销售中的盈亏问题
- 格式:ppt
- 大小:730.50 KB
- 文档页数:9
第2课时销售中的盈亏问题教学目标课题 5.3 第2课时销售中的盈亏问题授课人素养目标 1.分析销售中的数量关系,利用进价(成本)、标价、售价、利润、利润率之间的关系,列方程解决实际问题.2.用数学的眼光分析生活中的销售现象,形成理性消费的观念.教学重点根据销售问题中的数量关系列出一元一次方程,解决实际问题.教学难点厘清销售问题中的各种概念以及它们之间的关系,用一元一次方程解决相关问题.教学活动教学步骤师生活动活动一:结合生活,引入新知设计意图学习销售中的相关概念,为后面的学习作准备.【情境引入】生活中,我们经常可以在各种销售场合看见一些商品优惠信息,你知道它们的意思吗?下面的表格中列举了一些与销售有关的词语,请你将表格填完整.含义计算方法进价(成本)购进商品时的价格标价商品上标出的价格折扣率实际售价占标价的百分率售价(打折后)商品实际售出时的价格标价×折扣率利润销售商品过程中的纯收入售价-进价利润率利润占进价的百分率利润进价×100%【教学建议】结合学生日常的知识储备,梳理与销售活动有关的概念,教师可适当提问,根据学生回答进行补充或纠正.活动三:巩固提升,灵活运用设计意图学习与打折有关的销售问题.例商场出售一种电视机,进价是4000元,标价是5000元,节日期间,商场对该种电视机进行打折出售,利润率为10%.这种电视机节日期间打了几折?解:设这种电视机节日期间打了x折.根据题意,得5000×x10=4000×(1+10%).解得x=8.8.答:这种电视机节日期间打了八八折.【对应训练】商场出售一件商品,如果按标价的九折出售,那么商场盈利80元;如果按标价的八折出售,那么商场亏损70元.求这件商品的进价.解:设这件商品的标价为x元.【教学建议】提醒学生:(1)关于售价,有两种计算方式:售价=标价×折扣率,售价=进价×(1+利润率).根据售价相等可列方程.(2)利润率是在进价的基础上计算的,折扣率是在标价的基础上计算的,计算时不要混淆.活动二:运用数学,准确判断设计意图通过直观判断与准确计算的对比,感知数学的严谨性,培养理性思考的习惯.探究点销售中的盈亏(教材P135探究1)一商店以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?问题1你估计盈亏情况是怎样的?(汇总学生的答案)盈利、亏损、不盈不亏.问题2 销售的盈亏取决于什么?取决于总售价与总进价(两件衣服的进价之和)的关系.问题3这一问题情境中哪些是已知量?哪些是未知量?如何设未知数?相等关系是什么?如何列方程?讨论内容分析问题中的已知量和未知量,应选用销售中的什么数量关系列方程解决问题?讨论结果已知量选用数量关系两件衣服的利润率未知量两件衣服各自的进价选用数量关系利润=进价×利润率进价+利润=售价解决过程:解:设盈利25%的那件衣服的进价是x元.依题意得x+0.25x=60.解得x=48.设亏损25%的那件衣服的进价是y元.依题意得y-0.25y=60.解得y=80.两件衣服的总进价为48+80=128(元).因为60+60-128=-8(元),所以卖这两件衣服共亏损了8元.追问列、解方程后得出的结论与你先前的估计一致吗?通过对本题的探究,你对方程在实际问题中的应用有什么新的认识?【对应训练】教材P136练习.【教学建议】让学生先大体估计盈亏,再通过准确计算检验他们的判断,经历从定性考虑(估计)到定量考虑(计算)的过程,认识数学的应用价值.【教学建议】提醒学生:在销售问题中,常常利用“利润=售价-进价”和“利润=进价×利润率”这两个算式表示同一商品的利润,从而可得到相等关系“售价-进价=进价×利润率”,并由此列方程.根据题意,得0.9x-80=0.8x+70.解得x=1500.所以这件商品的进价为1500×0.9-80=1270(元).活动四:随堂训练,课堂总结【随堂训练】“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.