ABC,所以A1A∥B1B。
由于A1A=4,B1B=2,AB=2,所以A1B1=2.又因为AB1⊥A1B1,同理可得AB1⊥B1C1,且A1B1∩B1C1=B1,所以AB1⊥平面A1B1C1.II)解:取AC的中点O,过O作平面ABC的垂线OD,交A1C1于D。
2012-2018年新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】 【2014,8】 【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12π B. 12π C. 8π D. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C 6,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2018,18】如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA 。
(1) 证明:平面ACD ⊥平面ABC ;(2) Q 为线段AD 上一点,P 为线段BC 上一点,且BP=DQ=DA ,求三棱锥Q-ABP 的体积。
D A 1B 1CA B C 1解 析一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A .由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π解析:选A . 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A .【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13解析:选A . 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=3.故选A .ABCDA 1B 1C 1D 1EF解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为32.故选A .D 1C 1B 1A 1DCBA【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) BA .14斛B .22斛C .36斛D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B .【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为2πr 2+πr×2r+πr 2+2r×2r =5πr 2+4r 2=16+20π, 解得r=2,故选B .【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )BA .三棱锥B .三棱柱C .四棱锥D .四棱柱 解:几何体是一个横放着的三棱柱. 故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 解析:选A .该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16.所以所求体积为16+8π.故选A .【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为底边为6,高为3的等腰三角形, 侧面ABD ⊥底面BCD ,AO ⊥底面BCD ,因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B . 【2012,8】8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A .6πB .43πC .46πD .63π【解析】如图所示,由已知11O A =,12OO =,在1Rt OO A ∆中,球的半径3R OA ==, 所以此球的体积34433V R ππ==,故选择B . 【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由O B D CA等腰三角形及底边上的高构成的平面图形. 故选D .【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为B【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为BA. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为CA. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥, 因为平面SAC ⊥平面SBC ,所以OA ⊥平面SBC ,设OA r=,3111123323A SBCSBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=, 所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.答案:9π2解析:如图,设球O 的半径为R ,则AH =23R ,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =.根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥.设PO x '=,QO y '=,则2x y R +=. ① 又PO B BO Q ''△∽△,知22r O B xy '==.即2234xy r R ==. ② 由①②及x y >可得3,22Rx R y ==.则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【解法】(1)90BAP CDP ∠=∠=︒, ∴,AB AP CD DP ⊥⊥又AB ∥CD ∴AB DP ⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且AP DP P = ∴AB ⊥平面PADAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形 即=2AD a取AD 中点E ,连接PE ,则22PE a =,PE AD ⊥. 又因为平面PAB ⊥平面PAD 所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a =所以四边形ABCD 为矩形所以311218233233P ABCD V AB AD PE a aa a -====即2a = 11=223+226=6+2322S ⨯⨯⨯⨯⨯侧【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥.因为AB PD ⊥,AB DE ⊥,PD DE D =,,PD DE ⊂平面PDG , 所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥. 因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影.E GCD BAP F理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅. 在PDG △中,32PG =6DG =3PD =2DE =.由勾股定理知22PE =PEF △为等腰直角三角形知2PFEF ==,故43D PEF V -=.【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC .∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ⊂平面AEC ,∴平面AEC ⊥平面BED . …6分 (Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得,AG=GC=2x ,GB=GD=2x. 在RtΔAEC 中,可得EG =2x .∴在RtΔEBG 为直角三角形,可得BE=2x . …9分∴31132E ACD V AC GD BE x -=⨯⋅⋅==, 解得x =2.由BA=BD=BC 可得.∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD所以三棱锥E-ACD 的侧面积为 …12分 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥.又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====,又120ABC ∠=,所以AG GC ==,BG GD x ==.在AEC △中,90AEC ∠=,所以12EG AC ==,所以在Rt EBG △中,BE ==,所以31122sin120232E ACD V x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中,可得AE EC ED ===所以三棱锥的侧面积1122322S =⨯⨯=+侧【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =34,由于AC ⊥AB 1,∴11122OA B C ==,∴2274AD OD OA =+=由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217,所以三棱柱ABC-A 1B 1C 1的高高为217。