已知商品的标价和折扣率,怎样求商品的售价?2.已知商品的售价和进价,怎样求利润和利润率?【知识结构】【作业布置】1.教材P140习题5.3第9,10题.2.相应课时训练.板书设计第2课时销售中的盈亏问题1.销售中的相关知识2.用一元一次方程解决销售问题教学反思学生对销售相关的问题并不陌生,不过销售中的术语较多,有的同义或相近,有的又有明显区别,学生有时会混淆,导致列出的方程有误.因此要对销售活动中的概念进行全面梳理,让学生对各个术语的含义都能理解准确,在今后的教学中,要设置一些有针对性的练习,让学生进一步巩固相关的计算公式.通过本课时教学,体会到了解学情是很有必要的,要认真分析学生的知识状况、思想状况,以更好地开展教学工作.解题大招多次价格变动问题在有的销售活动中,可能有多次价格变动,计算第二次变动的价格时,需要在第一次价格变动的基础上进行计算.如,一件衣服原价为a元,先提价20%,再降价10%,最终价格为a×(1+20%)×(1-10%)元.例1 一件衣服价格提高25%后发现销路不是很好,欲恢复原价,则应降价( B)A.40%B.20%C.25%D.15%解析:设原价为1,降价x%.根据题意得1×(1+25%)·(1-x%)=1.解得x=20.即降价20%.故选B.例2一商场将某种服装按进价提高40%后标价,又以八折优惠卖出,结果每件仍可获利150元,求这种服装每件的进价.解:设这种服装每件的进价为x元.由题意,得(1+40%)x·80%-x=150.解得x=1250.答:这种服装每件的进价为1250元..培优点购物中的优惠问题例某单位计划购进一批手写板,网上某店铺的标价为1000元/台,优惠活动如下:销售量单价不超过10台的部分每台立减140元超过10台但不超过20台的部分每台立减220元超过20台的部分每台立减300元(1)①若该单位购买了15台这种手写板,则花了12500元;②若该单位购买了x(x>20)台这种手写板,则花了(2400+700x)元(用含x的代数式表示).(2)若该单位购买的这种手写板均价为800元,求他们购买的数量.分析:(1)根据对应区间的优惠力度,分别确定实际购买价格,再列式计算购买总金额.(2)对销售量分三种情况进行讨论,并根据“实际购买总金额=均价×购买总数量”列方程验证.解:设他们购买了x台这种手写板.当购买量不超过10台时,均价为860元;当购买20台手写板时,总金额为10×(1000-140)+(20-10)×(1000-220)=16400(元),此时均价为16400÷20=820(元).因为820>800,所以x>20.根据题意,得2400+700x=800x,解得x=24,符合题意.答:他们购买了24台这种手写板..。
销售中的盈亏问题(一)、引入问题:①某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是;②某种品牌的彩电降价3%以后,每台售价为a元,则该品牌彩电每台原价应为元;③某商品按定价的八折出售,售价是14.8元,则原定价是;④某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为;⑤我国政府为解决老百姓看病问题,决定下调药品的价格,某种药品在1999年涨价30%后,2001降价70%至a元,则这种药品在1999年涨价前价格为元。
(二)提出问题、探究新知问题:销售中的盈亏(课本104页探究1)某商店在某一时间以每件60元的价格卖两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总收入是盈利还是亏损?或是不盈不亏?分析:进价、售价和利润之间有什么关系?什么是利润率?利润=售价-进价;利润率=利润/进价×100%.本题看是否盈利还是亏损的依据是什么?依据是看卖出两件衣服盈利与亏损谁大。
现在我们来看卖出盈利25%的这件衣服盈利多少。
设盈利25%的这件衣服进价是x元,可得怎样的方程?。
再来看亏损25%的这件衣服亏损多少元。
设亏损25%的这件衣服进价是y元,可得怎样的方程?。
所以这件衣服的利润是元。
因此,卖这两件衣服元。
例2 某种商品零售价每件900元,为了适应市场的竞争,商店按零售价的9折降价并让利40元销售,仍可获利10%,则这种商品进货每件多少元?分析:问题中的等量关系是什么?实际售价-40-进价=利润。
设这种子商品进货每件x元,那么实际售价是多少?利润是多少?实际售价是,利润是。
由此可得方程为解之,得x= 。
所以这种商品进货每件元。
(三)、学生自主探索解决。
问题1:一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?问题2:我国股市交易中每天、卖一次各交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为多少?出油率问题问题:油菜种植的计算(课本105页探究2)某村去年种植的油菜籽亩产量达160千克,含油率40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。
人教版数学七年级上册《销售中的盈亏问题》教学设计一. 教材分析人教版数学七年级上册《销售中的盈亏问题》是依据我国新课程标准编写的一篇教材。
本节内容主要让学生了解和掌握在销售过程中如何运用数学知识解决盈亏问题,培养学生运用数学知识解决实际问题的能力。
教材通过具体的案例,引导学生分析问题、解决问题,从而掌握基本的解决盈亏问题的方法和技巧。
二. 学情分析七年级的学生已经具备了一定的数学基础,对一些基本的数学运算和概念有了一定的了解。
但他们在解决实际问题时,往往还停留在理论层面,缺乏将数学知识运用到实际问题中的能力。
针对这种情况,教师在教学过程中要注重培养学生的动手操作能力和解决实际问题的能力。
三. 教学目标1.让学生掌握解决盈亏问题的基本方法和技巧。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生的动手操作能力和团队协作能力。
四. 教学重难点1.重点:掌握解决盈亏问题的基本方法和技巧。
2.难点:将数学知识运用到实际问题中,灵活解决盈亏问题。
五. 教学方法1.案例教学法:通过具体的案例,让学生了解和掌握解决盈亏问题的方法和技巧。
2.小组讨论法:让学生在小组内讨论问题,培养学生的团队协作能力和解决问题的能力。
3.实践操作法:让学生动手操作,将理论知识运用到实际问题中。
六. 教学准备1.准备相关的案例材料,用于引导学生分析问题、解决问题。
2.准备教学课件,用于辅助讲解和展示案例。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个简单的案例,引出盈亏问题,激发学生的兴趣。
例如:商店进购了一批商品,售价为100元,商家希望每件商品能赚取20%的利润,问商家每件商品至少要卖多少钱?2.呈现(10分钟)教师展示教材中的案例,让学生阅读并理解案例中的问题。
教师引导学生分析问题,找出关键信息,并提出解决盈亏问题的方法。
3.操练(10分钟)教师提出一组类似的问题,让学生独立解决。
学生在解决过程中,教师给予个别指导和帮助。
3.4实际问题与一元一次方程《销售中的盈亏问题》教学设计一、教学目标1.理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间的关系.2.能利用一元一次方程解决商品销售中的实际问题.二、教学重点及难点重点:建立实际问题的方程模型,让学生会求商品销售中的盈亏情况.通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.难点:找盈亏问题中的相等关系,在探究中建立方程并会求方程的解.三、教学用具电脑、多媒体、课件.四、教学方法启发诱导,合作交流,讨论思考.五、教学过程(一)创设情境这些图片中涉及的场景是什么?师生活动:教师利用多媒体出示一组图片,让学生观察、联想,然后回答问题.小结:销售中的盈亏问题.设计意图:利用学生的好奇心采用图片引入,激起学生主动联想和学习的欲望.能给学生造成一种轻松的学习氛围,易于学生学习新知识,为本节课的继续探索做准备.培养学生观察生活的习惯,知道数学来源于生活.(二)合作探究一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?问题1:你估计盈亏情况是怎样的?A.盈利;B.亏损;C.不盈不亏.师生活动:让学生产生疑问,思考讨论,学生很难得出答案.教师可以引导学生:如何计算两件衣服总的是盈利还是亏损.设计意图:在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导,可再提出:“如何判断盈亏?”这时学生就有了一个攀登的台阶,自然而然地想到准确计算可减少判断错误,同时引出要利用方程模型来解决问题.问题2:盈利25%、亏损25%的意义是什么?师生活动:小组交流、讨论,小组代表汇报讨论结论.然后教师引导学生得出:盈利25%,即这件商品的销售利润是商品进价的25%;亏损25%,即这件商品的销售利润是商品进价的-25%.此时复习利润、利润率、标价、售价、成本价之间的关系.设计意图:弄清销售中的一些基本概念,理清其中的等量关系,明确问题的实质.问题3:销售的盈亏决定于什么?师生活动:教师提出问题,学生思考,并回答问题.小结:销售的盈亏决定于总售价与总成本(两件衣服的成本之和),当120>总成本时,为盈利,当120<总成本时,为亏本,当120=总成本时,为不盈不亏.设计意图:通过提问的形式,使学生加深理解销售的盈亏的决定条件.问题4:两件衣服的成本各是多少元?卖这两件衣服总的是盈利还是亏损,或是不盈不亏?师生活动:学生交流、讨论,然后师生共同完成解答过程.解:设盈利25%的衣服的进价是x元,依题意得:x+0.25x=60,解得:x=48.设亏损25%的衣服的进价是y元,依题意得:y-0.25y=60,解得:y=80.两件衣服总成本:48+80=128(元);因为120-128=-8(元),所以卖这两件衣服共亏损了8元.设计意图:通过生活中的实例,用问题的形式来探究新课内容,使学生感受数学来源于生活,又应用于生活.(三)练习巩固1.某商店四月份购进70个篮球,由于供不应求,五月份又购进同种篮球60个,两次购进篮球的单价不同,已知四月份和五月份购进篮球的单价和为65元,并且四月份与五月份购入篮球总费用相同.(1)求该商店四、五月份购进篮球的单价分别是多少元;解:设四月份购买篮球的单价为x元,则五月份购买的篮球单价为(65-x)元.70x=(65-x)60X=3065-x=35答:四月购买篮球的单价是30元,五月份购买的篮球单价是35 元。
盈亏问题公式及例题
【实用版】
目录
1.盈亏问题的基本概念
2.盈亏问题的公式推导
3.盈亏问题的例题解析
4.盈亏问题的实际应用
正文
一、盈亏问题的基本概念
盈亏问题,又称为利润问题,是数学中的一个基本问题。
它主要研究的是,在成本、售价和数量之间如何取得最大利润或者最小亏损。
在实际生活和工作中,盈亏问题有着广泛的应用,比如商家定价、成本控制、投资决策等。
二、盈亏问题的公式推导
盈亏问题的核心公式是:总利润=销售数量×(售价 - 成本)。
其中,销售数量是商品销售的数量,售价是商品的售价,成本是商品的生产或采购成本。
根据这个公式,我们可以进一步推导出其他相关的公式,如:最大利润、最小亏损等。
三、盈亏问题的例题解析
例题:一个商家采购一批商品,成本为 100 元/件,售价为 150 元/件,如果商家希望获得最大利润,应该销售多少件商品?
解:根据盈亏问题的公式,总利润=销售数量×(售价 - 成本),代入数据得:总利润=销售数量×(150-100)=销售数量×50。
显然,销售数量越多,总利润越大。
因此,商家应该尽可能多地销售商品,以获得最大利润。
四、盈亏问题的实际应用
盈亏问题在实际生活中的应用非常广泛,比如商家定价、成本控制、投资决策等。